Theory Group at Dep. Phys. "Enrico Fermi"
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Congressino Dip Fis 11/4/2011 Theory Group at Dep. Phys. “Enrico Fermi” • “Theories of the fundamental interactions towards 2020” D. Anselmi, A. Strumia, L. Bracci, G. Cicogna, F. Bigazzi, E. Meggiolaro, G. Paffuti, C. Giannessi, S. Servadio, P. Christillen, K. Konishi; A. Di Giacomo, L. Picasso, T. Elze, G. Morchio, E. D’Emilio, T. Fujimori, Y. Jiang, M. Cipriani, A. Michelini, D. Dorigoni, S. Giacomelli, M. Taiuti, E. Ciuffoli, C. Bonati, R. Torre, P. Giardino, • “A survey of quantum field theory and applications” E. Vicari, P. Rossi, E. Guadagnini, M. Campostrini, M.Mintchev, B. Alles, P. Calabrese; P. Menotti, C. Torrero, G. Paoletti, G. Ceccarelli, E. Profumo, M. Fagotti • “Theoretical nuclear physics” I. Bombaci, A. Bonaccorso, M. Viviani, A. Kievsky, L. Marcucci; S. Rosati, R. Kumar The Speakers Tuesday, April 12, 2011
Fundamental Problems in Physics Today Three “melodies” of the 20th C Theoretical Physics: (C.N.Yang 2002) Anomaly cancellations ! “Quantization, Symmetries and Phase Factors” “Standard Model” of the fundamental interactions Local, renormalizable gauge theory (of pointlike objects - the elementary particles) ➩ SU(3)QCD x (SU(2)xU(1))GWS Quant. chromodynamics Glashow-Weinberg-Salam’s ’70-’74 Nuclear forces Electroweak theory Orig BUT !! Why MW / MPlanck ~ “naturalness/hierarchy” problem 10-17 η pr mas in of oble s? mν ≪ ≪ m me , mu c ≪ m ? mt ? • Higgs? Supersymmetry ? GUTS? Origin of • Quantum gravity? Black-hole entropy? LHC μ problem? the universe? ν? • New principles? New paradigm? Holographic principle? AdS/CFT? Maldacena ’97 ◦ String theory? ◦ Lorentz Invariance Violation at short distances? BIG BANG / Inflation ◦ Susy breaking? Extra dimensions? Standard Observational Cosmology • Cosmology Cosmology and Astroparticle physics Ωm =0.26±0.02; ΩΛ =0.74±0.02; Ωb =0.04; dark matter? dark energy? GRB, UHECR COBE, WMAP, SDSS, ... • Quark Confinement (non-Abelian strong gauge dynamics) ? FERMI/LAT , AMS... σtot ∿ log2 s ? Quark-gluon plasma, Color superconductivity? • Quantum mechanics : fundamental aspects. Time? Schrödinger’s cat Pn = |!n|ψ"|2 ? Entanglement/Quantum computing We are perhaps at the pre-dawn of a new scientific revolution Tuesday, April 12, 2011
This presentation Damiano Enrico Alessandro Adriano and Com. Thomas Luc, Lui, Giam Gianni Francesco (B): Ken & Com. Daniele Giampiero & Ken END Tuesday, April 12, 2011
arXiv:1012.4515 and 1009.0224 We found that electroweak corrections are relevant if DM is heavier than the weak scale, and included them in a public code. Advertisement: You want to compute all signatures of your DM model in positrons, electrons, neutrinos, gamma rays... but you dont want to mess around with astrophysics? The Poor Particle Physicist Cookbook for Dark Matter Indirect Direction www.marcocirelli.net/PPPC4DMID.html We provide ingredients and recipes for computing signals of TeV-scale Dark Matter annihilations and decays in the Galaxy and beyond. Tuesday, April 12, 2011
