Subject Area D Cost- and energy-efficient use of computing resources - Indico
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Subject Area D Cost- and energy-efficient use of computing resources Florian Bernlochner Kick-Off Meeting, Feb 2019
Direct Searches Overview of Area D 1. Obvious path to NP: ` New p Introduction: . . . (1/2) Int i.g Direct Physics? versus indirect searches os ens m SM p os ct Searches ity C 2 Indirect Searches E = mc New NewPhysics Physics AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9ktgl6EoggeK9gPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/Md3uQVsfDDzem2FmXhBzpo3rfjuFldW19Y3iZmlre2d3r7x/0NJRoghtkohHqhNgTTmTtGmY4bQTK4pFwGk7GF/P/PYTVZpF8t5MYuoLPJQsZAQbKz3coEskEHms9csVt+pmQMvEy0kFcjT65a/eICKJoNIQjrXuem5s/BQrwwin01Iv0TTGZIyHtGupxIJqP80OnqITqwxQGClb0qBM/T2RYqH1RAS2U2Az0oveTPzP6yYmvPBTJuPEUEnmi8KEIxOh2fdowBQlhk8swUQxeysiI6wwMTajkg3BW3x5mbRqVc+tendnlfpVHkcRjuAYTsGDc6jDLTSgCQQEPMMrvDnKeXHenY95a8HJZw7hD5zPH8xDjxY= Energy Obvious path to NP: Search for New Physics at the Energy Frontier 1. Less 2. Needobvious a targetpath to NP region: bility Challenge (SC) ` New Region New Physics Physics of phase space, Common . . . Problem: process, .. (e.g. NP ! dijets) p Moore’s Law New Physics 3. Models can have large Scalability CPU Performance Big Data revolution Challenge parameter space that need to Data Volume Need a target region: beNew Search for 2. Need scanned aPhysics processat the Intensity Frontier that can be Power wall for one processor Region of phase space, predicted at high precision for Modelthe driven SM or ’Bump’ hunting log process, .. (e.g. NP ! dijets) Models can have Time large 3. Model independent searches n parameter space that need to Power wall Both based on general approaches operators complement each other Florian Bernlochner Kick-Off Meeting, Feb 2019 !2
weder durch höhere Effizienz oder durch restriktivere Trigger-Entscheidungen, die allerdings das phyikalische Potential der Experimente reduzieren, das Bedarfswachstum zu reduzieren. Overview of Area D Eine weitere Herausforderung, insbesondere für Experimente an Hadron-Beschleunigern, ist die begrenzte Verfügbarkeit von großen Arbeitspeichern bei wachsender Komplexität der Ein- zelereignisse. Lösungsansätze können auf verschiedenen Ebenen gefunden werden. Im Rahmen dieses Teil- projekts stehen insbesondere die Entwicklung alternativer Algorithmen (z.B. Cellular Automa- ton-basierte Ansätze statt Kombinatorischer Kalman Filter), bessere Software Codes, die z.B. größere Datenlokalität und single instruction, multiple data (SIMD) Optimierungen möglich ma- chen, und alternative Software-Architekturen (z.B. GPUs) zusammen mit einem grösseren Maß an Parallelisierung im Mittelpunkt. Um angesichts des erforderlichen Expertentums auch die Personalressourcen optimal zu nutzen, sollten die Entwicklungen möglichst in gemeinsam ge- nutzten Bibliotheken gebündelt werden und Beispielanwendungen zum besseren Verständnis zur Verfügung stehen. Der größte Teil der Entwicklungen, die im Rahmen dieses Projekts an- gestrebt werden, wird daher mit Hilfe von ACTS (A Common Tracking Software) angebunden. 4.2 Förderziele und Arbeitsstruktur Three work packages: Ziel der Entwicklungen ist es experimentübergreifende Bibliotheken weiterzuentwickeln, die den 1.Kosten- NovelundAlgorithms for track Energie-Aufwand für dasreconstruction Computing im Rahmen der Ereignisrekonstruktion in ver- 2.tretbarem Common Rahmen halten, tools ohne übermoptimal to determine äßig an Sensitivit track ät zu verlieren. Die Arbeitspakete, die auf die Rekonstruktion von Spuren geladener Teilchen zielen, können grob in Algorithmen zum parameters Auffinden der Spuren und zur Bestimmung der optimalen Parameter aufgeteilt werden. Neutri- 3.noexperimente unterliegen speziellen Event reconstruction at neutrinoAnforderungen durch das große Detektorvolumen, wel- experiments ches abgedeckt werden muss. Die wichtigsten Elemente der Arbeitspakete können in Tabelle 7 gefunden werden. Florian Bernlochner Kick-Off Meeting, Feb 2019 !3
