Subject Area D Cost- and energy-efficient use of computing resources - Indico

Page created by Gabriel Keller
 
CONTINUE READING
Subject Area D Cost- and energy-efficient use of computing resources - Indico
Subject Area D
    Cost- and energy-efficient use of computing resources

Florian Bernlochner   Kick-Off Meeting, Feb 2019
Subject Area D Cost- and energy-efficient use of computing resources - Indico
Direct Searches
   Overview of Area D
                                                                           1. Obvious path to NP:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       `
                                                           New              p
                      Introduction:                                                      . . . (1/2)
                                            Int
    i.g                                                    Direct
                                                         Physics?   versus indirect searches
                            os

                                             ens
                          m

                                     SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            p
                       os

ct Searches                                     ity
                      C

                                                                                   2
                                                                        Indirect Searches
                                                                            E = mc     New
                                                                                         NewPhysics
                                                                                             Physics
                                                                             AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9ktgl6EoggeK9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/Md3uQVsfDDzem2FmXhBzpo3rfjuFldW19Y3iZmlre2d3r7x/0NJRoghtkohHqhNgTTmTtGmY4bQTK4pFwGk7GF/P/PYTVZpF8t5MYuoLPJQsZAQbKz3coEskEHms9csVt+pmQMvEy0kFcjT65a/eICKJoNIQjrXuem5s/BQrwwin01Iv0TTGZIyHtGupxIJqP80OnqITqwxQGClb0qBM/T2RYqH1RAS2U2Az0oveTPzP6yYmvPBTJuPEUEnmi8KEIxOh2fdowBQlhk8swUQxeysiI6wwMTajkg3BW3x5mbRqVc+tendnlfpVHkcRjuAYTsGDc6jDLTSgCQQEPMMrvDnKeXHenY95a8HJZw7hD5zPH8xDjxY=

                                   Energy
  Obvious path to NP:                                                   Search for New Physics at the Energy Frontier
                                                                           1. Less
                                                                           2. Needobvious
                                                                                   a targetpath to NP
                                                                                            region:
bility Challenge (SC)
                                  `
                                                                          New Region
                                                                          New Physics
                                                                              Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     of phase space,
                      Common
                         . . . Problem:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  process, .. (e.g. NP ! dijets)
                                                        p
                                              Moore’s Law
                           New Physics                                     3. Models can have large
                                    Scalability
    CPU Performance

                      Big Data
                      revolution    Challenge
                                                                                parameter space that need to
    Data Volume

  Need a target region:                                                         beNew
                                                                        Search for
                                                                           2. Need scanned
                                                                                      aPhysics
                                                                                        processat the Intensity Frontier
                                                                                                    that can be
                   Power wall                           for
                                            one processor
  Region of phase space,                                                    predicted at high precision for
                                                                        Modelthe
                                                                              driven
                                                                                 SM or ’Bump’ hunting
        log

  process, .. (e.g. NP ! dijets)
  Models can have Time
                       large                        3. Model independent searches
n parameter space that need to Power wall
                                                  Both  based on general
                                                       approaches        operators
                                                                   complement   each other
  Florian Bernlochner   Kick-Off Meeting, Feb 2019                                      !2
Subject Area D Cost- and energy-efficient use of computing resources - Indico
weder durch höhere Effizienz oder durch restriktivere Trigger-Entscheidungen, die allerdings
    das phyikalische Potential der Experimente reduzieren, das Bedarfswachstum zu reduzieren.
 Overview of Area D
    Eine weitere Herausforderung, insbesondere für Experimente an Hadron-Beschleunigern, ist
    die begrenzte Verfügbarkeit von großen Arbeitspeichern bei wachsender Komplexität der Ein-
    zelereignisse.

    Lösungsansätze können auf verschiedenen Ebenen gefunden werden. Im Rahmen dieses Teil-
    projekts stehen insbesondere die Entwicklung alternativer Algorithmen (z.B. Cellular Automa-
    ton-basierte Ansätze statt Kombinatorischer Kalman Filter), bessere Software Codes, die z.B.
    größere Datenlokalität und single instruction, multiple data (SIMD) Optimierungen möglich ma-
    chen, und alternative Software-Architekturen (z.B. GPUs) zusammen mit einem grösseren Maß
    an Parallelisierung im Mittelpunkt. Um angesichts des erforderlichen Expertentums auch die
    Personalressourcen optimal zu nutzen, sollten die Entwicklungen möglichst in gemeinsam ge-
    nutzten Bibliotheken gebündelt werden und Beispielanwendungen zum besseren Verständnis
    zur Verfügung stehen. Der größte Teil der Entwicklungen, die im Rahmen dieses Projekts an-
    gestrebt werden, wird daher mit Hilfe von ACTS (A Common Tracking Software) angebunden.