Lorentz violating renormalizable Standard Model Damiano Anselmi + Emilio Ciuffoli, Martina Taiuti and now Dario Buttazzo and Diego Redigolo Idea: use the violation of Lorentz symmetry to renormalize interactions that are normally nonrenormalizable Higher powers of momenta in dispersion relations and propagators make the integrands of Feynman diagrams more convergent in the UV A modified power counting criterion, which assigns different weights to space and time, controls the UV behavior and the renormalizability of the theory Apart from violating Lorentz symmetry, the theory remains renormalizable, local, polynomial, unitary and causal (with causality defined according to Bogoliubov,, which only needs past and future, no light cones) No counterterms with higher time derivatives are generated by renormalization, so (perturbative) unitarity is safe Since the purpose is to cure the UV behavior of otherwise nonrenormalizable interactions, Lorentz symmetry can be recovered in the IR by a fine tuning of parameters. It is possible to have agreement with data Tuesday, April 12, 2011
Consider the free theory (a hat denotes time, time a bar denotes space) Its propagator is and the dispersion relation reads The improved ultraviolet behavior allows us to renormalize otherwise non- non renormalizable vertices. They can be classified using a weighted power counting Tuesday, April 12, 2011
An example of nonrenormalizable vertex that becomes renormalizable is which gives neutrinos Majorana masses after symmetry breaking. Other examples are the four-fermion vertices at the fundamental level. Four-fermion vertices are bounded by existing limits on proton decay. Both vertices are compatible with a scale of Lorentz violation (10-28 - 10-29 cm ) which agrees with present data (possibly apart from the still mysterious ultrahigh- energy cosmic rays), if Lorentz symmetry is violated but CPT is preserved (or broken at much larger energies) Tuesday, April 12, 2011
We can build a Standard Model extension without elementary scalars where The model contains four fermion interactions at the fundamental level. It is possible to describe the known low-energy energy physics in the Nambu—Jona-Lasinio spirit, which gives masses to fermions and gauge bosons dynamically. The Higgs field is a composite field and arises as a low-energy effect An interesting low-energy energy prediction is the formula which is in perfect agreement with data for Tuesday, April 12, 2011
Summary of research topics and recent papers Formulation of Lorentz Violating Stardard Model (LVSM): D.A., Weighted power counting, neutrino masses and Lorentz violating extensions of the Standard Model, Phys.. Rev. D 79 (2009) 025017 and arXiv:0808.3475 [hep-ph] Scalarless LVSM and its phenomenology: I build a version with no fundamental scalar and analyse its phenomenology D.A., Standard Model Without Elementary Scalars And High Energy Lorentz Violation, Violation Eur. Phys. J. C 65 (2010) 523 and arXiv:0904.1849 [hep-ph] [ Detailed analysis of low-energy phenomenology of scalarless LVSM: We show that we can find agreement with all data, within theoretical errors D.A. and E. Ciuffoli, Low-energy energy phenomenology of scalarless Standard Model extensions with high-energy Lorentz violation, Phys. Rev. D 83 (2011) 056005 and arXiv:1101.2014 [hep-ph] Experimental limits and theoretical analysis on the scale of Lorentz violation: Here we show that is consistent with all data (at preserved CPT). We claim that in Nature Lorentz symmetry may be broken well below the Planck scale D.A. and M. Taiuti, Vacuum Cherenkov radiation in quantum electrodynamics with high- energy Lorentz violation, PRD in print and arXiv:1101.2019 [hep-ph] [ Tuesday, April 12, 2011
Attività di ricerca di ENRICO MEGGIOLARO Diffusione “soffice” ad alta energia in QCD Diffusione “soffice” ad alta energia in QCD Usando un approccio basato sull’integrale funzionale, le ampiezze di diffusione elastica adrone–adrone (e.g.,! mesone–mesone), ad √ alta energia ( s " 1 GeV) e “soffici” ( |t| ! 1 GeV), vengono ricostruite da certe funzioni di correlazione di due “loop di Wilson” nello spazio–tempo di Minkowski (ampiezze dipolo–dipolo). Tuesday, April 12, 2011