AP D1: Novel Track reconstruction algorithms • Computing needs scale roughly as CPU Power ≃ ℒ3 IC Particle Physics 2026 inst. Luminosity 37 • HL-LHC will need need smarter algorithms to Today The AESC Team identify charged particle trajectories ATLAS proton-proton event CMS lead-lead collision event Florian Bernlochner Florian Bernlochner ‣ 50%(!) of event reconstruction time used for track reconstruction. • Entwicklung effizienterer Algorithmen zur Spurfindung, die beispielsweise auf zellulären Automaten aufbauen. CA can be easily parallelised; first promising results using this at CMS (pixel-track seeding) The AESC Team • Anpassung der Algorithmen zur Nutzbarmachung moderner massiv paralleler Rechner- architekturen (GPUs). Today 37 Florian Bernlochner Kick-Off Meeting, Feb 2019 !4
AP D2: Common tools for tracking • Instead of each experiment writing their own tracking algorithms Often algorithms are not optimised for CPU usage and small runtimes http://acts.web.cern.ch → pool resources and expertise • ACTS (“A common tracking software”) is an attempt to create such a common library, which implements many of the often used algorithms; many implemented algorithms much faster than what experiments currently are using • Goal: Help to extend ACTS to become fully usable by energy and intensity frontier experiments Add missing features, evaluate how aspects of the library can be used to improve the current track finding and fitting. Florian Bernlochner Kick-Off Meeting, Feb 2019 !5
AP D3: Event reconstruction at neutrino experiments • Neutrino experiments have unique challenges: • Huge detector volumes; sparse sensors that observe signals from a distance • Inclusion of time-information important to make sense of detector signals • Signatures typically have multiple components: e.g. Muon and hadronic recoil in CC-scattering of muon neutrinos • Immense amount of information that needs to be processed: e.g. JUNO uses O(17k) PMT signals to reconstruct a single muon track. A single fit to do this can take O(1h) Florian Bernlochner Kick-Off Meeting, Feb 2019 !6
Involved Groups Thomas Kuhr Computing Verbund Kickoff Meeting, 21.02.2019 Page 4 Standort PI FTE Experiment AP D1 AP D2 AP D3 Aachen Schmidt 0,5 CMS X Aachen Stahl 0,5 ⌫-Exp. X Frankfurt Kisel 1 CBM X KIT Bernlochner 1 Belle II X Assoziiert CERN(ATL/SFT) Elsing/Hegner - ATLAS X X DESY Gaede - ILC X FZJ Prencipe - Panda X Tabelle 8: Beteiligte Gruppen. Die assoziierten Gruppen sind nicht-universitäre Partner die ke Florian ne Bernlochner Mittel beantragen. Kick-Off Meeting, Feb 2019 !7
AP D2: KIT Belle https://indico.physics.lbl.gov/indico/event/712/ Florian Bernlochner Kick-Off Meeting, Feb 2019 !9
ACTS Workshop Overview • 22 Participants from various experiments • 2 ACTS experts: Dr. Moritz Kiehn und Paul Gessinger • Members from ATLAS, Belle II, and Mu2e • Diverse 5 day program • Mix of tutorials from Moritz and Paul; • Talks from Belle II (Dr. Nils Braun), ATLAS (Dr. Nick Styles), Mu2e (Dr. Dave Brown) tracking challenges Hackathon @ KIT • A lot of Hackathon time to kick-start projects ackathon ogether and use the open tasks to improve analysis Florian Bernlochner Kick-Off Meeting, Feb 2019 !10
Example Projects • Full list available here: https://docs.google.com/presentation/d/1agWKZN0SiIwxptRfx6kIwx9GimhbvHdNTwCk2Afef9Q/edit#slide=id.p Florian Bernlochner Kick-Off Meeting, Feb 2019 !11
First results: Belle II Geometry in ACTS TRY GEOMETRY Belle II Belle II Drift Chamber VXD ACTS Workshop Berkeley - Nils Braun y - Nils Braun January 26, 2019 17/25 Florian Bernlochner Kick-Off Meeting, Feb 2019 !12
First results: MAGNETIC FIELD Belle II Magnetic field ACTS Workshop Berkeley - Nils Braun Janua Florian Bernlochner Kick-Off Meeting, Feb 2019 !13
First results: Track extrapolation Abstract The extrapolation of track parameters and their associ- ated covariance matrices to arbitrarily oriented surfaces of different types inside a non-uniform magnetic field is a fun- damental element of any tracking software. It has to take pB multiple scattering and energy loss effects along the prop- mB agated trajectories into account. A good performance in eB respect of computing time consumption is crucial due to fac Sur hit and track multiplicity in high luminosity events at the mA pA eA fac EXTRAPOLATION LHC and the small time window of the ATLAS high level r Su trigger. Therefore stable and fast algorithms for the trans- port of the track parameters and their associated covariance Figure 1: Schematic representation of the transportation of matrices in specific representations to different surfaces