    4.2   Förderziele und Arbeitsstruktur
   Three work packages:
    Ziel der Entwicklungen ist es experimentübergreifende Bibliotheken weiterzuentwickeln, die den
   1.Kosten-
        NovelundAlgorithms    for track
                 Energie-Aufwand    für dasreconstruction
                                             Computing im Rahmen der Ereignisrekonstruktion in ver-
   2.tretbarem
        Common Rahmen   halten,
                    tools       ohne übermoptimal
                           to determine       äßig an Sensitivit
                                                        track ät zu verlieren. Die Arbeitspakete, die
    auf die Rekonstruktion von Spuren geladener Teilchen zielen, können grob in Algorithmen zum
        parameters
    Auffinden  der Spuren und zur Bestimmung der optimalen Parameter aufgeteilt werden. Neutri-
   3.noexperimente  unterliegen speziellen
        Event reconstruction       at neutrinoAnforderungen   durch das große Detektorvolumen, wel-
                                                    experiments
    ches abgedeckt werden muss. Die wichtigsten Elemente der Arbeitspakete können in Tabelle
    7 gefunden werden.

Florian Bernlochner     Kick-Off Meeting, Feb 2019                                                       !3
Subject Area D Cost- and energy-efficient use of computing resources - Indico
AP D1: Novel Track reconstruction algorithms

 • Computing needs scale roughly as CPU Power ≃ ℒ3

                                                                                                                      IC Particle Physics
                                                                              2026
                                                                                                 inst. Luminosity
    37

 • HL-LHC will need need smarter algorithms to

                                                                           Today
    The AESC Team

    identify charged particle trajectories
                               ATLAS proton-proton event                              CMS lead-lead collision event

                                                                                                                      Florian Bernlochner
    Florian Bernlochner

                          ‣   50%(!) of event reconstruction time used for track reconstruction.
      • Entwicklung effizienterer Algorithmen zur Spurfindung, die beispielsweise auf zellulären
        Automaten aufbauen.         CA can be easily parallelised; first promising results using this at CMS
                                                   (pixel-track seeding)

                                                                                                                      The AESC Team
      • Anpassung der Algorithmen zur Nutzbarmachung moderner massiv paralleler Rechner-
        architekturen (GPUs).
                                                                              Today

                                                                                                                      37
Florian Bernlochner                     Kick-Off Meeting, Feb 2019                                                                          !4
Subject Area D Cost- and energy-efficient use of computing resources - Indico
AP D2: Common tools for tracking

• Instead of each experiment writing their own
   tracking algorithms
       Often algorithms are not optimised for CPU usage
       and small runtimes
                                                                               http://acts.web.cern.ch

    → pool resources and expertise

• ACTS (“A common tracking software”) is an attempt to create such a
   common library, which implements many of the often used
   algorithms;
      many implemented algorithms much faster than what experiments currently are using

 • Goal: Help to extend ACTS to become fully usable by energy and intensity
   frontier experiments
       Add missing features, evaluate how aspects of the library can be used to improve the
       current track finding and fitting.

Florian Bernlochner    Kick-Off Meeting, Feb 2019                                                        !5
Subject Area D Cost- and energy-efficient use of computing resources - Indico
AP D3: Event reconstruction at neutrino experiments

• Neutrino experiments have unique
   challenges:
    • Huge detector volumes; sparse sensors
      that observe signals from a distance
    • Inclusion of time-information important
      to make sense of detector signals
    • Signatures typically have multiple
      components: e.g. Muon and hadronic
      recoil in CC-scattering of muon
      neutrinos
    • Immense amount of information that
      needs to be processed: e.g. JUNO uses
      O(17k) PMT signals to reconstruct a
      single muon track. A single fit to do this
      can take O(1h)

Florian Bernlochner   Kick-Off Meeting, Feb 2019       !6
Subject Area D Cost- and energy-efficient use of computing resources - Indico
Involved Groups

