Titolo presentazione sottotitolo - Polimi

Page created by Nathan Scott
 
CONTINUE READING
Titolo presentazione sottotitolo - Polimi
Slurry flows inTitolo presentazione
                pipeline systems
                     sottotitolo
modelling and management
Gianandrea Vittorio Messa Milano, XX          mese 20XX
FluidLab Group
Dept. Civil and Environmental Engineering
                                                                www.fluidlab.polimi.it
Politecnico di Milano, Milano, Italy

Seminars organized by the DICA Scientific Commission, V cycle
Titolo presentazione sottotitolo - Polimi
Why are slurry flows so interesting?                                                                       2

     Several applications involved
        Mining industry
        Chemical industry
        Food industry
        Oil and gas
        …and many others
                                                  Slurry pipelines                      Drying/separators

     Attractive for academia
      Complex system
      Many physical mechanisms

                                                                     Oil sands processing

         Challenge is linking scientific research (physical understanding and
         modelling) with practical purposes (design and management)

Gianandrea Vittorio Messa, FluidLab Group, DICA
Titolo presentazione sottotitolo - Polimi
Research approach and milestones                                                     3

    2010               2013             2014        2015   2016                2018
                     Slurry flow modelling years…
                                                           Impact erosion years…

   Key features of research @ FluidLab group:
    Synergy of numerical and experimental
    Always a look to the engineering needs

Gianandrea Vittorio Messa, FluidLab Group, DICA
Titolo presentazione sottotitolo - Polimi
Keynote outline

         1               Slurry pipeline flows

         2               The impact erosion issue

         3               Current and future developments

Gianandrea Vittorio Messa, FluidLab Group, DICA
Titolo presentazione sottotitolo - Polimi
Keynote outline

         1               Slurry pipeline flows

         2               The impact erosion issue

         3               Current and future developments

Gianandrea Vittorio Messa, FluidLab Group, DICA
Titolo presentazione sottotitolo - Polimi
The slurry flow team and its partners                                                     4

                                          Stefano       me

                                                    Dr. Michael Malin
                                                    CHAM Limited
                                                    London UK

                                                    Prof. Vaclav Matousek
                                                    Czech Technical University in Prague
                                                    Prague CZ

Gianandrea Vittorio Messa, FluidLab Group, DICA
Titolo presentazione sottotitolo - Polimi
Basic questions                                                                                                  5

    What is a slurry pipeline?
    A pipeline used to transport granular material
    mixed with water

    What are the main concerns?
       Reduce the energy consumption
       Protect the particles against degradation
       Protect the pipeline agains E/C
       Reduce water consumption?
                                           Solid volume fraction [-]                            Slurry
    What is to be predicted?
     Pressure losses

                                                                       Pressure gradient
     Particle distribution
     Velocity field

                                                                                                         Single-phase

                                                                                           Slurry velocity

Gianandrea Vittorio Messa, FluidLab Group, DICA
Titolo presentazione sottotitolo - Polimi
How to investigate slurry pipeline flows?                                                                        6

    Physical modelling
       Predominant approach
       High economic cost
       Technical issues even for simple flows
       Size limitations                                        https://sites.ualberta.ca/~turb/facilities.html

    "Conceptual" modelling
     Effective way for straight pipe flows
     Many simplifying assumptions
     Sometimes not so easy to implement
     Not applicable to other geometries                                 Pecker and Helvaci (2008)

    Numerical modelling
     Very complex models
     Pending issues (particle accumulation)
     Many parameters involved                                  Ekambara et al. (2009)
     Numerical problems
     Potentially applicable to complex geometries and large scale systems

Gianandrea Vittorio Messa, FluidLab Group, DICA
Titolo presentazione sottotitolo - Polimi
A new predictive model                                                                                    7
 Defining the fundamental assumptions…

  What type of model?

   Euler-Euler, two-fluid model approach                                                        Solid
                                                                                       Liquid    phase
   Other approaches (e.g. Euler-Lagrange) not                       Slurry
                                                                                       phase
    pratically applicable to dense flows in
    complex geometries

  What type of slurry flows?

