Status des ATLAS Experimentes am LHC Beschleuniger des CERN
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Status des ATLAS Experimentes am LHC Beschleuniger des CERN ET-Workshop Linz, 11.4.2008 E. Kneringer Institut für Astro- und Teilchenphysik, Universität Innsbruck ATLAS Kollaboration 35 Länder 164 Institutionen 1900 Wiss. Autoren (1550 mit Doktorat) Neue Bewerbungen: Göttingen, Germany Neue Interessenten: Santiago/ Valparaíso, Chile Bogotá, Colombia Albany, Alberta, NIKHEF Amsterdam, Ankara, LAPP Annecy, Argonne NL, Arizona, UT Arlington, Athens, NTU Athens, Baku, IFAE Barcelona, Belgrade, Bergen, Berkeley LBL and UC, HU Berlin, Bern, Birmingham, Bologna, Bonn, Boston, Brandeis, Bratislava/SAS Kosice, Brookhaven NL, Buenos Aires, Bucharest, Cambridge, Carleton, Casablanca/Rabat, CERN, Chinese Cluster, Chicago, Clermont-Ferrand, Columbia, NBI Copenhagen, Cosenza, AGH UST Cracow, IFJ PAN Cracow, DESY, Dortmund, TU Dresden, JINR Dubna, Duke, Frascati, Freiburg, Geneva, Genoa, Giessen, Glasgow, LPSC Grenoble, Technion Haifa, Hampton, Harvard, Heidelberg, Hiroshima, Hiroshima IT, Indiana, Innsbruck, Iowa SU, Irvine UC, Istanbul Bogazici, KEK, Kobe, Kyoto, Kyoto UE, Lancaster, UN La Plata, Lecce, Lisbon LIP, Liverpool, Ljubljana, QMW London, RHBNC London, UC London, Lund, UA Madrid, Mainz, Manchester, Mannheim, CPPM Marseille, Massachusetts, MIT, Melbourne, Michigan, Michigan SU, Milano, Minsk NAS, Minsk NCPHEP, Montreal, McGill Montreal, FIAN Moscow, ITEP Moscow, MEPhI Moscow, MSU Moscow, Munich LMU, MPI Munich, Nagasaki IAS, Nagoya, Naples, New Mexico, New York, Nijmegen, BINP Novosibirsk, Ohio SU, Okayama, Oklahoma, Oklahoma SU, Oregon, LAL Orsay, Osaka, Oslo, Oxford, Paris VI and VII, Pavia, Pennsylvania, Pisa, Pittsburgh, CAS Prague, CU Prague, TU Prague, IHEP Protvino, Regina, Ritsumeikan, UFRJ Rio de Janeiro, Rome I, Rome II, Rome III, Rutherford Appleton Laboratory, DAPNIA Saclay, Santa Cruz UC, Sheffield, Shinshu, Siegen, Simon Fraser Burnaby, SLAC, Southern Methodist Dallas, NPI Petersburg, Stockholm, KTH Stockholm, Stony Brook, Sydney, AS Taipei, Tbilisi, Tel Aviv, Thessaloniki, Tokyo ICEPP, Tokyo MU, Toronto, TRIUMF, Tsukuba, Tufts, Udine, Uppsala, Urbana UI, Valencia, UBC Vancouver, Victoria, Washington, Weizmann Rehovot, FH Wiener Neustadt, Wisconsin, Wuppertal, Yale, Yerevan 2
Größe der LHC Experimente z ATLAS ¾ 35 Länder | 164 Inst. | 1900 Wiss.-Autoren (350 Stud.) z CMS ¾ 37 Länder | 155 inst. | 2000 Physiker (400 Stud.) z LHC-B ¾ 14 Länder | 47 Inst. | ~600 Mitglieder z ALICE ¾ 30 Länder | 105 Inst. | > 1000 Mitglieder 3 Der Beginn von ATLAS (20 a) z late 1980’s: R&D started z 1992, March 3: ¾ Ascot + Eagle merge (Evian conference) z 1992, Oct. 1: ¾ Letter of Intent (signed by Innsbruck Univ.) z 1994, December: ¾ Technical Proposal z 1996, February: ¾ Atlas is approved z 1998 - 2005: ¾ Technical Design Reports z 2003: ¾ underground cavern completed ATLAS superimposed to the 5 floors of building 40 z 2008: ¾ spring: complete installation 4
Der ATLAS Detektor Diameter 25 m Barrel toroid length 26 m End-cap end-wall chamber span 46 m Overall weight 7000 Tons length of cables 3000 km # of channels ~108 5 The Underground Side C Side A(irport) Cavern at Pit-1 for the ATLAS Detector Length = 55 m Width = 32 m Height = 35 m “building a ship in a bottle” 6
Probleme z Ja ¾ z.B. mit dem soeben gezeigten Endkappen-Toroid 9 ATLAS Endkappen Toroid-Magnet 15 m hoch, 5 m breit, CERN, 29 Mai 2007 340 Tonnen schwer 10
Atlas Puzzle Bild - da vorne drauf kommt das Endkappen Totoid 11 Der Endkappen-Magnet-Vorfall z Als Beispiel für die Grundvorlesung ¾ Reibung: zwischen festen Körpern Die Physik dahinter: Masse(Magnet) = 340 t Annahme: P = 0.2 benötigte Zugkraft zum Bewegen: F = FReibung = 6.8·105 N (= Gewicht von 68 t) berechnete Kraft zwischen Magnet und Kalorimeter aufgrund der magnetischen Anziehung bei Strom I = 15 kA: FAnziehung | 2·105 N (äquivalent Gewicht von 20 t) Links: die Kühlleitung ist noch intakt. der nicht fixierte Magnet Rechts: die beschädigte Kühlleitung. hätte sich beim Einschalten des Der Endkappen-Magnet ist rechts noch sichtbar. Stroms nicht bewegen sollen! 12