Attività di ricerca di ENRICO MEGGIOLARO Diffusione “soffice” ad alta energia in QCD In [M. Giordano, E. Meggiolaro, Phys. Rev. D 78 (2008) 074510; Phys. Rev. D 81 (2010) 074022] il problema è stato affrontato (per la prima volta) dal punto di vista della QCD su reticolo, mediante un calcolo diretto (utilizzando l’infrastruttura GRID dell’I.N.F.N.), con simulazioni Monte Carlo nella teoria di pura gauge SU(3), della funzione di correlazione Euclidea di due loop di Wilson, da cui l’ampiezza di diffusione mesone–mesone può essere ricostruita mediante continuazione analitica. [M. Giordano, E. Meggiolaro, Phys. Lett. B 675 (2009) 123-132; M. Giordano, Tesi di Dottorato, Pisa, 20/10/2009; relatore: E. M.] Questo è attualmente l’UNICO approccio al problema della ------------------ diffusione “soffice” adrone–adrone ad alta energia da principi primi (QCD) e non–perturbativo. ---------------- -------------------------- =⇒ I modelli analitici testati (SVM, ILM, AdS/CFT) risultano insoddisfacenti. Si cercano nuove forme funzionali che fittino meglio i dati su reticolo . . . Tuesday, April 12, 2011
Attività di ricerca di ENRICO MEGGIOLARO Diffusione “soffice” ad alta energia in QCD [E. Meggiolaro, M. Giordano, “High–energy hadron–hadron (dipole–dipole) scattering on the lattice”; E–print: arXiv:1010.0914 [hep–lat]; presentato da E. Meggiolaro al simposio della conferenza HESI 2010, 10–13 agosto 2010, Kyoto, Giappone.] . . . La speranza è quella di riuscire a spiegare il comportamento (universale?) ad alta energia delle sezioni d’urto adrone–adrone a partire dall’ampiezza (fondamentale) dipolo–dipolo, calcolata nell’Euclideo: alcuni risultati preliminari sembrano condurre a σtot (s) ∼ (ln s)2 , in accordo coi dati sperimentali (e con il limite di Froissart) . . . [Work in progress] Tuesday, April 12, 2011
Attività di ricerca di ENRICO MEGGIOLARO Simmetrie chirali e topologia in QCD (anche per T > 0) Simmetrie chirali e topologia in QCD (anche per T > 0) Si studia un modello di Lagrangiana Chirale Efficace che include (oltre all’usuale condensato chirale !q̄q" e all’anomalia) anche un certo condensato U(1) assiale (irriducibile) del tipo: CU(1) ∼ ![det(q̄sR qtL ) + det(q̄sL qtR )]", st st che agisce come parametro d’ordine per la sola simmetria U(1) assiale e resta diverso da zero attraverso la transizione chirale a Tch $ 170 MeV, fino a una certa temperatura TU(1) > Tch . =⇒ implicazioni fenomenologiche, per esempio (per T < Tch ): i) nei decadimenti radiativi η, η ! → γγ [M. Marchi, E. Meggiolaro, Nucl. Phys. B 665 (2003) 425; E. Meggiolaro, Phys. Rev. D 69 (2004) 074017.] ii) nei decadimenti forti η, η ! → 3π, η ! → ηππ [E. Meggiolaro, E–print: arXiv:1010.1140 [hep–ph]; Phys. Rev. D (2011), in stampa.] Tuesday, April 12, 2011
Confinement in QCD nonperturbative methods on and off the lattice People Pisa: C. Bonati, A. Di Giacomo Active collaboration: M. D’Elia, P. Incardona (Genova), F. Sanfilippo (Roma), G. Cossu (KEK, Japan) Starting collaboration: APE group (Roma), M. Caselle (Torino) Main interests and recent works: Mechanism of color confinement Nucl. Phys. B 828, 390 (2010), vacuum dual superconductivity Phys. Rev. D 81, 085022 (2010), through monopole condensation Phys. Rev. D 82, 094509 (2010), JHEP 0907, 048 (2009), QCD phase diagram Phys. Rev. D. 82 114515 (2010), critical points & universality arXiv:1011.4515 [hep-lat] classes (accepted in PRD) Tuesday, April 12, 2011
