TYROSOLUTION DAS VIELSEITIGE KONZEPT FÜR DIE OBERE EXTREMITÄT - in allen Phasen der Rehabilitation!

Page created by Samantha Fowler
 
CONTINUE READING
TYROSOLUTION DAS VIELSEITIGE KONZEPT FÜR DIE OBERE EXTREMITÄT - in allen Phasen der Rehabilitation!
TYROSOLUTION
DAS VIELSEITIGE KONZEPT FÜR
DIE OBERE EXTREMITÄT

… in allen Phasen der Rehabilitation!

Süssmed Veranstaltungsreihe 06.06.2018
TYROSOLUTION DAS VIELSEITIGE KONZEPT FÜR DIE OBERE EXTREMITÄT - in allen Phasen der Rehabilitation!
ÜBERBLICK
 Vorstellung
 Was ist die Herausforderung?
 Welche Lösung bietet Tyromotion
 Wie werden die Geräte eingesetzt?

                                 www.tyromotion.com   2
TYROSOLUTION DAS VIELSEITIGE KONZEPT FÜR DIE OBERE EXTREMITÄT - in allen Phasen der Rehabilitation!
TYROMOTION

             www.tyromotion.com   3
TYROSOLUTION DAS VIELSEITIGE KONZEPT FÜR DIE OBERE EXTREMITÄT - in allen Phasen der Rehabilitation!
TYROMOTION GMBH

   2007 gegründet
   Einer der weltweit führenden Hersteller von robotik- und
    computergestützten Therapiegeräten
   Hauptsitz in Graz (>50 Mitarbeiter)
   Forschung+Entwicklung+Produktion in Österreich
   Weltweites Vertriebsnetz
   Endeffektor-Ansatz

                                 www.tyromotion.com            4
TYROSOLUTION DAS VIELSEITIGE KONZEPT FÜR DIE OBERE EXTREMITÄT - in allen Phasen der Rehabilitation!
NICOLINE KLUPPENEGGER

 Bachelor in Ergotherapie (FH Joanneum)
 Master in Health Assisting Engineering (FH Campus Wien)
 > 7 Jahre Berufserfahrung als Ergotherapeutin
 Tyromotion Mai 2017
 Clinical Application and Education Specialist

                          IDPM 2018 – GET BETTER. EVERY DAY.   5
TYROSOLUTION DAS VIELSEITIGE KONZEPT FÜR DIE OBERE EXTREMITÄT - in allen Phasen der Rehabilitation!
HERAUSFORDERUNGEN IN DER THERAPIE

Stroke
 major cause of chronic impaired arm function and may affecting many
  activities of daily living
 2/3 arm paresis  reduced upper extremity function

 despite multidisciplinary rehab approach, four out of five patients
  leave rehabilitation with restricted arm function

        There is still an urgent need for rehabilitation strategies
        that match the specific patient needs
                                                   Mehrholz et al. 2012
TYROSOLUTION DAS VIELSEITIGE KONZEPT FÜR DIE OBERE EXTREMITÄT - in allen Phasen der Rehabilitation!
HERAUSFORDERUNGEN IM REHABILITATIONSPROZESS

 Nicht genug Personal (1:1)
 Unterschiede in der Ausbildung der TherapeutInnen
 Kurze effektive Therapiezeit
 Aufenthaltsdauer immer kürzer
 Rehabilitationsprozess lange und ermüdend
 Große Ziele aber nur kleine Verbesserungen
 Körperliche und mentale Belastung für TherapeutInnen

                             www.tyromotion.com          7
TYROSOLUTION DAS VIELSEITIGE KONZEPT FÜR DIE OBERE EXTREMITÄT - in allen Phasen der Rehabilitation!
TYROTHERAPY – VIELSEITIGE THERAPIE

                         www.tyromotion.com   8
TYROSOLUTION DAS VIELSEITIGE KONZEPT FÜR DIE OBERE EXTREMITÄT - in allen Phasen der Rehabilitation!
INDIKATIONEN                                               Sehnenverletzungen

