Statistical impact models in agriculture: monitoring, seasonal, long-term and extreme forecastings

Page created by Eduardo Kelley
 
CONTINUE READING
Statistical impact models in agriculture: monitoring, seasonal, long-term and extreme forecastings
Statistical impact models in agriculture:
monitoring, seasonal, long-term and extreme forecastings

                                J. MATHIEU and F. AIRES

                                LERMA/IPSL at Paris Observatory

                                    December 7th 2018
Statistical impact models in agriculture: monitoring, seasonal, long-term and extreme forecastings
Weather-sensitivity and impact models

         Databases and methodology

         Forecasting and estimation of the yield

         The low yield extreme case

         Conclusions and perspectives

2 / 34
Statistical impact models in agriculture: monitoring, seasonal, long-term and extreme forecastings
Weather-sensitivity and impact models

2 / 34
Statistical impact models in agriculture: monitoring, seasonal, long-term and extreme forecastings
• Estimate the weather impact on crop yield

• Can we explain part of the crop yield variability based on
   indirect weather information?
   No satellite data used (will be considered in the futur, depending
on application)

 3 / 34
Statistical impact models in agriculture: monitoring, seasonal, long-term and extreme forecastings
Weather-based impact models

Model that represents the effects of the weather (observations, analysis,
forecasts) on some socio-economic activity.

 4 / 34
Statistical impact models in agriculture: monitoring, seasonal, long-term and extreme forecastings
Weather-based impact models

Model that represents the effects of the weather (observations, analysis,
forecasts) on some socio-economic activity.

1. Physical, agronomic, dynamic, process-based:
    ◦ Advantages: description of the processes, can extrapolate to another
          climate...
    ◦ Drawbacks: complex, auxiliary data necessary (e.g. soil type,
          properties), numerous parameters
2. Statistical models:
    ◦ Advantages: data-driven, simplicity, flexibility, low development cost
    ◦ Drawbacks: less informative in terms of causal relationships

 4 / 34
Statistical impact models in agriculture: monitoring, seasonal, long-term and extreme forecastings
Weather-based impact models

Model that represents the effects of the weather (observations, analysis,
forecasts) on some socio-economic activity.

1. Physical, agronomic, dynamic, process-based:
    ◦ Advantages: description of the processes, can extrapolate to another
          climate...
    ◦ Drawbacks: complex, auxiliary data necessary (e.g. soil type,
          properties), numerous parameters
2. Statistical models:
    ◦ Advantages: data-driven, simplicity, flexibility, low development cost
    ◦ Drawbacks: less informative in terms of causal relationships

−→ Only a part of the crop yield variability can be explained by the
weather information (agriculture practice, deseases, irrigation are not
taken into account!!!)

 4 / 34
Statistical impact models in agriculture: monitoring, seasonal, long-term and extreme forecastings
Why forecasting crop yield?
• Monitoring: estimation at the end of the year

• Seasonal forecasting:

• Long-term forecasts:

       Début de la
   saison de croissance           Récolte
                                                  Années
                                                   2060
Statistical impact models in agriculture: monitoring, seasonal, long-term and extreme forecastings
Why forecasting crop yield?
• Monitoring: estimation at the end of the year
  - Analyse weather sensitivities
  - Monitoring at the global scale with no delays, yield insurance
  - Less demanding than field measurements sampling strategies or surveys

• Seasonal forecasting:

• Long-term forecasts:

       Début de la
   saison de croissance           Récolte
                                                                    Années
                                                                     2060
                                 Estimations en
                                  fin d’année
Statistical impact models in agriculture: monitoring, seasonal, long-term and extreme forecastings
Why forecasting crop yield?
• Monitoring: estimation at the end of the year
  - Analyse weather sensitivities
  - Monitoring at the global scale with no delays, yield insurance
  - Less demanding than field measurements sampling strategies or surveys

• Seasonal forecasting:
  - Help field management at the shorter time scales
  - Better water management
  - Better stock management

• Long-term forecasts:

       Début de la
   saison de croissance                  Récolte
                                                                    Années
                                                                     2060
               Prévisions saisonnières
                                         Estimations en
                                          fin d’année
Why forecasting crop yield?
• Monitoring: estimation at the end of the year
  - Analyse weather sensitivities
  - Monitoring at the global scale with no delays, yield insurance
  - Less demanding than field measurements sampling strategies or surveys

• Seasonal forecasting:
  - Help field management at the shorter time scales
  - Better water management
  - Better stock management

• Long-term forecasts:
  - Anticipate the next 50 year’s evolution
  - Choice of the crop and agriculture practices
  - Investment on long-term infrastructures

       Début de la
   saison de croissance                  Récolte
                                                                      Années
                                                                       2060
               Prévisions saisonnières
                                         Estimations en         Prévisions
                                          fin d’année          à long terme
Why forecasting crop yield?
• Monitoring: estimation at the end of the year
  - Analyse weather sensitivities
  - Monitoring at the global scale with no delays, yield insurance
  - Less demanding than field measurements sampling strategies or surveys

• Seasonal forecasting:
  - Help field management at the shorter time scales          The application
  - Better water management                                   drives the choice
  - Better stock management                                   of predictors.