Dual superconductivity & monopoles Continuum Lattice The gauge independence of ! The gauge dependence of the the monopole definition was monopole detection was established. 3 clarified. SU(2) gauge theory 4xNs Wu-Yang monopole of chage 4 ! A revised version of the 0.01 monopole operator was 0 introduced. ~ )/N 1/" -0.01 s 1. The problems of the previous b Ns=16 ~-# -0.02 Ns=20 implementation are solved. (# Ns=24 -0.03 2. Good scaling at deconfinement -0.04 transition. -6 -4 -2 0 2 4 6 8 10 1/" (!-!c)Ns Perspectives: the revised order parameter can now be used to investigate confinement in real QCD and in other confining theories (e.g. G2 gauge theory) Tuesday, April 12, 2011
QCD phase diagram Nf = 2 chiral transition ∞ Study of the structure of the QCD phase O(4) T 1st diagram at finite temperature and density, Z2 with particular emphasis on those aspects cr o sso Z2 of the phase diagram related to known ve ms r 1st symmetries of QCD (i.e. chiral symmetry) 0 mu ∞ Main focus: determination of the order Nf = 2 chiral transition. Previous studies of the group, Phys. Rev. D 72, 114510 (2005), indicated the first order nature of the transition, which is usually believed to be 2nd order. Huge computational resources needed! Tuesday, April 12, 2011
Computational tools The video game market developments compelled graphic cards manufacturers to increase the floating point calculation performance of their products ⇒ New architecture for computations: Graphic Processing Units (GPUs) Need to rewrite all codes and some care is needed in optimizations (see arXiv:1010.5433) but TOTALLY WORTH IT! With our current implementation 1 GPU ⇐⇒ 1 − 3 apeNEXT crates possible present alternatives (e.g. CPU clusters) lose a factor 3 in price and 6 in power consumption Ongoing developments: ! (short-term) parallelize the work between several GPUs (in collaboration with the APE group) ! (long-term) fermions with improved chiral properties (still more computationally demanding!) Tuesday, April 12, 2011
Tuesday, April 12, 2011
Tuesday, April 12, 2011
--------------------------- Tuesday, April 12, 2011
L. Bracci e L. E. Picasso: rappresentazioni algebra di Weyl ! ! In Rn : U (α) ≡ e−i αip̂i V (β) ≡ e−i βiq̂i , U (α)V (β) = eiα·β V (β)U (α) von Neumann: RI equivalenti; rappres. completamente riducibili. Spazio semilimitato U (α) semigruppo isometrie, V (β) gruppo ⇒ σ(q̂) = [x0, ∞), R I con dato x0 equivalenti1. Z ≡ Centro = {λI} ⇒ H = ⊕iHi, Hi irriducibili, stesso x0. σ(q̂) è omogeneo in [x0, ∞) 4. In generale: integrale di Hi con diversi x0 4. Irriducibilità ⇔ irrid. rispetto agli U (α) 1. L’algebra per R, per spazio semilimitato e quella generata da {U (α)} sono identiche 5. Segmento U (α) isometrie parziali, U (0) = I, U (1) = 0 ⇒ σ(q̂) = [x0, x0 + 1], RI con lo stesso x0 equivalenti 1,3. Z = {λI} {λI} ⇒ rappresentazioni completamente ⇒ rappresentazioni riducibili33. . completamenteriducibili Se U!! (α), !! (n) (α), VV (n) unitari unitari che che obbediscono obbediscono Weyl, Weyl, perper RI RIèèU!(1) !U eiφ (1)==eiφ I.I. con dato RI con dato φφ sono sono equivalenti. equivalenti. Se Se U!(1) !U =eeiφiφII èèZZ= (1)= {λI}33. . ={λI} Sfera Sfera Algebra Algebra A A generata generata da da $n ee J$J$ èè EE33 (gruppo n$ (gruppo euclideo euclideo3-dim.) 3-dim.) Le RIRI sonosono le le RIRI (l (l00,,0) 0) di so(3,1). di so(3, Casimir J$J$· ·$ 1). Casimir n ≡≡σσ ==±l n$ ±l 00. . AAèè sottoalgebra sottoalgebra di di A ASS generata generata da da $ $L, n,, L, n$ $S, $ S, $ ⇒ ⇒perperparticella particelladidispin spinS, S,HH irriducibile irriducibile sotto sotto A ASS,, èè H H= =⊕ ⊕σ=S σ=S H , H sede della RI (|σ|, 0) di A σ=−S Hσσ , Hσσ sede della RI (|σ|, 0) di A σ=−S con JJ$$ ·· $ n= n $ = σσ 66.. Tuesday, April 12, 2011