                                     Zerebralparese
                                                                       Rückenmarksverletzungen
    Muskeldystrophien

                 Multiple Sklerose

Traumatische
                                                                                    Morbus Parkinson
Schulterverletzung

      Insult

               Amputation                                                          Schädel-Hirn-Trauma

        Tumor

                              Künstlicher Gelenksersatz                    Frakturen

                                             www.tyromotion.com                                          10
TYROSOLUTION DAS VIELSEITIGE KONZEPT FÜR DIE OBERE EXTREMITÄT - in allen Phasen der Rehabilitation!
ZIELORIENTIERTE THERAPIE
HAND                                                                                         ARM
Eingeschränkte Greiffunktion                              Defizite in der Kontrolle der Bewegung
Individuelle Fingerbewegungen                                  Arm heben gegen die Schwerkraft
Greifen und Loslassen                                  Gezielte Bewegungen präsziese ausführen
Spastizität                                                                          Koordination
Sensibilität                                                                     Schulterstabilität
Bewegungskontrolle                                                                 Rumpfstabilität
Präzision
Kraftkontrolle
Bewegungskoordination                                                                BALANCE
Reaktion                                                                 POSTURALE KONTROLLE
                                                                              RUMPFSTABILITÄT
AUFGABENORIENTIERTE INTERAKTION                                            Gewichtsverlagerung
Motorik und Kognition                                                        Gewichtsbelastung
Graphomotorik                                                                       Symmetrie
Räumlich-visuelle Exploration                                                         Stabilität

                                  www.tyromotion.com                                          11
MAX MUSTERMANN
HAND                                                                                         ARM
Eingeschränkte Greiffunktion                             Defizite in der Kontrolle der Bewegung
Individuelle Fingerbewegungen                                  Arm heben gegen die Schwerkraft
Greifen und Loslassen                                  Gezielte Bewegungen präsziese ausführen
Spastizität                                                                         Koordination
Sensibilität                                                                     Schulterstabilität
Bewegungskontrolle                                                                Rumpfstabilität
Präzision
Kraftkontrolle
Bewegungskoordination                                                                BALANCE
Reaktion                                                                 POSTURALE KONTROLLE
                                                                              RUMPFSTABILITÄT
AUFGABENORIENTIERTE INTERAKTION                                            Gewichtsverlagerung
Motorik und Kognition                                                        Gewichtsbelastung
Graphomotorik                                                                       Symmetrie
Räumlich-visuelle Exploration                                                         Stabilität

                                  www.tyromotion.com                                          12
www.tyromotion.com   13
AMADEO® ROBOT-ASSISTED HAND THERAPY
                                                                 Grasping                CONVENTIONAL THERAPY
        AMADEO® THERAPY - FUNCTIONALITY

                                                              Single Fingers

                                                                   Force            • paretic hand after stroke
                                                                                    • no active hand opening
                                                                                    • spasticity
                                                                               feasible, safe, and effective for patients in all
• easily adjustable for all hand sizes (children & adults)         ROM
                                                                                      phases of stroke rehabilitation:
• allows therapy with focus on finger extension                                    acute (Sale et al. 2012, 2014)
                                                                                   sub acute (Orihuela-Espina et al. 2016)
• active, assistive, passive & sensory therapy
                                                                                   chronic (Stein et al. 2011)
                                                                 Vibration

                                                   www.tyromotion.com                                                14
DIEGO® ROBOT-ASSISTED ARM THERAPY
        DIEGO® THERAPY - FUNCTIONALITY                      Arm Weight        CONVENTIONAL THERAPY
                                                              Support

                                                          Assist-as-needed

                                                                              Compensation or non-use

                                                           3D Workspace
• assists physiologic movements in 3D space
• allows focus on impairment & task-oriented therapy
• helps stabilizing the shoulder (& trunk) and allows a
  bigger distal challenge                                  Uni- & Bilateral

