TYROSOLUTION DAS VIELSEITIGE KONZEPT FÜR DIE OBERE EXTREMITÄT - in allen Phasen der Rehabilitation!
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
TYROSOLUTION DAS VIELSEITIGE KONZEPT FÜR DIE OBERE EXTREMITÄT … in allen Phasen der Rehabilitation! Süssmed Veranstaltungsreihe 06.06.2018
ÜBERBLICK Vorstellung Was ist die Herausforderung? Welche Lösung bietet Tyromotion Wie werden die Geräte eingesetzt? www.tyromotion.com 2
TYROMOTION GMBH 2007 gegründet Einer der weltweit führenden Hersteller von robotik- und computergestützten Therapiegeräten Hauptsitz in Graz (>50 Mitarbeiter) Forschung+Entwicklung+Produktion in Österreich Weltweites Vertriebsnetz Endeffektor-Ansatz www.tyromotion.com 4
NICOLINE KLUPPENEGGER Bachelor in Ergotherapie (FH Joanneum) Master in Health Assisting Engineering (FH Campus Wien) > 7 Jahre Berufserfahrung als Ergotherapeutin Tyromotion Mai 2017 Clinical Application and Education Specialist IDPM 2018 – GET BETTER. EVERY DAY. 5
HERAUSFORDERUNGEN IN DER THERAPIE Stroke major cause of chronic impaired arm function and may affecting many activities of daily living 2/3 arm paresis reduced upper extremity function despite multidisciplinary rehab approach, four out of five patients leave rehabilitation with restricted arm function There is still an urgent need for rehabilitation strategies that match the specific patient needs Mehrholz et al. 2012
HERAUSFORDERUNGEN IM REHABILITATIONSPROZESS Nicht genug Personal (1:1) Unterschiede in der Ausbildung der TherapeutInnen Kurze effektive Therapiezeit Aufenthaltsdauer immer kürzer Rehabilitationsprozess lange und ermüdend Große Ziele aber nur kleine Verbesserungen Körperliche und mentale Belastung für TherapeutInnen www.tyromotion.com 7
INDIKATIONEN Sehnenverletzungen Zerebralparese Rückenmarksverletzungen Muskeldystrophien Multiple Sklerose Traumatische Morbus Parkinson Schulterverletzung Insult Amputation Schädel-Hirn-Trauma Tumor Künstlicher Gelenksersatz Frakturen www.tyromotion.com 10
ZIELORIENTIERTE THERAPIE HAND ARM Eingeschränkte Greiffunktion Defizite in der Kontrolle der Bewegung Individuelle Fingerbewegungen Arm heben gegen die Schwerkraft Greifen und Loslassen Gezielte Bewegungen präsziese ausführen Spastizität Koordination Sensibilität Schulterstabilität Bewegungskontrolle Rumpfstabilität Präzision Kraftkontrolle Bewegungskoordination BALANCE Reaktion POSTURALE KONTROLLE RUMPFSTABILITÄT AUFGABENORIENTIERTE INTERAKTION Gewichtsverlagerung Motorik und Kognition Gewichtsbelastung Graphomotorik Symmetrie Räumlich-visuelle Exploration Stabilität www.tyromotion.com 11
MAX MUSTERMANN HAND ARM Eingeschränkte Greiffunktion Defizite in der Kontrolle der Bewegung Individuelle Fingerbewegungen Arm heben gegen die Schwerkraft Greifen und Loslassen Gezielte Bewegungen präsziese ausführen Spastizität Koordination Sensibilität Schulterstabilität Bewegungskontrolle Rumpfstabilität Präzision Kraftkontrolle Bewegungskoordination BALANCE Reaktion POSTURALE KONTROLLE RUMPFSTABILITÄT AUFGABENORIENTIERTE INTERAKTION Gewichtsverlagerung Motorik und Kognition Gewichtsbelastung Graphomotorik Symmetrie Räumlich-visuelle Exploration Stabilität www.tyromotion.com 12
www.tyromotion.com 13
AMADEO® ROBOT-ASSISTED HAND THERAPY Grasping CONVENTIONAL THERAPY AMADEO® THERAPY - FUNCTIONALITY Single Fingers Force • paretic hand after stroke • no active hand opening • spasticity feasible, safe, and effective for patients in all • easily adjustable for all hand sizes (children & adults) ROM phases of stroke rehabilitation: • allows therapy with focus on finger extension acute (Sale et al. 2012, 2014) sub acute (Orihuela-Espina et al. 2016) • active, assistive, passive & sensory therapy chronic (Stein et al. 2011) Vibration www.tyromotion.com 14