Spazio non semplicemente connesso RI non equivalenti. Nel piano bucato, {$ q , −i∇ + f$($ q , −i∇} e {$ r)}, ∇ ∧ f$ = 0, non equivalenti se " $ r) · d$ γ f ($ r '= 0 ⇒ re-interpretazione effetto Aharonov-Bohm: H = $2 p Hlibera = 2m , ma Φ ! ! r), f = 2π!r2 (−x2, x1), γ f!d! ! = −i∇ + f (! p ! r=Φ . Φ #= 2nπ ⇒ effetto Aharonov-Bohm. Quindi A-B segue dall’esistenza di RI non equivalenti. È l’osservazione che determina quale Φ (quale rappresentazione) scegliere 2. 1) Journal Math. Phys. 47 112102 (2006) 2) American J. Phys. 75 268 (2007) 3) Bull. London Math. Soc. 39 791 (2007) 4) Lett. Math. Phys. 89 277 (2009) 5) Lett. Math. Phys. 93 267 (2010) 6) Eur. Phys. J. Plus 126 4 (2011l G. Cicogna: Studio analitico e algebrico di equazioni differenziali non lineari di interesse fisico. Speciale attenzione e' dedicata alla introduzione di opportune generalizzazioni della nozione di algebra di Lie delle simmetrie. Le applicazioni includono: problemi nella fisica dei plasmi, fenomeni di biforcazione, comparsa di soluzioni periodiche e/o complesse, tecniche di riduzione e di integrazione, leggi di conservazione generalizzate. Tuesday, April 12, 2011
1. Algebre di Poisson non commutative, invarianza per diffeomorfismi e quantizzazione Risultati: A) MQ sulle varietà differenziabili More about it B) Derivazione della quantizzazione di Dirac senza inconsistenze 2. Estensione delle previsioni della MQ e dise- guaglianze di Boole-Bell 3. La matrice di scattering in QED: esistenza, costruzione non perturbativa. Possibile costruzione dei campi carichi asintoti- ci attraverso correzioni di stringa che superano lʼostruzione data dallʼassenza di stati carichi a massa definita. 4. Risultati esatti su identità di Ward, topologia e simmetria chirale in QCD: Tuesday, April 12, 2011
Progetti: - Gradi di libertà interni e diffeomorfismi - Covarianza e invarianza per diffeomorfisimi in gravità quantistica - Possibilità di una descrizione completa di matrice S in QED via LSZ modificato - Implicazioni dei modelli e della costruzione LSZ generalizzata sulla localizzabilit`a e la classificazione degli stati carichi in QED - Implicazioni della struttura delle osservabili locali sulle identit`a di Ward del problema U(1) e sul problema CP forte - Parametri e gerarchie di massa in supercon- duttivit`a oltre il BCS Tuesday, April 12, 2011
3(1*-/'-)&M4+1NN4 >OH3H? !"#$%&'()* !"#$%&'"()*+,%&-)#.,/$&0#1*"#2&34/,$&56/)(4/'&7%&2/1*'&)8&&6),)+(1.64-&$#1,'9& 4:/:&;/1-)*84*/2/*"9&21''&+1.9&F#1(
Tuesday, April 12, 2011
K. Konishi and Fujimori, Jiang, Dorigoni, Michelini, Giacomelli, Cipriani + Carlino, Murayama, Spanu, Grena, Auzzi,Yung, Bolognesi, Ferretti, Nitta, Ookouchi, Ohashi,Yokoi, Marmorini, Vinci, Eto, Gudnason, Evslin (Armenia-Italy-Japan-USA-Russia-Denmark-China Collaboration) • Nonabelian vortices: (non-Abelian monopoles and confinement ) ’03-’11 • “Almost conformal” vacua for confinement Auzzi, Grena, Konishi, ’03 Giacomelli Evslin, Giacomelli • Faddeev-Niemi decomposition for Yang-Mills theories + ’10-’11 Michelini, Konishi • Large N, dimensionally reduced SU(N) SYM Dorigoni, Veneziano, Wosiek ’10 Tuesday, April 12, 2011