                                                 Thomas Kuhr   Computing Verbund Kickoff Meeting, 21.02.2019           Page 4

      Standort            PI               FTE     Experiment             AP D1              AP D2             AP D3

      Aachen              Schmidt          0,5     CMS                          X
      Aachen              Stahl            0,5     ⌫-Exp.                                                       X
      Frankfurt           Kisel            1       CBM                          X
      KIT                 Bernlochner      1       Belle II                                        X

      Assoziiert
      CERN(ATL/SFT)       Elsing/Hegner    -       ATLAS                        X                  X
      DESY                Gaede            -       ILC                                             X
      FZJ                 Prencipe         -       Panda                                           X

Tabelle 8: Beteiligte Gruppen. Die assoziierten Gruppen sind nicht-universitäre Partner die ke
Florian
ne      Bernlochner
    Mittel beantragen. Kick-Off Meeting, Feb 2019                                            !7
Subject Area D Cost- and energy-efficient use of computing resources - Indico
Activities Overview
                                        D (& C)

Florian Bernlochner   Kick-Off Meeting, Feb 2019
Subject Area D Cost- and energy-efficient use of computing resources - Indico
AP D2: KIT

                                                        Belle

     https://indico.physics.lbl.gov/indico/event/712/

Florian Bernlochner   Kick-Off Meeting, Feb 2019                !9
Subject Area D Cost- and energy-efficient use of computing resources - Indico
ACTS Workshop Overview
    • 22 Participants from various experiments
       • 2 ACTS experts: Dr. Moritz Kiehn und Paul Gessinger
       • Members from ATLAS, Belle II, and Mu2e
    • Diverse 5 day program
       • Mix of tutorials from Moritz and Paul;
       • Talks from Belle II (Dr. Nils Braun), ATLAS (Dr. Nick Styles), Mu2e (Dr.
          Dave Brown) tracking challenges
Hackathon         @ KIT
   • A lot of Hackathon time to kick-start projects

 ackathon

 ogether and use the
 open tasks to improve
 analysis
   Florian Bernlochner   Kick-Off Meeting, Feb 2019                                 !10
Example Projects

• Full list available here:
    https://docs.google.com/presentation/d/1agWKZN0SiIwxptRfx6kIwx9GimhbvHdNTwCk2Afef9Q/edit#slide=id.p

Florian Bernlochner       Kick-Off Meeting, Feb 2019                                                      !11
First results: Belle II Geometry in ACTS
TRY                                   GEOMETRY

                                                                                Belle II
                         Belle II                                           Drift Chamber
                          VXD

                                    ACTS Workshop Berkeley -   Nils Braun
y -   Nils Braun                                                              January 26, 2019   17/25

  Florian Bernlochner   Kick-Off Meeting, Feb 2019                                                       !12
First results:
  MAGNETIC FIELD
                Belle II Magnetic field

   ACTS Workshop Berkeley -   Nils Braun                   Janua

Florian Bernlochner           Kick-Off Meeting, Feb 2019    !13
First results: Track extrapolation
                                        Abstract
                                           The extrapolation of track parameters and their associ-
                                        ated covariance matrices to arbitrarily oriented surfaces of
                                        different types inside a non-uniform magnetic field is a fun-
                                        damental element of any tracking software. It has to take                                                      pB
                                        multiple scattering and energy loss effects along the prop-                                             mB
                                        agated trajectories into account. A good performance in
                                                                                                                                                          eB
                                        respect of computing time consumption is crucial due to                                                        fac
                                                                                                                                                 Sur
                                        hit and track multiplicity in high luminosity events at the            mA            pA
                                                                                                                        eA
                                                                                                                     fac
    EXTRAPOLATION                       LHC and the small time window of the ATLAS high level                    r
                                                                                                               Su
                                        trigger. Therefore stable and fast algorithms for the trans-
                                        port of the track parameters and their associated covariance    Figure 1: Schematic representation of the transportation of
                                        matrices in specific representations to different surfaces in   track parameters and their associated errors from Surface
                                        the detector are required. The recently developed track ex-     A to Surface B. The track parameters on surface are il-
                                        trapolation package inside the new ATLAS offline tracking       lustrated by a local position   and its error ellipse, such
                                        software is presented in this document.                         as a momentum vector and a cone representing the error
                                                                                                        on the momentum direction. The error on the magnitude of
  Belle II                                                INTRODUCTION                                  the momentum is omitted in this illustration.