DIEGO® ROBOT-ASSISTED ARM THERAPY DIEGO® THERAPY - FUNCTIONALITY Arm Weight CONVENTIONAL THERAPY Support Assist-as-needed Compensation or non-use 3D Workspace • assists physiologic movements in 3D space • allows focus on impairment & task-oriented therapy • helps stabilizing the shoulder (& trunk) and allows a bigger distal challenge Uni- & Bilateral www.tyromotion.com 16
MYRO® MULTISENSORY THERAPY SURFACE MYRO® THERAPY - FUNCTIONALITY INTERACTION ADJUST THE FOCUS & DIFFICULTY OF ARM MOVEMENTS BOARD Lifting FORCE push & pull Transfer OBJECT TABLE manipulation pick & place Scalable Workspace & Surface angle • practice conditions that match activities of daily living • sitting, supported, or standing position • easy wheelchair access or bedside use TOUCH www.tyromotion.com 19
TYROS – CROSS SYSTEM SOFTWARE www.tyromotion.com 21
PABLO® - HAND, ARM & TRUNK Assistance and movement guidance for weaker patients with Pablo Sensor Handle Multiball Multiboard Motionsensors fine motor dexterity gross motor function force control hand positioning reaching trunk and in everyday life Sensor-based therapy device for the whole body … www.tyromotion.com 22
TYMO® - SUPPORTING & TRUNK CONTROL Postural control is a prerequisite for any activity Force biofeedback repetitive task training SUPPORTING Shoulder stability SITTING Weight bearing ability Weight distribution SIT-TO-STAND Weight-shift training Weight transfer STANDING Symmetry static unstable surface dynamic www.tyromotion.com 23
IMPLEMENTATION TRENDS Intensive therapy Group therapy in addition to conventional therapy increase the intensity, number of movement repetitions, and overall therapy time technology can support the therapist who is the brain of the operation www.tyromotion.com 24
VIELEN DANK FÜR DIE AUFMERKSAMKEIT Nicoline.kluppenegger@tyromotion.com www.tyromotion.com 25
REFERENCES Bishop L, Gordon AM, Kim H. Hand robotic therapy in children with hemiparesis: A pilot study. Am J Phys Med Rehabil. 2017 Jan;96(1):1-7. Borghese NA, Pirovano M, Lanzi PL, Wüst S, de Bruin ED. Computational intelligence and game design for effective at-home stroke rehabilitation. Games for Health Journal. 2013 apr; 2(2): 81-88. Brailescu CM, Scarlet RG, Nica AS, Lascar I. A study regarding results of a rehabilitation program in patients with traumatic lesions of the hand after surgery. Palestrica of third millennium – Civilization and Sport. 2013; 14(4), 263-270. Celadon N, Dosen S, Binder I, Ariano P, Farina D. Proportional estimation of finger movements from high-density surface electromyography. J Neuroeng Rehabil. 2016 Aug 4;13(1):73. Colomer, C., LlorensEmail, R., Noé, E., Alcañiz, M., Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. Journal of NeuroEngineering and Rehabilitation ,2016 May 11;13(1):45. Gharabaghi A, Kaus D, Leão MT, Spüler M, Walter A, Bogdan M, Rosenstiel W, Naros G and Ziemann U. Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neuro rehabilitation. Frontiers in Human Neuroscience, March2014, Vol.8: Article122. Hesse S, Heß A, Werner CC, Kabbert N, Buschfort R. Effect on arm function and cost of robot-assisted group therapy in subacute patients with stroke and a moderately to severely affected arm: a randomized controlled trial. Clin Rehabil 2014; 28(7):637-47. Hwang CH, Seong JW, Son DS. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy. Clinical Rehabilitation 2012; 26(8), 696-704. Kwakkel G, Meskers CGM. Effects of robotic therapy of the arm after stroke. Lancet Neurology; Vol 13: Feb 2014. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. The Lancet Neurology 2009(8): 741-754. Lo AC, Guarino PD, Richards LG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 2011; 365(18):1749. www.tyromotion.com 26