   Fully-suspended flow (no particle accumulation)

        Fully-suspended flow                Flow with a moving bed            Flow with a stationary bed

Gianandrea Vittorio Messa, FluidLab Group, DICA
Titolo presentazione sottotitolo - Polimi
Overview of two-fluid model equations                                                                                                                                                                                  8

     Mass and momentum conservation equations                                Constitutive equations and closures
                                     t      
        f  f u f       f       f                                                                     2
                                                                             Tj  2 j  j S j      TTj  2 j  t S j 
                                                                                                                      j kI       j f,p
                                                                                                                 3
                                     t                                                                                                
         p pu p       p        p                                       m   f  f                  2.5 
                                                                                                                         
                                                                             p                   m  f exp 
                                                                                                                                 1        
                                             
                                                                                                                          1   p   1  
                                                                                         p p                                    
                                                                                                                                          
                                                                                                                                           
       p   f 1
                                                                                                    6 p
                                                                               M p  f  M f  p         Fd  Fl  Fvm 
                                                                                                    d 3p
           f  f u f u f    f p     f  Tf  TTf                                    2

                                                                                                   u p  u f u p  u f 
                                                                                    1          dp
                                                                               Fd    Cd  f 
                                                                                 2          4
        f  f g  M p f      f u f t  f 
                                                                                       24                                                                            f up  u f dp
                                            
                                                                               Cd  max         1  0.15Re0.687
                                                                                                               p    ,0.44                                    Re p 
                                                                                                                                                                                     m
                                                                                          Re p                           
           p  p u p u p    p p     p  Tp  TpT   
                                                                                                                                                                        d 3p
                                                                               Fl  Cl  f d 3p  u f  u p      u f                           Fvm  Cvm                 f  u f    u f   u p    u p 
                                                                                                                                                                      6
       p  p g  M f  p      p u p t  p 
                                               

     Turbulence modelling                                                    Wall boundary conditions for the solid phase
                 k2                                                              w, p   p s p u /p/ u /p/       s p  s p ,1  1    s p ,2
       t  C
                  
         f  f k                                                  
                                                                                                                                2
                                                                                                                        
                        f  f u f k      f  f    t  k                
                                                                                                                                     Re w, y 
                                                                                                                                                           p u /p/ y
          t                                                   k             s p ,1
                                                                    
                                                                                            
                                                                                          ln E Re
                                                                                                   w, y        s p ,1      
                                                                                                                            
                                                                                                                                                             p
                          
          f k t  f    f  f  Pk                                                                                   0.75
                                                                                                                                        m    
                                                                                                                                                    0.3
                                                                                                                                                                         p u /p/ d p
                                                                                                              dp 
                                                                             s p ,2  0.3105Re       0.25
                                                                                                                                                      Re w,d 
                                                                                                                                         f                                   f
                                                                                                       w,d
         f  f                                            
                                                                                                                l                             
                        f  f u f       f  f    t    
          t                                                     
                                        
          f  t  f    f  f  C1 Pk  C2   
                                       k

Gianandrea Vittorio Messa, FluidLab Group, DICA
A typical pipe flow solution                                                                                                           9

                                                              Pressure profile
                                                                                                            Flow

                                y

                   αp

          Chord average
       concentration profile

                                                    Solution on pipe cross section

           Solid volume fraction                          Velocity of solid phase [m/s]         Velocity of liquid phase [m/s]

   0.270   0.283        0.295       0.308   0.320     0       0.90    1.80   2.70    3.60   0     0.90      1.80      2.70       3.60

Gianandrea Vittorio Messa, FluidLab Group, DICA
Main features of the two-fluid model                                                                                                 10

   Modelling of turbulent dispersion1
   Friction, mixture viscosity-related parameter2,3
   Modelling of wall shear stress due to particles3
   Parabolic solution algorithm for straight pipe flows4

                                                                                                         Solid volume fraction

                                                                                        0.270     0.283        0.295       0.308      0.320

   ACCURATE: good agreement vs experiments
   ROBUST: just one tuning, particle shape-related parameter
   FAST: 40" for straight pipes, 2-3 days for a valve
   NUMERICALLY STABLE: smooth solution, no oscillations

  1 Spalding, in Recent Advancements in Numerical Methods in Fluids, Pineridge, 1980.           Axial velocity of solid phase [m/s]
  2 Messa et al., Powder Technol., 256 (2014), 61-70.
                                                                                         0        0.90         1.80        2.70       3.60
  3 Messa and Malavasi, Powder Technol., 270 (2015), 358-367.