• Long-term forecasts:
  - Anticipate the next 50 year’s evolution
  - Choice of the crop and agriculture practices
  - Investment on long-term infrastructures

       Début de la
   saison de croissance                  Récolte
                                                                      Années
                                                                       2060
               Prévisions saisonnières
                                         Estimations en         Prévisions
                                          fin d’année          à long terme
Challenges

• Difficulties related to agriculture data: not enough data, spatially
  correlated −→ complex statistical learning
• Stationarity of data not warranted
• Do not include the impact of several factors not related to weather
   (complex or unknown information)

   Two objectives:
• Obtain yield forecasts as precise as possible, obtain weather sensitivity
• BUT assess realistic model quality!!! (careful with over-training)

 6 / 34
Challenges

• Difficulties related to agriculture data: not enough data, spatially
  correlated −→ complex statistical learning
• Stationarity of data not warranted
• Do not include the impact of several factors not related to weather
   (complex or unknown information)

   Complexifying the models might not be useful because the
limitation comes from the data, not the algorithm

   Two objectives:
• Obtain yield forecasts as precise as possible, obtain weather sensitivity
• BUT assess realistic model quality!!! (careful with over-training)

 6 / 34
Databases and methodology

6 / 34
La base de données de l’USDA (1920-2013)

                           USDA database (1920-2013)
                           200                                                                               200

                                    Alabama                                                                                   Texas
                                                                                                                                                                                                                1975
Corn yield (bushel/acre)

                                                                                  Corn yield (bushel/acre)
                           150                                                                               150

                            • the corn                                                                       100
                           100

                            • at the county scale
                            50                                                                                        50

                            0                                                                                         0
                            1920 1930 1940 1950 1960 1970 1980 1990 2000 2010                                         1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
                                                 Years                                                                                        Years
                           200                                                                               200
                                                                                                              200                                                                                               200

                                    Minnesota                                                                                 Iowa
                                                                                                                            Rendement de maïs par cantons,150aux États-Unis
                                                                                            (bushel/acre)                      Alabama                                                                                 Texas
Corn yield (bushel/acre)

                                                                                      yield(bushel/acre)
                                                                                                             150

                                                                                                                                                                                     Corn yield (bushel/acre)
                           150                                                                                150

                           100                                                                               100
                                                                                                              100                                                                                               100
                                                                                 Cornyield

                                                                                                                             9 / 47
                                                                                Corn

                            50                                                                                        50
                                                                                                                       50                                                                                        50

                            0                                                                                         00                                                                                         0
                            1920 1930 1940 1950 1960 1970 1980 1990 2000 2010                                         1920
                                                                                                                       1920 1930
                                                                                                                             1930 1940
                                                                                                                                   1940 1950
                                                                                                                                         1950 1960
                                                                                                                                               1960 1970
                                                                                                                                                     1970 1980
                                                                                                                                                           1980 1990
                                                                                                                                                                 1990 2000
                                                                                                                                                                      2000 2010
                                                                                                                                                                           2010                                  1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
                                                 Years                                                                                          Years
                                                                                                                                                 Years                                                                                Years
                                                                                                                      200                                                                                       200

                                                                                                                              Minnesota                                                                                Iowa

                                                                                                                                                                                  Corn yield (bushel/acre)
                                                                                           Corn yield (bushel/acre)

                                                                                                                      150                                                                                       150

                                                                                                                      100                                                                                       100

                                 7 / 34
                                                                                                                       50                                                                                       50
La base de données de l’USDA (1920-2013)

                           USDA database (1920-2013)
                           200                                                                               200

                                    Alabama                                                                                   Texas
                                                                                                                                                                                                                1990
Corn yield (bushel/acre)

                                                                                  Corn yield (bushel/acre)
                           150                                                                               150

                            • the corn                                                                       100
                           100

                            • at the county scale
                            50                                                                                        50

                            0                                                                                         0
                            1920 1930 1940 1950 1960 1970 1980 1990 2000 2010                                         1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
                                                 Years                                                                                        Years
                           200                                                                               200
                                                                                                              200                                                                                               200

                                    Minnesota                                                                                 Iowa
                                                                                                                            Rendement de maïs par cantons,150aux États-Unis
                                                                                            (bushel/acre)                      Alabama                                                                                 Texas
Corn yield (bushel/acre)

                                                                                      yield(bushel/acre)
                                                                                                             150

                                                                                                                                                                                     Corn yield (bushel/acre)
                           150                                                                                150

                           100                                                                               100
                                                                                                              100                                                                                               100
                                                                                 Cornyield

                                                                                                                             9 / 47
                                                                                Corn

                            50                                                                                        50
                                                                                                                       50                                                                                        50

                            0                                                                                         00                                                                                         0
                            1920 1930 1940 1950 1960 1970 1980 1990 2000 2010                                         1920
                                                                                                                       1920 1930
                                                                                                                             1930 1940
                                                                                                                                   1940 1950
                                                                                                                                         1950 1960
                                                                                                                                               1960 1970
                                                                                                                                                     1970 1980
                                                                                                                                                           1980 1990
                                                                                                                                                                 1990 2000
                                                                                                                                                                      2000 2010
                                                                                                                                                                           2010                                  1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
                                                 Years                                                                                          Years
                                                                                                                                                 Years                                                                                Years
                                                                                                                      200                                                                                       200

                                                                                                                              Minnesota                                                                                Iowa

                                                                                                                                                                                  Corn yield (bushel/acre)
                                                                                           Corn yield (bushel/acre)

                                                                                                                      150                                                                                       150

                                                                                                                      100                                                                                       100

                                 7 / 34
                                                                                                                       50                                                                                       50
La base de données de l’USDA (1920-2013)

                           USDA database (1920-2013)
                           200                                                                               200

                                    Alabama                                                                                   Texas
                                                                                                                                                                                                                2013
Corn yield (bushel/acre)