                                                www.tyromotion.com                                      16
MYRO® MULTISENSORY THERAPY SURFACE

         MYRO® THERAPY - FUNCTIONALITY                        INTERACTION     ADJUST THE FOCUS & DIFFICULTY
                                                                                  OF ARM MOVEMENTS

                                                                                      BOARD            Lifting
                                                                 FORCE
                                                               push & pull

                                                                                      Transfer

                                                                OBJECT                 TABLE
                                                              manipulation
                                                              pick & place
                                                                             Scalable Workspace & Surface angle
• practice conditions that match activities of daily living
• sitting, supported, or standing position
• easy wheelchair access or bedside use
                                                                 TOUCH

                                                   www.tyromotion.com                                      19
TYROS – CROSS SYSTEM SOFTWARE

                        www.tyromotion.com   21
PABLO® - HAND, ARM & TRUNK
                                                                              Assistance and movement
                                                                             guidance for weaker patients

with Pablo Sensor Handle                                                    Multiball          Multiboard    Motionsensors

fine motor dexterity gross motor function   force control          hand positioning          reaching            trunk

and in everyday life                                                    Sensor-based therapy device for the whole body …

                                                   www.tyromotion.com                                             22
TYMO® - SUPPORTING & TRUNK CONTROL
Postural control is a prerequisite for any activity         Force biofeedback repetitive task training

                                                                  SUPPORTING
                                                                                     Shoulder stability
                                                                           SITTING   Weight bearing ability
                                                                                     Weight distribution
                                                                 SIT-TO-STAND        Weight-shift training
                                                                                     Weight transfer
                                                                     STANDING        Symmetry

                               static                    unstable surface            dynamic

                                                      www.tyromotion.com                                      23
IMPLEMENTATION TRENDS
 Intensive therapy                             Group therapy

                         in addition to conventional therapy
increase the intensity, number of movement repetitions, and overall therapy time
     technology can support the therapist who is the brain of the operation

                                  www.tyromotion.com                               24
VIELEN DANK FÜR DIE AUFMERKSAMKEIT

                                             Nicoline.kluppenegger@tyromotion.com
                        www.tyromotion.com                                25
REFERENCES
Bishop L, Gordon AM, Kim H. Hand robotic therapy in children with hemiparesis: A pilot study. Am J Phys Med Rehabil. 2017 Jan;96(1):1-7.

Borghese NA, Pirovano M, Lanzi PL, Wüst S, de Bruin ED. Computational intelligence and game design for effective at-home stroke rehabilitation. Games for Health
     Journal. 2013 apr; 2(2): 81-88.

Brailescu CM, Scarlet RG, Nica AS, Lascar I. A study regarding results of a rehabilitation program in patients with traumatic lesions of the hand after surgery. Palestrica of
      third millennium – Civilization and Sport. 2013; 14(4), 263-270.

Celadon N, Dosen S, Binder I, Ariano P, Farina D. Proportional estimation of finger movements from high-density surface electromyography. J Neuroeng Rehabil. 2016 Aug
     4;13(1):73.

Colomer, C., LlorensEmail, R., Noé, E., Alcañiz, M., Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. Journal of
     NeuroEngineering and Rehabilitation ,2016 May 11;13(1):45.

Gharabaghi A, Kaus D, Leão MT, Spüler M, Walter A, Bogdan M, Rosenstiel W, Naros G and Ziemann U. Coupling brain-machine interfaces with cortical stimulation for
     brain-state dependent stimulation: enhancing motor cortex excitability for neuro rehabilitation. Frontiers in Human Neuroscience, March2014, Vol.8: Article122.

Hesse S, Heß A, Werner CC, Kabbert N, Buschfort R. Effect on arm function and cost of robot-assisted group therapy in subacute patients with stroke and a moderately to
     severely affected arm: a randomized controlled trial. Clin Rehabil 2014; 28(7):637-47.

Hwang CH, Seong JW, Son DS. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of
    efficacy. Clinical Rehabilitation 2012; 26(8), 696-704.