Berichte verschiedener Leute Marzio Nessi - ATLAS technical coordinator During the last three weeks, we have been pursuing current ramping tests on the End-Caps Toroid Magnets, doing them one at a time. After the first initial safety system checks (integrity of the vacuum, power and cryogenics systems), we started ramping up the magnet current. On the 22nd of November, the goal of the test was to ramp up to 75% of nomimal current on ECT-C, then provoke both slow and fast magnet dumps to check the response of the cryogenics and the mechanical behavior of the toroids. This test is not done in a standard ATLAS configuration but in a configuration that brings the end-cap magnet 35 cm closer to the calorimeter end-cap than normal position. Care was taken to ensure there was enough safety margin for this operation. Unexpectedly, at 14.7 kAmp, the EC-Toroid moved toward the calorimeter by about 8 cm. Immediately, all activities were stopped, and the current was released. All means were put in place to visually inspect the Liquid Argon Calorimeter End-Cap services for possible damage. The ATLAS safety management team brought in all experts and the fire brigade with safety equipment just in case liquid argon would spill out. Despite what happened, this incident confirmed that we are very well organized in case of safety problems. We were able to put together an effective team of experts at 2:00, with a phone conference bringing together people from all over the planet to discuss the best course of action. What amazed me was that everybody remained calm, organized and coordinated under the supervision of our Glimos, Olga Beltramello. Nobody argued, nobody got excited but instead everybody acted in an efficient and pro-active manner. 13 Magnet Team Herman Ten Kate - the view from the magnets team: From our calculations, we determined that the friction coefficient of the magnet against the supporting rails underneath was at least 0.2. The end cap toroid weighs 340 tonnes, which means it should not move at all if the magnetic force of attraction is below 68 tonnes. We were testing at 15 kA, and the magnetic force between the end cap toroid and calorimeter at that current is 20 tonnes. We are absolutely sure of that. So, although the magnet should have been stationary unless there was an attraction of over 68 tonnes, it in fact moved towards the iron at a force of 20 tonnes. Clearly the friction coefficient was much lower than we thought. But the absolute minimum friction coefficient of a metal-to-metal contact is 0.12, according to textbooks. Even at that coefficient, you should need 40 tonnes of attractive force to move the magnet. To this day, we are not sure why the magnet moved at half the absolute minimum friction coefficient. We will make a model setup using the same type of steel to try to understand what happened. But for our magnet tests the calorimeter was in a non-standard configuration. In the final configuration this won’t be a problem. 14
Forschung: Teilchen – Antiteilchen Übergang Simulation eines Ereignisses Visualisierung der Atlas Detektor, CERN gemessenen Daten 44 m lang, 22 hoch 25 Millionen Kollisionen (Movie) pro Sekunde, jede Kollision erzeugt ein Bild von diesem Typ Herausforderung: Entwicklung eines effizienten Algorithmus, der feststellen soll, ob ein Übergang Teilchen o Antileilchen (oder umgekehrt) stattgefunden hat, oder nicht. Zerfallstopologie 19 Teilchen – Antiteilchen Umwandlung z Indirekt ¾ Durch Austausch von W-Teilchen z Übergang auch in umgekehrter Richtun ¾ Oszillation 20
Bs0 o Ds– S+ z Bs Zerfall rekonstruieren I Wie weiß man, ob ein Übergang stattgefunden hat? _ z Bs oder Bs bei Produktion und Zerfall identifizieren ¾ Produktion Ladungsvorzeichen des Zerfallsmyons eines (nicht osz.) B- Hadrons auf der anderen Seite: B– o P– o Bs0 ¾ Zerfall Ladungsvorzeichen des D-meson: Bs0 o Ds– 21 Ideale Oszillation 22
Oszillation in einem Experiment Bestimmung der Oszillationsfrequenz aus diesen Daten. Zeitauflösung ist sehr wichtig 23 Oszillation? noch hochfrequenter 24
You can also read