                                                                                  Corn yield (bushel/acre)
                           150                                                                               150

                            • the corn                                                                       100
                           100

                            • at the county scale
                            50                                                                                        50

                            0                                                                                         0
                            1920 1930 1940 1950 1960 1970 1980 1990 2000 2010                                         1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
                                                 Years                                                                                        Years
                           200                                                                               200
                                                                                                              200                                                                                               200

                                    Minnesota                                                                                 Iowa
                                                                                                                            Rendement de maïs par cantons,150aux États-Unis
                                                                                            (bushel/acre)                      Alabama                                                                                 Texas
Corn yield (bushel/acre)

                                                                                      yield(bushel/acre)
                                                                                                             150

                                                                                                                                                                                     Corn yield (bushel/acre)
                           150                                                                                150

                           100                                                                               100
                                                                                                              100                                                                                               100
                                                                                 Cornyield

                                                                                                                             9 / 47
                                                                                Corn

                            50                                                                                        50
                                                                                                                       50                                                                                        50

                            0                                                                                         00                                                                                         0
                            1920 1930 1940 1950 1960 1970 1980 1990 2000 2010                                         1920
                                                                                                                       1920 1930
                                                                                                                             1930 1940
                                                                                                                                   1940 1950
                                                                                                                                         1950 1960
                                                                                                                                               1960 1970
                                                                                                                                                     1970 1980
                                                                                                                                                           1980 1990
                                                                                                                                                                 1990 2000
                                                                                                                                                                      2000 2010
                                                                                                                                                                           2010                                  1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
                                                 Years                                                                                          Years
                                                                                                                                                 Years                                                                                Years
                                                                                                                      200                                                                                       200

                                                                                                                              Minnesota                                                                                Iowa

                                                                                                                                                                                  Corn yield (bushel/acre)
                                                                                           Corn yield (bushel/acre)

                                                                                                                      150                                                                                       150

                                                                                                                      100                                                                                       100

                                 7 / 34
                                                                                                                       50                                                                                       50
La base de données de l’USDA (1920-2013)

                           USDA database (1920-2013)
                           200                                                                               200

                                    Alabama                                                                                   Texas
                                                                                                                                                                                                                2013
Corn yield (bushel/acre)

                                                                                  Corn yield (bushel/acre)
                           150                                                                               150

                            • the corn                                                                       100
                           100

                            • at the county scale
                            50                                                                                        50

                            0                                                                                         0
                            1920 1930 1940 1950 1960 1970 1980 1990 2000 2010                                         1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
                                                 Years                                                                                        Years
                           200                                                                               200
                                                                                                              200                                                                                               200

                                    Minnesota                                                                                 Iowa
                                                                                                                            Rendement de maïs par cantons,150aux États-Unis
                                                                                            (bushel/acre)                      Alabama                                                                                 Texas
Corn yield (bushel/acre)

                                                                                      yield(bushel/acre)
                                                                                                             150

                                                                                                                                                                                     Corn yield (bushel/acre)
                           150                                                                                150

                           100                                                                               100
                                                                                                              100                                                                                               100
                                                                                 Cornyield

                                                                                                                             9 / 47
                                                                                Corn

                            50                                                                                        50
                                                                                                                       50                                                                                        50

                            0                                                                                         00                                                                                         0
                            1920 1930 1940 1950 1960 1970 1980 1990 2000 2010                                         1920
                                                                                                                       1920 1930
                                                                                                                             1930 1940
                                                                                                                                   1940 1950
                                                                                                                                         1950 1960
                                                                                                                                               1960 1970
                                                                                                                                                     1970 1980
                                                                                                                                                           1980 1990
                                                                                                                                                                 1990 2000
                                                                                                                                                                      2000 2010
                                                                                                                                                                           2010                                  1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
                                                 Years                                                                                          Years
                                                                                                                                                 Years                                                                                Years
                                                                                                                      200                                                                                       200

                                   Very important long-term trend, not related to climate change
                                                                                                                              Minnesota                                                                                Iowa

                                                                                                                                                                                  Corn yield (bushel/acre)
                                                                                           Corn yield (bushel/acre)

                                                                                                                      150                                                                                       150

                                   We focus on anomalies with respect to this trend
                                                                                                                      100                                                                                       100

                                 7 / 34
                                                                                                                       50                                                                                       50
Weather data (1979-2013)

• ERA-interim reanalyses from ECMWF
• Spatial resolution of ∼80km → projected to counties

      Mean temperature, May 1979              Precipitation, May 1979

• Monthly data: Air temperature, precipitation, soil moisture,
                 normalized difference precip-evapotranspiration (SPEI)
   Daily data: Tmin and Tmax

 8 / 34
Some agro-climatic indices                           60                                                                     Chapitre III - Bases de données

                                                      Variables les plus courantes                                                                   Unités

• Date of the last frozen day in spring
                                                      Pj          Précipitation du jour j                                                            mm
                                                      Pmois       Précipitations cumulées du mois "mois"                                             mm
                                                      T avej      Température moyenne du jour j                                                      oC
                                                                               T min +T max
                                                                                 j
                                                                    T avej =       2
                                                      Tbase         Seuil de température de croissance                                               oC

                                                      Tf rost       Seuil de température gélive                                                      oC

• Cumul of growth degree days (DJ)
                                                      Tmois         Température moyenne du mois "mois"                                               oC

                                                      T minj        Température minimale du jour j                                                   oC

                                                      T maxj        Température maximale du jour j                                                   oC