Nonabelian vortex, monopole and quark confinement • Dirac’s quantization condition ( ’31 -- But he no longer believed it ’80) e · g = n/2, n= ±1,±2,... • Vortex in Landau-Ginzburg theory (Abrikosov ’52, Nielsen, Olesen’74) • ’t Hooft-Polyakov monopoles (’74) GUT? ➟ Inflation • Confinement by monopole condensation (dual Meissner effect) (Mandelstam, ‘t Hooft ’80) But no evidence of dynamical abelianization Seiberg-Witten exact solns N=2 • Nonabelian monopoles? Quantum mechanical nonabelian monopoles do appear ’94 in N=2 susy theories (Carlino, Konishi, Murayama, 2000) • Nonabelian vortices: discovered by the Pisa group in 2003 ’03-’11 ➪ Rich and deep physics results Pisa, Minnesota, ◦ 4D gauge dynamics = 2D sigma model Cambridge, Tokyo, ◦ Vortex effective world sheet action ➭ GNO duality ... ... ◦ Vortices in high-density QCD; multicomponent superconductivity ◦ Fractional vortices ◦ Role of the Global symmetry in dual gauge group Attracting the interest of ◦ Monopole-vortex complex soliton mathematics communitiy Tuesday, April 12, 2011
Some References S.B. Gudnason, Y. Jiang, K. Konishi, "Non-Abelian vortex dynamics: Effective world-sheet action". JHEP 1008:012, 2010. (2010) e-Print: arXiv:1007.2116 [hep-th]. M. Eto, T. Fujimori, S.B. Gudnason, Y. Jiang, K. Konishi, M. Nitta, K. Ohashi, "Group Theory of Non-Abelian Vortices". JHEP 1011:042, (2010). e-Print: arXiv:1009.4794 [hep-th]. M. Eto, J. Evslin, K. Konishi, G. Marmorini, M. Nitta, K. Ohashi, W. Vinci, N. Yokoi (2007), "On the moduli space of semilocal strings and lumps", Phys. Rev. D76:105002, (2007), arXiv:0704.2218 [hep-th]. K. Konishi "The Magnetic Monopoles Seventy-Five Years Later", Lecture Notes in Physics, (vol. 1, pp. 473-532). (2007). ISBN-10: 3540742328: Springer. M. Eto, K. Konishi, G. Marmorini, M. Nitta, K. Ohashi, W. Vinci, N. Yokoi, "Non-Abelian Vortices of Higher Winding Numbers", Phys. Rev. D, vol. D74, 065021, (2006). K. Konishi, R. Auzzi, S. Bolognesi, J. Evslin, "NonAbelian monopoles and the vortices that confine them", Nucl. Phys. B686, 119 (2004). K. Konishi, R. Auzzi, S. Bolognesi, A. Yung, J. Evslin, "Nonabelian superconductors: vortices and confinement in N=2 SQCD", Nucl. Phys. B673, 187 (2003). e-Print: hep-th/0307287. G. Carlino, K. Konishi, H. Murayama, "Dynamical symmetry breaking in supersymmetric SU(n(c)) and USp(2n(c)) gauge theories", Nucl. Phys. B 608, 51 (2001) e-Print: hep-th/0005076. Tuesday, April 12, 2011
20 0 Figure 3: The four complex profile functions 20 10 0 “Fractional vortex” Eto et. al. ’09 !10 l e - Vo rtex o Monop plex com origon i, u d n a son, D ni ’11 !20 i, G eli Ciprian Konishi, Mich !30 !20 !10 0 10 ri, Fujimo Gauge profile function f ! Ρ,z" Figure 4: The behaviour of the magnetic field in the complex Gauge profile function l! Ρ,z" !1.0 !1.5 1.0 15 20 0.5 !2.0 20 15 !50 0.0 10 0 10 0 10 0 5 20 !10 50 30 !20 0 40 Scalar profile function s! Ρ,z" Quark profile function q! Ρ,z" Fig. 5: The energy (the left-most and the 2nd left panels) and the magnetic flux (the 2nd right panels) density, 1.0 20 1.0 Vortex orientational zeromodes 0.5 0.5 40 10 together with the boundary values (A, B) (the right-most panel) for the 0.00 5 minimal 0lump of the first type in the 0.0 50 20 30 10 0 strong gauge coupling limit. The moduli parameters are fixed as a1 = 0, a2 = 1, b1 = −1 in Eq. (4.18). The red !10 10 15 !50 !20 20 0 dots are zeros of A and Figure 3:the black The four onefunctions complex profile is the zero of B. ξ = 1. The last figures illustrates the minimum lump √ defined at exactly the orbifold point (see Eq. (4.20)) with Avev = 1/ 2, and with b = 0.8. Tuesday, April 12, 2011 20