 algorithm                              During the recent redesign of the ATLAS offline recon-
                                                                                                   be retrieved from this service at any point in the program
  versus                             struction software, a new track extrapolation package has
                                     been developed within the C++ based software framework
                                                                                                   flow.
   ACTS                              ATHENA [1]. The transportation of track parameters and
                                                                                                      The steering of the propagation setup, including the
                                                                                                   setup of the magnetic field, the propagation algorithm and
                                     their associated covariance matrices to a given detector sur-
                                                                                                   surface finding logics is done by dedicated python classes.
                                     face is a fundamental and frequently performed process in
                                                                                                      The extrapolation process can be driven in two differ-
                                     most track fitting algorithms. In general, the extrapolation
                                                                                                   ent modes, a preconfigured and an unconfigured mode. In
                                     process can be divided into two parts. The first step is the
                                                                                                   the preconfigured mode, the underlying propagation setup
                                     geometrical transport of the track parameters respectively
                                                                                                   (type of propagation, magnetic field setup) is fully deter-
                                     covariance matrices to given surfaces and will be in the fol-
                                                                                                   mined at startup of the program and should be used for ex-
                                     lowing referred to as propagation, Fig. 1 shows a simplified
                                                                                                   pectable situations in the program flow.
                                     illustration of such a propagation. The second procedure is
                                     the update of the propagated parameters and errors, taking       The unconfigured mode is characterized by the fact that
                                     multiple Coulomb scattering and energy loss effects dur- the Propagator AlgTool itself is passed to the Extrapolator
       ME = Magnetic effects         ing the (turned
                                              propagation on    orinto
                                                           process  off),   IF =This
                                                                        account.   interpolated      field of
                                                                                      note covers AlgTool,        Bellea strategy
                                                                                                              following    II      pattern design. This allows
                                     mainly the first part of the extrapolation process.           an optimization of the extrapolation process by dynami-
                                              (instead of constant 1.5 T)                          cally choosing the propagation algorithms depending on
                                                                                                   the situation specific parameters, such as the magnetic field,
 ACTS Workshop Berkeley - Nils Braun       THE EXTRAPOLATION PACKAGE                               an estimated propagation January
                                                                                                                              distance26,or2019
                                                                                                                                            even starting track
                                                                                                                                                            20/25pa-

Florian Bernlochner                 Kick-Off Meeting,          DESIGN
                                                                  Feb 2019
                                                                                                   rameters characteristics. Various instances of Extrapolator
                                                                                                   AlgTools in different configurations can be used in parallel.       !14
There are not that many conceptual show-stoppers for just ”plugging the

 Conclusion                        ACTS extrapolation into Belle II instead of genfit”:
                                           No DAF (should be solvable easily)
                                           No slanted parts (but not a conceptional problem with it)
                                           Their Kalman is working a bit differently from ours, but should be no problem
                                           Their CDC hit handling is different (maybe this will make a difference,
                                           maybe not)
                                   However, if we want to replace genfit with ACTS, there is a lot more to do:
                                           The EDM is different
                                           The measurement model is different
                                           No CKF, no T0
                                           How about extrapolations in ECL, (B/E)KLM etc.?          Dr. Nils Braun

• Could carry out first preliminary studies;
                          ACTS Workshop Berkeley -   Nils Braun                                                      Januar

• KIT group could connect with the ACTS developers
    • Involved people at KIT: me, Dr. Nils Braun, Patrick Ecker, Lu Cao, Pablo
       Goldenzweig, Michael Eliachevitch

• Plan to organize follow up workshop in August or September in
   Germany with a similar style of agenda
    • Tutorials, some overview talks but ample time to work on dedicated
       projects with ACTS experts in the room to help.

Florian Bernlochner   Kick-Off Meeting, Feb 2019                                                                     !15
AP C3: KIT

 • Simulation of extensive air showers or hadronic /
    electromagnetic showers from first principles are
    time intensive tasks
 • Can we delegate the entire simulation (or parts of
    it) to a neural network?

                                                   Dr. Markus Roth

 Key challenge: sparse input features, e.g. particle type,
 energy, mass, etc. —> misses randomness of MC simulation

Florian Bernlochner   Kick-Off Meeting, Feb 2019                     !16
You can also read