                                                      Indices agroclimatiques (nom et formule)
                                                      CDF5       Cumul des degrés-froid durant la période d’endurcissement (po-                      Jour

• Number of days with higher than 30◦ C
                                                                    tentiel d’endurcissement)
                                                                               F PP
                                                                                  E−1
                                                                    CDF 5 =           CDF 5j
                                                                             j=213
                                                                             
                                                                                0 si j = 212

   temperature
                                                                    CDF 5j =
                                                                                max{0, CDF 5j−1 + DFj } sinon
                                                                    F P E = min{j|T minj 6 −10o C et j > 212}
                                                                          CDj − DJj
                                                                    DFj = 
                                                                            0               si T avej > 5o C
                                                                   CDj =                                 o
                                                                          |T avej − 5| si T avej < 5o C
                                                                            0              si T avej 6 5 C
                                                                   DJj =

                          ..
                                                                            T avej − 5 si T avej > 5o C
                                                      DGP          Date du dernier gel printanier                                                    Jour julien
                                                     Chapitre III - Bases de données                                                                            61

                           .
                                                                    DGPTf rost = max {j|T minj 6 Tf rost }
                                                                                   j=1, ..., 212
                                                      FSC
                                                      DJ             Date de
                                                                    Cumul   des findegré-jours
                                                                                     de la saisond’avril
                                                                                                      de croissance
                                                                                                              à octobre                               Jour
                                                                                                                                                     Degré-jours
                                                                            Pmax {j|T M M P 5j > 5.5o C}
                                                                     F SC 304
                                                                           =
                                                                    DJ =          DJj
                                                                          j=91       j=1, ..., 365
                                                      FU T M         Date
                                                                    DJ j = de
                                                                           max  fin  de(T
                                                                                   {0,   cumul
                                                                                           avej − des   unités thermiques du maïs
                                                                                                     T base)}                                         Jour
                                                      DJOHIV        Cumul
                                                                     FU T M des
                                                                             = min     {j|T minjau6cours
                                                                                   degré-jours          −2o C}   de la période froide (perte d’en-   Degré-jours
                                                                    durcissement)j=213, ..., 365

• Total degree-days higher than 6◦ C during
                                                      LSC            Longueur de    FP
                                                                                       la saison de croissance
                                                                                      hiv
                                                                                                                                                      Jour
                                                                    DJOHIV =              max{0, T avej }
                                                                     LSC = F SC        − DSC
                                                                                    Dhiv
                                                      LSSG          Dhiv  =  min{j|T
                                                                     Longueur de la saisonmin   j 6  −15 o
                                                                                                           C}
                                                                                                    sans gel                                          Jour

   the growing season
                                                                                           GAjTf6rost
                                                                                                          o
                                                                    FLSSG
                                                                     hiv = Tmax{j|T
                                                                              f rost
                                                                                      = Pmin         −15    C} Tf rost
                                                                                                        − DGP
                                                      DJsc
                                                      OCA           Cumul   des degré-jours
                                                                     Fréquence                     durantsupérieures
                                                                                    des températures          la saison deàcroissance
                                                                                                                             30o C                   Degré-
                                                                                                                                                      Jour jours
                                                                               FP SC
                                                                                          P
                                                                                          365
                                                                    DJsc
                                                                     OCA=T SU P 30 =    DDj T SU P 30j
                                                                             j=DSC j=1
                                                                                       (
                                                      DSC           Date de début de1 lasi     saison   de jcroissance
                                                                                                    T max      > 30o C                               Jour
                                                                     T SU P  30    =                           o

• Thermal unity of corn
                                                                    DSC = min {j|T0M M
                                                                                 j
                                                                                              si P 5Tjmax
                                                                                                       > 5.56C}   30o C
                                                                                                            j
                                                      PGA                          j=1, ..., gel
                                                                     Date du premier         365automnal                                              Jour julien
                                                      DU T M        Date de début      de cumul des unités thermiques du maïs                        Jour
                                                                     P GA  Tf rost = min {j|T minj 6 Tf rost }
                                                                                                   5j > 12.8o C}

                                                                                                           ..
                                                                    DU T M = minj=213,{j|T M...,M365
                                                      Psc             Cumul des précipitations pendant la saison de croissance                        mm
                                                                            FP
                                                                             SC

                                                                                                            .
                                                                      Psc =      Pj
                                                                             j=DSC
                                                      TMA             Température minimale annuelle                                                   oC

                                                                      T M A = min {T minj }, j=1, ..., 365
                                                      T M M P 5j      Moyenne mobile pondérée des températures moyennes quoti-
                                                                      diennes sur 5 jours
                                                                      1/16( T avej−4 + 4.T avej−3 + 6.T avej−2 + 4.T avej−1 + T avej )

,→ Linked to the agriculture practice
                                                      T M M 5j        moyenne mobile sur 5 jours de la température moyenne quoti-
                                                                      dienne
                                                                      1/5( T avej−4 + T avej−3 + T avej−2 + T avej−1 + T avej )

,→ Requires daily weather data
                                                      UTM             Cumul des unités thermiques du maïs                                             CHU
                                                                                 P
                                                                                FU TM
                                                                      UTM =            U T Mj
                                                                                j=DU T M
                                                                      U T Mj = 1/2(Y
                                                                                    maxj + Y minj )
                                                                                        0.33(T maxj − 10) − 0.084(T maxj −                 10)2
                                                                      Y maxj =                             si T maxj > 30o C
                                                                                       
                                                                                         0                si T maxj 6 10o C
                                                                                     1.8(T minj − 4.44) si T minj > 4.44o C
                                                                      Y minj =
                                                                                     0                  si T minj 6 4.44o C