in track parameters and their associated errors from Surface the detector are required. The recently developed track ex- A to Surface B. The track parameters on surface are il- trapolation package inside the new ATLAS offline tracking lustrated by a local position and its error ellipse, such software is presented in this document. as a momentum vector and a cone representing the error on the momentum direction. The error on the magnitude of Belle II INTRODUCTION the momentum is omitted in this illustration. algorithm During the recent redesign of the ATLAS offline recon- be retrieved from this service at any point in the program versus struction software, a new track extrapolation package has been developed within the C++ based software framework flow. ACTS ATHENA [1]. The transportation of track parameters and The steering of the propagation setup, including the setup of the magnetic field, the propagation algorithm and their associated covariance matrices to a given detector sur- surface finding logics is done by dedicated python classes. face is a fundamental and frequently performed process in The extrapolation process can be driven in two differ- most track fitting algorithms. In general, the extrapolation ent modes, a preconfigured and an unconfigured mode. In process can be divided into two parts. The first step is the the preconfigured mode, the underlying propagation setup geometrical transport of the track parameters respectively (type of propagation, magnetic field setup) is fully deter- covariance matrices to given surfaces and will be in the fol- mined at startup of the program and should be used for ex- lowing referred to as propagation, Fig. 1 shows a simplified pectable situations in the program flow. illustration of such a propagation. The second procedure is the update of the propagated parameters and errors, taking The unconfigured mode is characterized by the fact that multiple Coulomb scattering and energy loss effects dur- the Propagator AlgTool itself is passed to the Extrapolator ME = Magnetic effects ing the (turned propagation on orinto process off), IF =This account. interpolated field of note covers AlgTool, Bellea strategy following II pattern design. This allows mainly the first part of the extrapolation process. an optimization of the extrapolation process by dynami- (instead of constant 1.5 T) cally choosing the propagation algorithms depending on the situation specific parameters, such as the magnetic field, ACTS Workshop Berkeley - Nils Braun THE EXTRAPOLATION PACKAGE an estimated propagation January distance26,or2019 even starting track 20/25pa- Florian Bernlochner Kick-Off Meeting, DESIGN Feb 2019 rameters characteristics. Various instances of Extrapolator AlgTools in different configurations can be used in parallel. !14
There are not that many conceptual show-stoppers for just ”plugging the Conclusion ACTS extrapolation into Belle II instead of genfit”: No DAF (should be solvable easily) No slanted parts (but not a conceptional problem with it) Their Kalman is working a bit differently from ours, but should be no problem Their CDC hit handling is different (maybe this will make a difference, maybe not) However, if we want to replace genfit with ACTS, there is a lot more to do: The EDM is different The measurement model is different No CKF, no T0 How about extrapolations in ECL, (B/E)KLM etc.? Dr. Nils Braun • Could carry out first preliminary studies; ACTS Workshop Berkeley - Nils Braun Januar • KIT group could connect with the ACTS developers • Involved people at KIT: me, Dr. Nils Braun, Patrick Ecker, Lu Cao, Pablo Goldenzweig, Michael Eliachevitch • Plan to organize follow up workshop in August or September in Germany with a similar style of agenda • Tutorials, some overview talks but ample time to work on dedicated projects with ACTS experts in the room to help. Florian Bernlochner Kick-Off Meeting, Feb 2019 !15
AP C3: KIT • Simulation of extensive air showers or hadronic / electromagnetic showers from first principles are time intensive tasks • Can we delegate the entire simulation (or parts of it) to a neural network? Dr. Markus Roth Key challenge: sparse input features, e.g. particle type, energy, mass, etc. —> misses randomness of MC simulation Florian Bernlochner Kick-Off Meeting, Feb 2019 !16
You can also read