Dorigoni Dorigoniinincollaboration collaborationwith withVeneziano, Veneziano,WosiekWosiek IDEA: IDEA: !! Studying StudyingQCD-Like QCD-Liketheories theoriesspectra spectraininthe theLarge-N Large-Nlimit, limit, !! Volume Volumeindependence independence++Discretized DiscretizedLight-Cone Light-Conequantization quantization ⇒⇒reduces reducescomputation computationtotoquantum quantummechanics mechanicsproblem. problem. Model ModelStudied: Studied:SYM reducedtotoNN==(2, SYM4 4reduced (2,2)2)inindd==22 Observations: Observations: !! String-like spectrumMMn n""TT#∆x$ String-likespectrum #∆x$n ,n , !! Quantized Quantizeddistance distancebetween partons#∆x$ betweenpartons #∆x$n .n . |Wavefunctions|2 2inincoordinate |Wavefunctions| coordinatespace spacefor fortwo twoand andthree threepartons: partons: 1.0 1.0 0.5 0.5 0.5 0.5 0.8 0.8 0.4 0.4 0.4 0.4 0.6 0.6 0.3 0.3 0.3 0.3 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 !100!100!50 !50 0 0 50 50 100 100 !100!100!50 !50 0 0 50 50 100 100 !100!100!50 !50 0 0 50 50 100 100 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 !100!100!50 !50 0 0 50 50 100 100 !100!100!50 !50 0 0 50 50 100 100 !50 !50 0 0 50 50 100 100 Tuesday, April 12, 2011
Giampiero Paffuti and Ken Konishi’s hobby: Quantum Mechanics • Generalized uncertainty relations (string theory) ’90 ∆x = /∆p + ℷ ∆p ➯ Minimum physical length in Nature ! • Cyclic oscillator theorem ’06 : Microscopic QM systems cannot act as engines • New Quantum Mechanics book (800 p. + CD), Oxford Univ. Press (’09) Tuesday, April 12, 2011
Physics of 2020 Be open minded Tuesday, April 12, 2011
Table: Gauge boson masses Table: Quark masses photon ugluons (MeV) Wc±(GeV) (GeV) Z (GeV) d (MeV) t (GeV) s (MeV) b (GeV) 24.1 Mathematical appendices 761 0 0 80.425 ± 0.038 91.1876 ± 0.0021 1.5 − 4 1.15 − 1.35 174.3 ± 5.1 4−8 80 − 130 4.1 − 4.4 Table: Lepton masses Table 24.10 Table 24.8 Table: Lepton masses νe (eV) Table: Neutrino masses νµ (MeV) ντ ( MeV)
Remarks • We are basically made of p ∼ uud; n ∼ udd; e; γ i.e., of u, d, e, γ, gluons • Nevertheless, baryogenesis (CKM quark mixing, CP violation, B-violation) ➩ all quarks, leptons and gauge bosons of the Table B.T.W. fundamental contributions indispensable by the experimental HE groups of Pisa for us to be here today • the top quark discovery • CP in K • CP in B Tuesday, April 12, 2011
G.Morchio, F.Strocchi, C.Budroni (dottorando a Siviglia) Fondamenti della MQ e effetti non perturbativi in teorie di gauge 1. Algebre di Poisson non commutative, invarianza per diffeomorfismi e quantizzazione Risultati: A) MQ sulle varietà differenziabili: Per ogni varietà M esiste unʼunica ∗ algebra A(M), generata dalle funzioni f su M e dalle traslazioni infinitesime Tv lungo tutti i campi vettoriali v, con le relazioni di commutazione di Lie tra funzioni e campi vettoriali e le relazioni di Lie-Rinehart Tf v = 1/2(f Tv + Tv f ) . A(M) `e invariante per diffeomorfismi. Le relazioni di Lie-Rinehart sono essenziali per la non proliferazione dei gradi di libert`a (associati allʼalgebra di Lie infinito dimensionale dei diffeomorfismi) Le rappresentazioni di A(M) sono tutte localmente Schroedinger (in generale con molteplici- t`a) e sono classificate dal primo gruppo di omotopia π1(M ), che in generale non `e commutativo e d`a perci`o origine a “fasi non abeliane”. B) Derivazione della quantizzazione di Dirac senza inconsistenze: A ogni varieta `e associata lʼalgebra di Poisson delle funzioni e dei campi vettoriali, con le relazioni di Lie-Rinehart, senza altri vincoli su prodotti o commutatori. Tale algebra contiene una variabile centrale Z , che commuta e ha Poisson nullo con tutti gli el- ementi e che mette in relazione Poisson e commutatori: Tv f (x) − f (x)Tv = Z {Tv , f (x)} Z = −Z ∗. Nelle rappresentazioni irriducibili Soli risultati possibili: - c = 0: Meccanica Classica lagrangiana - Meccanica quantistica come sopra con c = i Tuesday, April 12, 2011
You can also read