 9 / 34
                                                          TABLEAU III.1 – Indices agroclimatiques utilisés dans cette thèse par ordre alphabétique.
                                                          Plus de détails sont disponibles dans [Côt12]. Les dates habituelles de plantation et de
                                              1810        récolte par état aux États-Unis sont disponibles dans [USDA10].
Databases and methodology
   Databases
   Yield estimation methodology

9 / 34
Yield estimation methodology

                                                                           Rendement de maïs
   Données météo
                                                                         Analyse de   la tendance
                                                                      (Modèle mixte     non linéaire)
                             Ajout des
Prédicteurs potentiels                              Comparaison            Anomalie de rendement
                              meilleurs
    (anomalies)                                   (modèle linéaire)
                             predicteurs

                                                          Sélection de modèles
                           Si insuffisant
                                                                              Information
                                              N entrées sélectionnées
                                                                              de groupe

                                             Modèle linéaire /           Modèle
                                            Réseau de neurones            mixte

anoyield = yieldtrend
                  −trend
                                                     Prévision du rendement

 10 / 34
Yield estimation methodology

                                                                           Rendement de maïs
   Données météo
                                                                         Analyse de   la tendance
                                                                      (Modèle mixte     non linéaire)
                             Ajout des
Prédicteurs potentiels                              Comparaison            Anomalie de rendement
                              meilleurs
    (anomalies)                                   (modèle linéaire)
                             predicteurs

                                                          Sélection de modèles
                           Si insuffisant
                                                                              Information
                                              N entrées sélectionnées
                                                                              de groupe

                                             Modèle linéaire /           Modèle
                                            Réseau de neurones            mixte

anoyield = yieldtrend
                  −trend
                                                     Prévision du rendement

 10 / 34
Yield trend

• a sigmoïd and a mixed-effect model (parametric)

                                 Alabama county                                                                       Texas county
                        200                                                                               200

                                 Yield data                                                                        Yield data
                        150                                                                               150

                                                                                   Corn yield (bu/acre)
                                 Trend from ME logistic regression                                                 Trend from ME logistic
 Yield (bu/acre)

                                                                                                                   regression

                        100                                                                               100

                         50                                                                                50

                                                                                                                                                                 anoyield = yieldtrend
                                                                                                                                                                                   −trend
                          0                                                                                 0
                          1920     1940       1960        1980       2000   2020                            1920     1940       1960        1980   2000   2020
                                                  Years                                                                             Years

                          1                                                                                 1

                        0.5                                                                               0.5
 Corn yield anomalies

                                                                                   Corn yield anomalies

                          0                                                                                 0

                        -0.5                                                                              -0.5

                         -1                                                                                -1
                         1920      1940       1960        1980       2000   2020                           1920      1940       1960        1980   2000   2020
                                                  Years                                                                             Years

11 / 34
Yield trend

• a sigmoïd and a mixed-effect model (parametric)

                                 Alabama county                                                                       Texas county
                        200                                                                               200

                                 Yield data                                                                        Yield data
                        150                                                                               150

                                                                                   Corn yield (bu/acre)
                                 Trend from ME logistic regression                                                 Trend from ME logistic
 Yield (bu/acre)

                                                                                                                   regression

                        100                                                                               100

                         50                                                                                50

                                                                                                                                                                 anoyield = yieldtrend
                                                                                                                                                                                   −trend
                          0                                                                                 0
                          1920     1940       1960        1980       2000   2020                            1920     1940       1960        1980   2000   2020
                                                  Years                                                                             Years

                          1                                                                                 1

                        0.5                                                                               0.5
 Corn yield anomalies

                                                                                   Corn yield anomalies

                                                                                                                                                                    anoyield = −0.2
                          0                                                                                 0

                                                                                                                                            ,→ is the variable to estimate
                        -0.5                                                                              -0.5

                         -1                                                                                -1
                         1920      1940       1960        1980       2000   2020                           1920      1940       1960        1980   2000   2020
                                                  Years                                                                             Years

11 / 34
Yield estimation methodology
                                                                         Rendement de maïs
   Données météo
                                                                       Analyse de   la tendance
                                                                    (Modèle mixte     non linéaire)
                           Ajout des
Prédicteurs potentiels                            Comparaison            Anomalie de rendement
                            meilleurs
    (anomalies)                                 (modèle linéaire)
                           predicteurs

                                                        Sélection de modèles
                         Si insuffisant
                                                                            Information
                                            N entrées sélectionnées
                                                                            de groupe

                                           Modèle linéaire /           Modèle
                                          Réseau de neurones            mixte

                                                   Prévision du rendement

12 / 34
Weather predictor’s selection
• Many redundant predictors
• Several considered criteria (COR, RMSE, AIC)
• An iterative and multivariate selection approach, avoiding colinearities

                               0.21

      0.46                                    For the estimation at the year’s end:
                               0.205
      0.44

      0.42
                                                               Tjuly
                               0.2
                                                               SPEIjuly

                                       RMSE
COR

       0.4

      0.38                     0.195                           SPEIjune
      0.36
                               0.19
                                                               DJaugust
      0.34                                                     DJavril
      0.32                     0.185
              au e
           SP Ijuly

                     S
            SP y

                     A
                     ril
             D st

                    ay
            SM er
            oc er
          D jun
        ul

                 LG

                   C
                 ap
                 gu

                   b
         D tob

                 m
       Tj

                 O
                to
                E
               EI

               D

              c
           To
            D

          D

• Small number of selected predictors
 13 / 34
Weather predictor’s selection
• Many redundant predictors
• Several considered criteria (COR, RMSE, AIC)
• An iterative and multivariate selection approach, avoiding colinearities