  4 Patankar and Spalding, Int. J. Mass Transfer, 15 (1972), 1787-1806.

Gianandrea Vittorio Messa, FluidLab Group, DICA
Application to slurry pipeline flows                                                                                              11

   Validated against about 80 pipe experiments1-6
   Pressure gradient accuracy within ±10%
   Good match of solid volume fraction profiles
   Consistent slurry velocity distributions

                                                               Cvd=0.11                      Cvd=0.21                   Cvd=0.31

   1 Roco and Shook, Can. J. Chem. Eng. 61 (1983), 494-503
   2 Gillies et al., Can. J. Chem. Eng. 82 (2004), 1060-1065
   3 Matousek, Exp. Therm. Fluid Sci. 26 (2002), 692-70

   4 Shaan et al, Can. J. Chem. Eng. 78 (2000), 717-725
                                                                                        Solid volume fraction
   5 Lee at al., Terra et Aqua 99 (2005), 3-10

   6 Shaan and Shook, Can. J. Chem. Eng. 78 (2000), 726-730               0.00   0.13          0.25       0.38   0.50

Gianandrea Vittorio Messa, FluidLab Group, DICA
Application to horizontal pipe bends1,2                                                                                 12
                         S2   S3
                    S1             S4
                                           S5

                                                             S6

                                                               OUTLET

INLET

  1   Kaushal et al., Int. J. Multiphase Flow, 52 (2013), 71-91.                         Solid volume fraction
  2   Messa and Malavasi, Eng. Appl. Comput. Fluid Mech., 8(3) (2014), 356-372.
                                                                                  0   0.13      0.25       0.38   0.50

Gianandrea Vittorio Messa, FluidLab Group, DICA
Application to more complex geometries                                                                         13

 Backward-facing step1…
                                                                                   Solid volume fraction

                                                                        0   0.08          0.16       0.24   0.32

        Fluid velocity magnitude [m/s]

    0    1.13      2.25       3.38       4.50

                                                                    … and flow control valves2
1   Messa and Malavasi, J. Hydrol. Hydromech., 62(3) (2014), 234-240.
2   Messa and Malavasi, PVP2013, Paris, France, 14-18 July 2013.

Gianandrea Vittorio Messa, FluidLab Group, DICA
Keynote outline

         1               Slurry pipeline flows

         2               The impact erosion issue

         3               Current and future developments

Gianandrea Vittorio Messa, FluidLab Group, DICA
The impact erosion team and its partners                                                 14

                                 Stefano          me       Marco      Yongbo

                                                       Prof. Josè Gilberto Dalfrè Filho
                                                       University of Campinas
                                                       Campinas, Sao Paulo, Brasil

                                                       Prof. Armando Carravetta
                                                       Dr. Oreste Fecarotta
                                                       Università Federico II di Napoli
                                                       Napoli

Gianandrea Vittorio Messa, FluidLab Group, DICA
Basic questions                                                                  15

    What is the slurry impact erosion?
    The loss of material from hydraulic
    components due to the impingement of
    solid particles carried by a liquid

    Where is impact erosion likely to occur?
     Straight pipes and connections
     Hydraulic devices (pumps, valves…)

    How may research help?
     Improve the design of the components
     Enhance the management of the system
     Develop protective coatings

    How does our research develop?                    Valve needle
     Start with the impact erosion in dilute flow
     Move on with impact/abrasion erosion in dense flows
                                                                     Gate valve

Gianandrea Vittorio Messa, FluidLab Group, DICA
First challenge: the EPICO project                                  16

 EPICO project: "Erosion Prediction In Control Operation"

 GOAL: Development of methods for estimating
 the useful life of valves subjected to erosive
 wear in fields with sand production

                                                 Experimental
                                            (two new setups @ LIF)

                                                     Numerical
                                                  (in-house code)

Gianandrea Vittorio Messa, FluidLab Group, DICA
Two experimental facilities @ LIF                                         17

      E-loop                                      DIT

                                                                nozzle

                                                                specimen

  2" to 4" testing line
  Up to 28 bar
  Up to 160 m3/h

 Angle choke valve              Gate valve        Inconel 718      GRE

Gianandrea Vittorio Messa, FluidLab Group, DICA
Numerical approach: Eulerian-Lagrangian modelling                                                              18