Kwakkel G, Meskers CGM. Effects of robotic therapy of the arm after stroke. Lancet Neurology; Vol 13: Feb 2014.
Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. The Lancet Neurology 2009(8): 741-754.

Lo AC, Guarino PD, Richards LG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 2011; 365(18):1749.

                                                                           www.tyromotion.com                                                                                26
REFERENCES
Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle
    strength after stroke. Cochrane Database of Systematic Reviews 2015, Issue 11.
Nica AS, Brailescu CM, Scarlet RG. Virtual reality as a method for evaluation and therapy after traumatic hand surgery. Stud Health Technol Inform. 2013; 191: 48-52.
Orihuela-Espina F, Femat Roldán G, Sánchez-Villavicencio I, Palafox L, Leder R, Enrique Sucar L, Hernández-Franco J. Robot training for hand motor recovery in subacute
     stroke patients: A randomized controlled trial. J Hand Ther. 2016 Jan-Mar; 29(1):51-7.
Pinter, D., Pegritz, S., Pargfrieder, C., Reiter, G., Wurm, W., Gattringer, T., Linderl-Madrutter, R., Neuper, C., Fazekas, F., Grieshofer, P., Enzinger, C. (2013). Exploratory Study
      on the Effects of a Robotic Hand Rehabilitation Device on Changes in Grip Strength and Brain Activity after Stroke. Topics in Stroke Rehabilitation, 2013 20, (4). 308-
      316.
Platz, T., Roschka, S. (2011). Rehabilitative Therapie bei Armlähmung nach einem Schlaganfall. Patientenversion der Leitlinie der Deutschen Gesellschaft für
       Neurorehabilitation. Bad Honnef: Hippocampus.
Royal College of Physicians, Intercollegiate Working Party for Stroke. National clinical guidelines for stroke, 4rd edition. London: Royal College of Physicians, 2012.

Sale, P., Lombardi, V., Franceschini, M. Hand robotics rehabilitation: feasibility and preliminary results of a robotic treatment in patients with hemiparesis. Stroke research
       and treatment, 2012, 820931.

Sale P, Mazzoleni S, Lombardi V, Galafate D, Massimiani MP, Posteraro F, Damiani C, Franceschini M. Recovery of hand function with robot-assisted therapy in acute stroke
      patients: a randomized-controlled trial. Int J Rehabil Res. 2014 Sep; 37(3):236-42.(2014)

Seitz, RJ., Kammerzell, A., Samartzi, M., Jander, S., Wojtecki, L., Verschure, P., Ram, D. (2014). Monitoring of visuomotor coordination in healthy subjects and patients with
       stroke and Parkinson's disease: An application study using the PABLO®-device. International Journal Neurorehabilitation 2014. 1:113.

Speth F. The role of sound in robot-assisted hand function training post-stroke. PhD thesis. July 2016.

                                                                              www.tyromotion.com                                                                                    27
REFERENCES
Stein J, Bishop L, Helbok R. Robot-assisted exercise for hand weakness after stroke: a pilot study. American Journal of Physical Medicine & Rehabilitation. 2011 Nov;
      90(11): 887-894.

VA/DoD Clinical practice guideline for the management of stroke rehabilitation, Department of Veterans Affairs, Department of Defense, The American Heart Association,
     American Stroke Association, Version 2.0, 2012

Wagner TH, Lo AC, Peduzzi P, Bravata DM, Huang GD, Krebs HI, et al. An economic analysis of robot-assisted therapy for long-term upper-limb impairment after stroke.
    Stroke 2011; 42:2630–2.

Waller S and Whitall J. Bilateral arm training: Why and who benefits? NeuroRehabilitation. 2008;23(1):29-41.

Wright DL, Shea CH. Cognition and motor skill acquisition: Contextual dependencies. In: Reynolds CR. Cognitive Assessment: A Multidisciplinary Perspective. Boston, MA:
     Springer Verlag US; 1994, 89-106.

                                                                         www.tyromotion.com                                                                             28
You can also read