                               0.21

      0.46                                    For the estimation at the year’s end:
                               0.205
      0.44

      0.42
                                                               Tjuly
                               0.2
                                                               SPEIjuly

                                       RMSE
COR

       0.4

      0.38                     0.195                           SPEIjune
      0.36
                               0.19
                                                               DJaugust
      0.34                                                     DJavril
      0.32                     0.185
              au e
           SP Ijuly

                     S
            SP y

                     A
                     ril
             D st

                    ay
            SM er
            oc er
          D jun
        ul

                 LG

                   C
                 ap
                 gu

                   b
         D tob

                 m
       Tj

                 O
                to
                E
               EI

               D

              c
           To
            D

          D

• Small number of selected predictors
 13 / 34
Weather predictor’s selection
• Many redundant predictors
• Several considered criteria (COR, RMSE, AIC)
• An iterative and multivariate selection approach, avoiding colinearities

                               0.21

      0.46                                    For the estimation at the year’s end:
                               0.205
      0.44

      0.42
                                                               Tjuly
                               0.2
                                                               SPEIjuly

                                       RMSE
COR

       0.4

      0.38                     0.195                           SPEIjune
      0.36
                               0.19
                                                               DJaugust
      0.34                                                     DJavril
      0.32                     0.185
              au e
           SP Ijuly

                     S
            SP y

                     A
                     ril
             D st

                    ay
            SM er
            oc er
          D jun
        ul

                 LG

                   C
                 ap
                 gu

                   b
         D tob

                 m
       Tj

                 O
                to
                E
               EI

               D

              c
           To
            D

          D

• Small number of selected predictors
 13 / 34
Yield estimation methodology
                                                                         Rendement de maïs
   Données météo
                                                                       Analyse de   la tendance
                                                                    (Modèle mixte     non linéaire)
                           Ajout des
Prédicteurs potentiels                            Comparaison            Anomalie de rendement
                            meilleurs
    (anomalies)                                 (modèle linéaire)
                           predicteurs

                                                        Sélection de modèles
                         Si insuffisant
                                                                            Information
                                            N entrées sélectionnées
                                                                            de groupe

                                           Modèle linéaire /           Modèle
                                          Réseau de neurones            mixte

                                                   Prévision du rendement

14 / 34
Yield estimation methodology
                                                                         Rendement de maïs
   Données météo
                                                                       Analyse de   la tendance
                                                                    (Modèle mixte     non linéaire)
                           Ajout des
Prédicteurs potentiels                            Comparaison            Anomalie de rendement
                            meilleurs
    (anomalies)                                 (modèle linéaire)
                           predicteurs

                                                        Sélection de modèles
                         Si insuffisant
                                                                            Information
                                            N entrées sélectionnées
                                                                            de groupe

                                           Modèle linéaire /           Modèle
                                          Réseau de neurones            mixte

                                                   Prévision du rendement

14 / 34
The mixed-effect models
The database can be divided into m groups.
                            Classical linear model
                 pooling                         no-pooling
                                                                 50

                                                                 45

                                                                 40

                                                                 35

                                                                 30

             Y = PT β + ε               ∀i ∈ ‚1, mƒ, Yi = PiT βi + εi
                                                                 25

                                                                  -130   -120   -110   -100   -90   -80   -70

    • P: predictor’s matrix          • ε ∼ N (0, Σ): noise
    • β: parameter’s vector       −→ fixed effect vector

   15 / 34
The mixed-effect models
The database can be divided into m groups.
                                Classical linear model
                 pooling                             no-pooling
                                                                          50

                                                                          45

                                                                          40

                                                                          35

                                                                          30

             Y = PT β + ε                        ∀i ∈ ‚1, mƒ, Yi = PiT βi + εi
                                                                          25

                                                                           -130   -120   -110   -100   -90   -80   -70

    • P: predictor’s matrix                 • ε ∼ N (0, Σ): noise
    • β: parameter’s vector              −→ fixed effect vector

                               Mixed-effect models

                 Yi   =     XiT β + ZiT bi + εi ∼ N (XiT β, Σi )
                 bi   ∼     N (0, ∆i )      −→ these are the random
                      iid
                 εi   ∼     N (0, σ2 Λi )
                      ind

   15 / 34
Forecasting and estimation of the yield
   Corn yield estimation at the end of the year
   Corn yield seasonal forecast
   Long-term impact: yield assessment through 2060

16 / 34
Forecasting and estimation of the yield
   Corn yield estimation at the end of the year
   Corn yield seasonal forecast
   Long-term impact: yield assessment through 2060

        Début de la
    saison de croissance    Récolte
                                                     Années
                                                      2060
                           Estimations en
                            fin d’année

16 / 34
End-of-year estimation (monitoring) in the US
• Results exploitable on August
• Generalisation results only, on independent years

          M
          o
          n                                               Correlation
          i                                               between obser-
          t                                               vations and
          o                                               estimation of the
          r                                               yield anomaly
          i
          n                                                Corr = 0.53
          g

• Good spatial coherency, provides a weather-sensitivity information
17 / 34
End-of-year estimation in Virginia

                                             Model

Monitoring mode in a Virginia district for the yield anomaly estima-
tion (left) and yield (right).

 18 / 34
End-of-year estimation in Virginia
                          saturation

                                             Model

Monitoring mode in a Virginia district for the yield anomaly estima-
tion (left) and yield (right).