REFERENCES Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database of Systematic Reviews 2015, Issue 11. Nica AS, Brailescu CM, Scarlet RG. Virtual reality as a method for evaluation and therapy after traumatic hand surgery. Stud Health Technol Inform. 2013; 191: 48-52. Orihuela-Espina F, Femat Roldán G, Sánchez-Villavicencio I, Palafox L, Leder R, Enrique Sucar L, Hernández-Franco J. Robot training for hand motor recovery in subacute stroke patients: A randomized controlled trial. J Hand Ther. 2016 Jan-Mar; 29(1):51-7. Pinter, D., Pegritz, S., Pargfrieder, C., Reiter, G., Wurm, W., Gattringer, T., Linderl-Madrutter, R., Neuper, C., Fazekas, F., Grieshofer, P., Enzinger, C. (2013). Exploratory Study on the Effects of a Robotic Hand Rehabilitation Device on Changes in Grip Strength and Brain Activity after Stroke. Topics in Stroke Rehabilitation, 2013 20, (4). 308- 316. Platz, T., Roschka, S. (2011). Rehabilitative Therapie bei Armlähmung nach einem Schlaganfall. Patientenversion der Leitlinie der Deutschen Gesellschaft für Neurorehabilitation. Bad Honnef: Hippocampus. Royal College of Physicians, Intercollegiate Working Party for Stroke. National clinical guidelines for stroke, 4rd edition. London: Royal College of Physicians, 2012. Sale, P., Lombardi, V., Franceschini, M. Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis. Stroke research and treatment, 2012, 820931. Sale P, Mazzoleni S, Lombardi V, Galafate D, Massimiani MP, Posteraro F, Damiani C, Franceschini M. Recovery of hand function with robot-assisted therapy in acute stroke patients: a randomized-controlled trial. Int J Rehabil Res. 2014 Sep; 37(3):236-42.(2014) Seitz, RJ., Kammerzell, A., Samartzi, M., Jander, S., Wojtecki, L., Verschure, P., Ram, D. (2014). Monitoring of visuomotor coordination in healthy subjects and patients with stroke and Parkinson's disease: An application study using the PABLO®-device. International Journal Neurorehabilitation 2014. 1:113. Speth F. The role of sound in robot-assisted hand function training post-stroke. PhD thesis. July 2016. www.tyromotion.com 27
REFERENCES Stein J, Bishop L, Helbok R. Robot-assisted exercise for hand weakness after stroke: a pilot study. American Journal of Physical Medicine & Rehabilitation. 2011 Nov; 90(11): 887-894. VA/DoD Clinical practice guideline for the management of stroke rehabilitation, Department of Veterans Affairs, Department of Defense, The American Heart Association, American Stroke Association, Version 2.0, 2012 Wagner TH, Lo AC, Peduzzi P, Bravata DM, Huang GD, Krebs HI, et al. An economic analysis of robot-assisted therapy for long-term upper-limb impairment after stroke. Stroke 2011; 42:2630–2. Waller S and Whitall J. Bilateral arm training: Why and who benefits? NeuroRehabilitation. 2008;23(1):29-41. Wright DL, Shea CH. Cognition and motor skill acquisition: Contextual dependencies. In: Reynolds CR. Cognitive Assessment: A Multidisciplinary Perspective. Boston, MA: Springer Verlag US; 1994, 89-106. www.tyromotion.com 28
You can also read