               Fluid simulation           Particle tracking               Erosion model

                                   coupling

 Fluid simulation: solution of the Reynolds-averaged Navier-Stokes equations (RANS)

 U  0
    U   U  P  U   g     Re  S p
 + turbulence model for  Re
                                                  Additional source
                                                  due to particles

                      Output:
                                                                          Fluid velocity magnitude [m/s]
                      - Mean fluid pressure
                      - Mean fluid velocity
                                                                      0    7     14      21       28       35
                      - Fluid turbulence variables

Gianandrea Vittorio Messa, FluidLab Group, DICA
Numerical approach: Eulerian-Lagrangian modelling                                                                19

                 Fluid simulation         Particle tracking              Erosion model

                                    coupling

 Particle tracking: solution of the Lagrangian particle equations of motion

  p  c  f Wpdv
                  dt
                         f d p2 Cd w w    p   f W p g 
                         1
                         8
           du@ p Du@ p  *                    mp     
  f W p  c               J     3.0844             ω  w 
              dt       Dt                   pd p ω

                      Output:
                                                                         Particle velocity magnitude [m/s]
                      - Particle trajectories
                      - Particle-wall impacts characteristics
                                                                     0     10         20         30          40

Gianandrea Vittorio Messa, FluidLab Group, DICA
Numerical approach: Eulerian-Lagrangian modelling                                                      20

                Fluid simulation          Particle tracking             Erosion model

                                   coupling

 Erosion model: material removal by each particle-wall impingement and sum

  Input data:
   Impact velocity
   Impact angle
   Properties of materials

                   M imp  C  m p   BH  vimp       f imp 
                                              a     n
  e.g. E/CRC

    Impact          Output:
                                                                            Erosion depth [mm]
    wear            - Mass losses
    scar
                                                                    0       0.25        0.50     0.75

Gianandrea Vittorio Messa, FluidLab Group, DICA
Numerical modelling                                                                                      21

                    In-house tool for erosion prediction                      Flow
                     Specifically intended for complex geometries
         E-code      Multi-component analysis                                               Body
                     Effect of selective coating

         CAD
                                                                                        Cage
                                                                     Sleeve
                                                                                 Retaining
       Volume                  Surface                                            sleeve
       Meshing                 Meshing
                                                                                             mmeroded
                                                                                                 1.0
         CFD
                                  E-code                                                            0.8
      simulation
                                                                                                    0.6

                                                                                                    0.4
                               Erosion                                                              0.2
                              estimation
                                                                                                    0.0

Gianandrea Vittorio Messa, FluidLab Group, DICA
Research strategy1-3                                                                                                     22
    Direct impact testing                                                                       DIT

                                                                                                                  nozzle
  Combine our experiments to literature data
  Assess the reliability of the prediction model3
  Validate a target-oriented model
                                                                                                E-code
      RANS simulation of water flow

                                                                                                                  specimen

                                                          DPM particle tracking

                                                                                                         E-code

          Fluid velocity magnitude [m/s]

      0     7     14      21     28        35

                                                       Particle velocity magnitude [m/s]

                                                   0        10       20       30           40
1 Messa et al., Int. Conf. on Wear of Materials, Long Beach, US-CA, 2017
2 Gorini et al., Offshore Mediterranean Conference, Ravenna, Italy, 2017
3 Messa and Malavasi, Wear, 370-371 (2017), 59-72.

Gianandrea Vittorio Messa, FluidLab Group, DICA
Research strategy1-4                                                                                                                                         23
    Valve testing and validation
                                                                                                          Mass loss history of valve cage
 Erosion valve testing in the E-loop                                                             20
 Validation of the prediction model                                                              18
                                                                     Flow                         16                        E-loop
                                    mmeroded                                                      14
                                        1.0                                         Body          12

                                                                                            [g]
                                                                                                  10
                                         0.8
                                                                                                  8
                                         0.6                                                      6
                                                                                                  4
                                         0.4                                                                                              E-code
                                                                               Cage               2
                                         0.2                   Sleeve                             0
                                                                        Retaining                  0.00    2.00      4.00         6.00        8.00       10.00
                                         0.0                             sleeve                                             [h]

                                               Choke valve
                                                                                     Gate valve

                                                                                           Flow
1                                                                                                                                        Flow
  Messa et al., Int. Conf. on Wear of Materials, Long Beach, US-CA, 2017
2 Gorini et al., Offshore Mediterranean Conference, Ravenna, Italy, 2017
                                                                                                                                          mm/d
3 Malavasi at al., ASME PVP 2018, Prague, CZ, 2018. Under review.