 18 / 34
End-of-year estimation in Virginia
                          saturation

                                             Model

                                                               CorrUSDA =0.95

Monitoring mode in a Virginia district for the yield anomaly estima-
tion (left) and yield (right).

 18 / 34
Forecasting and estimation of the yield
   Corn yield estimation at the end of the year
   Corn yield seasonal forecast
   Long-term impact: yield assessment through 2060

        Début de la
    saison de croissance                  Récolte
                                                     Années
                                                      2060
                Prévisions saisonnières

19 / 34
J

on (W)   Seasonal forecast over the US
                                    u
                     Configuration (I)
                                    n
                   Configuration (W) e   Configuration (I)
                                         • Different predictors depending on the
           M
                                            forecasting month
           a
           y                       J     Correlation map between the observed
                                   u     and forecasted yield anomalies, from
                                         May to August.
                                   l
                                   y

           J
           u
           n
           e

           J                                   A
           u                                   u
                                               g
           l                                   u
           y                                   s
                                               t

         20 / 34
J

on (W)   Seasonal forecast over the US
                                    u
                     Configuration (I)
                                    n
                   Configuration (W) e           Configuration (I)
                                                 • Different predictors depending on the
           M
                                                    forecasting month
           a
           y                       J         Correlation map between the observed
                                   u         and forecasted yield anomalies, from
                                             May to August.
                                   l
                                   y

           J
           u
           n
           e

                                   Corr = 0.30

           J                                           A
           u                                           u
                                                       g
           l                                           u
           y                                           s
                                                       t
                                                                         Corr = 0.53
                                  Corr = 0.50
         20 / 34
J
                                   u
on (W)   Seasonal forecast over the US
                                   n
                     Configuration (I)
                                   e
                   Configuration (W)             Configuration (I)

                                                 • Different predictors depending on the
           M                                        forecasting month
           a                           J
                                                Monthly forecasts, but methodol-
           y                           u
                                       l
                                       y     ogy applicable at the weekly level

           J
           u
           n
           e

                                   Corr = 0.30
                                                       A
           J                                           u
           u                                           g
           l                                           u
                                                       s
           y                                           t

                                                                         Corr = 0.53
                                   Corr = 0.50
         20 / 34
Seasonal forecasts over Virginia

            Model

21 / 34
Seasonal forecasts over Virginia

                   Model

Corr 2 = 58%

  ,→ Forecasts possible starting in July, for weather-sensitive States like
  Virginia
   21 / 34
Two published papers:

• Mathieu, J.A. and Aires, F. (2016)
  Statistical weather impact models: an application of neural network and
  mixed-effects forn corn production over the United-States,
  Journal of applied Meteorology and Climatology, 55 (11)

• Mathieu, J.A. and Aires, F. (2018)
  Impact of agro-climatic indices to improve crop yield forecasting,
  Agricultural and forest Meteorology, 15 (30)

 22 / 34
Forecasting and estimation of the yield
   Corn yield estimation at the end of the year
   Corn yield seasonal forecast
   Long-term impact: yield assessment through 2060

        Début de la
    saison de croissance    Récolte
                                                            Années
                                                             2060
                                                      Prévisions
                                                     à long terme

23 / 34
Long-term yield forecasts through 2060

• Impact on agriculture potentially important
• Some important limitations:
   ◦ Uncertainty on the climate evolution,
   ◦ Uncertainty on the agriculture practice (we do not extrapolate
          long-term trend),
   ◦ Uncertainty of the joint evolution of the non-weather factors

24 / 34
Long-term yield forecasts through 2060

• Impact on agriculture potentially important
• Some important limitations:

24 / 34
Long-term yield forecasts through 2060

• Impact on agriculture potentially important
• Some important limitations:

• Describe the global trend of the yield anomalies and their spatial
  distribution.
• Use of a mixed-effect model with six simple weather inputs (Tmay,
  Tjune, Tjuly, Taugust, Pjuly and Paugust) easy to obtain from climate
  models.

24 / 34
contrast, there is a decrease in radiative forcing, for RCP4.5 and RCP2.6, of 0.07 and 0.2 W/m2,

Estimate the future climate: RCP scenarios of the GIEC
                              1000                                                    5000                                                    500

                               900

                                                                                                                   N O concentrations (ppb)
    CO2 concentration (ppm)

                                                            CH4 concentration (ppb)
                                                                                      4000                                                    400
                               800
                                                                                      3000                                                    300
                               700

                               600                                                    2000                                                    200              RCP2.6
                                                                                                                                                       •       RCP4.5
                               500                                                                                                                             RCP6
                                                                                      1000                                                    100      •       RCP8.5

                                                                                                                                    2
                               400

                               300                                                      0                                                      0
                                 2000 2025 2050 2075 2100                               2000 2025 2050 2075 2100                               2000 2025 2050 2075 2100

          Trends in greenhouse gases contraction [Clarke et al. 2010]
    Fig. 9 Trends in concentrations of greenhouse gases. Grey area indicates the 98th and 90th percentiles
    (light/dark grey) of the recent EMF-22 study (Clarke et al. 2010)

,→ Compare the evolution of the yield anomalies following the RCP
                                                       4.5 & RCP 8.5 scenarios

25 / 34
contrast, there is a decrease in radiative forcing, for RCP4.5 and RCP2.6, of 0.07 and 0.2 W/m2,

Estimate the future climate: RCP scenarios of the GIEC
                              1000                                                    5000                                                    500

                               900

                                                                                                                   N O concentrations (ppb)
    CO2 concentration (ppm)

