The multilevel human brain atlas in EBRAINS - Timo Dickscheid Forschungszentrum Jülich
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Basic principle of a brain atlas Reference space Map of regions Taxonomy (defined in the coordinate space) Names and relationships of regions 4
Aim: Capture the many facets of human brain organization in a common framework • Multiple scales Link the cellular scale to the macroscopic scale • Multiple maps Provide complementary brain parcellations • Multimodal features Provide a framework for linking data features to brain regions 7
Cortical structure 1-20 micron resolution Amunts, K. and K. Zilles, Architectonic Mapping of the Human Brain beyond Brodmann. Neuron 2015. 88(6)
15
Not one brain resembles another Amunts, Zilles et al.: Brodmann's Areas 17 and 18 Brought into Stereotaxic Space —Where and How Variable? NeuroImage, Volume 11, Issue 1, 2000, Pages 66-84 16
Julich-brain probabilistic cytoarchitectonic maps Bludau et al. 2014 Individual Probabilistic map Maximum delineations in ~10 (mm scale) probability map brains, projected to MNI reference space Katrin Amunts, Hartmut Mohlberg, Sebastian Bludau, Karl Zilles: Julich-Brain – a 3D probabilistic atlas of human brain’s cytoarchitecture. Science (First Release), DOI: 10.1126/science.abb4588 17
Linking the scales Corres- ponding MNI Colin27 regions FS Surface BigBrain MNI ICBM 152 18
Complementary maps of brain regions Julich-Brain cytoarchitectonic maps (Amunts et al.) Maps of fibre bundles (Mangin et al.) Dictionaries of functional modes (Thirion et al.) Maps of BigBrain cortical layers (Wagstyl et al.) 20
EBRAINS Interactive Atlas Viewer: Accessing regional features 22
A „shopping cart“ for data downloads 23
Infrastructure embedding in EBRAINS 24
ebrains.eu/service/share-data/ EBRAINS curation services search.kg.ebrains.eu fenix-ri.eu EBRAINS Federated High Knowledge Graph Performance Computing EBRAINS Atlas services ebrains.eu/services/atlases 25
EBRAINS Atlas services ebrains.eu/services/atlases 26
Some use cases 27
Some usecases • Experimental neuroscience: Integrate data from experiments into a common reference space • Data analysis: Use atlases and data features to run reproducible neuroscience experiments • Brain simulation and biologically inspired AI: Understanding the structure of biological networks • Hospitals: Planning surgeries, comparing diseased to healthy brains, anatomical location assignment • Education: Studying brain anatomy 28
Integrating data to a common reference space Connectivity • Many labs analyze high-resolution VOIs, but not the whole brain Cyto- architecture • BigBrain is a natural reference space for such data • No standard workflows to anchor partial Receptor Function volumes architecture 29
A volume of interest 30
Available in Matlab, interactive viewer plugin, and Python: • Matlab: Information page of the original authors • https://ebrains.eu/service/jugex • Example Python notebook 31
Describing the structure of biological networks Nerve fibers Distributions of cells Distributions of Cell types Cell morphologies (3D PLI, M. Axer et al.) (K. Amunts et al) neurotransmitter receptors (R. Koijmans et al.) (H. Mansvelder et al.) 32 (N. Palomero-Gallagher et al.)
What’s next? 33
High-level roadmap Today 2023 Beyond 2023 Easy open access to maps and data A community-driven High coverage of data features features from large and long-term reference framework at from high-resolution data projects single cell resolution • ~250 cytoarchitectonic maps from • A unique multi-scale connectome • A software ecosystem for lively ~80.000 delineations in >20 brains linked with the atlas community contributions in terms • Probabilistic maps of ~1000 fibre • Many ultra-high-resolution maps of data and software plugins bundles extracted from X individual available for BigBrain • A Petabyte-scale data resource subjects • Cell densities, axon densities, fibre connected to web frontends and • Maps of functional modes extracted orientations from high-resolution HPC systems from millions of fMRI scans from 27 data for most atlas regions studies and a total size of 2.4TB • Whole-brain distributions of selected • Multimodal data features linked to receptor transmitters many brain regions • In-vivo receptor PET/fMRI data
Helmholtz International BigBrain Analytics Learning Laboratory (HIBALL) Alan Evans (McGill) Human Brain Project Paule-J Toussaint (McGill) Jan Bjaalie Konrad Wagstyl (UCL) Trygve Leergard Claude Lepage (McGill) Oliver Schmid Blake Richards (MILA) Marc Morgan … Viktor Jirsa Big Data Analytics group Jean-Francois Mangin Christian Schiffer Bertrand Thirion Hannah Spitzer Rainer Goebel Xiao Gui Pavel Chervakov Daviti Gogshelidze Stefan Köhnen Thank you Vadim Marcenko Lyuba Zehl Sara Zafarnia Anna Hilverling Susanne Wenzel INM, Jülich Katrin Amunts Heinrich Heine University Markus Axer Jülich Supercomputing Düsseldorf Sebastian Bludau Center Stefan Harmeling Simon Eickhoff Thomas Lippert Svenja Caspers Morris Riedel Hartmut Mohlberg Jenia Jitsev … Dirk Pleiter 35
You can also read