4 Messa at al., AIMETA 2017, Salerno, IT, 2017.                                                                              0      1     2          3   4       5

Gianandrea Vittorio Messa, FluidLab Group, DICA
Research strategy1-4                                                                                        24
    Virtual experiments and data analysis
                                                                                               Type of valve
     Erosion valve simulation in different conditions
     Database collection
                                                                                               Size of valve
     Sensitivity analysis
     Identification of the most relevant parameters
     Engineering failure analysis                                         Useful life-time   Valve opening

                                                                                              Flow conditions

                                                                                               Abrasive load

                         E-code

1 Messa et al., Int. Conf. on Wear of Materials, Long Beach, US-CA, 2017
2 Gorini et al., Offshore Mediterranean Conference, Ravenna, Italy, 2017
3 Malavasi at al., ASME PVP 2018, Prague, CZ, 2018. Under review.

4 Messa at al., AIMETA 2017, Salerno, IT, 2017.

Gianandrea Vittorio Messa, FluidLab Group, DICA
Keynote outline

         1               Slurry pipeline flows

         2               The impact erosion issue

         3               Current and future developments

Gianandrea Vittorio Messa, FluidLab Group, DICA
Towards the modelling of dense slurry erosion                                                                              25

       Particle-particle interactions become important
       Self-induced geometry changes may become important

       IDEA: Mixed EE-EL model with self-updating boundary1-4
                                                                                                  Computational burden of
                                                                                                  Eulerian-Lagrangian
                                                                                                  approach grows
                                                                                                  exponentially! No practically
                                                                                                  feasible for complex flows

                                                                                           EE domain
Interface

                                                                                EL subdomain

   1 Messa   et al., ASME Pressure Vessels and Piping Conference, Anaheim, US-CA, 2015.
   2 Messa   et al., Wear, 398-399 (2018), 127-145.
   3 Messa   and Malavasi, 9th Int. Conference on Multiphase Flow, Firenze, Italy, 2016.
   4 Messa   and Malavasi, Wear, 398-399 (2018), 127-145.

  Gianandrea Vittorio Messa, FluidLab Group, DICA
Investigation of concrete erosion1-3                                                   26

     E-CODE for non-homogeneous materials
     Experiments / simulation
     Cooperation with UNICAMP, Brazil

                                                                   E-code   Experimental

1 Malavasi et al., XX SBRH, Bento Gonçalves, Brazil, 2013.
2 De Lima Branco et al., XXII SBRH, Florianopolis, Brazil, 2017.
3 Messa et al., J. Hydrol. Hydromech., 66 (2018), 121-128.

Gianandrea Vittorio Messa, FluidLab Group, DICA
Impact erosion in devices with moving components                                                                27

     E-CODE for rotating bodies
     Application to Pumps As Turbines1 and Valves
     Cooperation with UNINA

                                  E-code

                                                                                                     Stirred tank

                                                        Pump used as turbine

                                                                                                     Gate valve
1   Fecarotta et al., 3rd Efficient Water Systems Conference, Lefkada, Greece, 2018. Under review.

Gianandrea Vittorio Messa, FluidLab Group, DICA
Towards a more general view of slurry systems    28

    Keyword: sustainability of the process
    Accounting for water saving?
    Multidisciplinary design and management

         Durability             Energy

                      Water

Gianandrea Vittorio Messa, FluidLab Group, DICA
Thank you for your attention

                                             www.fluidlab.polimi.it

     Gianandrea Vittorio Messa

     Assistant Professor
     FluidLab Group
     Dept. Civil and Environmental Engineering
     Politecnico di Milano
     Piazza Leonardo da Vinci, 32
     20133 Milano (Italy)
     e-mail: gianandreavittorio.messa@polimi.it
     Tel. +39 02 2399 6287

Gianandrea Vittorio Messa, FluidLab Group, DICA
You can also read