                                                            CH4 concentration (ppb)
                                                                                      4000                                                    400
                               800
                                                                                      3000                                                    300
                               700

                               600                                                    2000                                                    200              RCP2.6
                                                                                                                                                       •       RCP4.5
                               500                                                                                                                             RCP6
                                                                                      1000                                                    100      •       RCP8.5

                                                                                                                                    2
                               400

                               300                                                      0                                                      0
                                 2000 2025 2050 2075 2100                               2000 2025 2050 2075 2100                               2000 2025 2050 2075 2100

          Trends in greenhouse gases contraction [Clarke et al. 2010]
    Fig. 9 Trends in concentrations of greenhouse gases. Grey area indicates the 98th and 90th percentiles
    (light/dark grey) of the recent EMF-22 study (Clarke et al. 2010)

,→ Compare the evolution of the yield anomalies following the RCP
                                                       4.5 & RCP 8.5 scenarios

• Global simulations of the climate CMIP 5 of IPSL
• Weather conditions too different after 2060:
  - unreliable extrapolation of the long-term trend (agriculture practice)
  - temperatures too different compared to record used to calibrate model
25 / 34
Yield temporal evolution

                                               Alabama                                                                          Indiana                                                                        Missouri
                                                    rcp45                                                                           rcp45                                                                           rcp45
                              0.25                                                                            0.25                                                                            0.25
 Anomalies de rendement (%)

                                                                                 Anomalies de rendement (%)

                                                                                                                                                                 Anomalies de rendement (%)
                                 0                                                                               0                                                                               0

                              -0.25                                                                           -0.25                                                                           -0.25

                               -0.5                                                                            -0.5                                                                            -0.5

                              -0.75                                                                           -0.75                                                                           -0.75

                                -1                                                                              -1                                                                              -1
                                      2010   2020   2030    2040   2050   2060                                        2010   2020   2030    2040   2050   2060                                        2010   2020   2030    2040   2050   2060

                                      South Carolina                                                                     South Dakota                                                                           Virginia
                                                    Années                                                                          Années                                                                          Années

                                                    rcp45                                                                           rcp45                                                                           rcp45
                              0.25                                                                            0.25                                                                            0.25
 Anomalies de rendement (%)

                                                                                 Anomalies de rendement (%)

                                                                                                                                                                 Anomalies de rendement (%)
                                 0                                                                               0                                                                               0

                              -0.25                                                                           -0.25                                                                           -0.25

                               -0.5                                                                            -0.5                                                                            -0.5

                              -0.75                                                                           -0.75                                                                           -0.75

                                -1                                                                              -1                                                                              -1
                                      2010   2020   2030    2040   2050   2060                                        2010   2020   2030    2040   2050   2060                                        2010   2020   2030    2040   2050   2060
                                                    Années                                                                          Années                                                                          Années

26 / 34
Yield temporal evolution

                                               Alabama                                                                          Indiana                                                                        Missouri
                                                    rcp45                                                                           rcp45                                                                           rcp45
                              0.25                                                                            0.25                                                                            0.25
 Anomalies de rendement (%)

                                                                                 Anomalies de rendement (%)

                                                                                                                                                                 Anomalies de rendement (%)
                                 0                                                                               0                                                                               0

                              -0.25                                                                           -0.25                                                                           -0.25

                               -0.5                                                                            -0.5                                                                            -0.5

                              -0.75                                                                           -0.75                                                                           -0.75

                                -1                                                                              -1                                                                              -1
                                      2010   2020   2030    2040   2050   2060                                        2010   2020   2030    2040   2050   2060                                        2010   2020   2030    2040   2050   2060

                                      South Carolina                                                                     South Dakota                                                                           Virginia
                                                    Années                                                                          Années                                                                          Années

                                                    rcp45                                                                           rcp45                                                                           rcp45
                              0.25                                                                            0.25                                                                            0.25
 Anomalies de rendement (%)

                                                                                 Anomalies de rendement (%)

                                                                                                                                                                 Anomalies de rendement (%)
                                 0                                                                               0                                                                               0

                              -0.25                                                                           -0.25                                                                           -0.25

                               -0.5                                                                            -0.5                                                                            -0.5

                              -0.75                                                                           -0.75                                                                           -0.75

                                -1                                                                              -1                                                                              -1
                                      2010   2020   2030    2040   2050   2060                                        2010   2020   2030    2040   2050   2060                                        2010   2020   2030    2040   2050   2060
                                                    Années                                                                          Années                                                                          Années

• Non-homogeneous impact, close scenarios
26 / 34
Spatial distribution of the yield evolution
              2020-2030         2030-2040

              2040-2050         2050-2060

            Mean yield anomaly per decade (RCP 4.5)

27 / 34
Spatial distribution of the yield evolution
              2020-2030          2030-2040

              2040-2050          2050-2060

            Mean yield anomaly per decade (RCP 4.5)
          ,→ stress the need for adaptation strategies
27 / 34
The low yield extreme case
   The objectives
   Extreme classification results

27 / 34
The objectives
• Increased difficulties, classification instead of regression
• 5% of the years are extreme (anoyield < −0.45)
• We focus on yield extreme probability estimation
• Classification by neural network

28 / 34
The objectives
• Increased difficulties, classification instead of regression
• 5% of the years are extreme (anoyield < −0.45)
• We focus on yield extreme probability estimation
• Classification by neural network
• Confusion matrix as quality measure for the neural network
                                      Prédits                   Taux
                            Positifs (1)   Négatifs (0)   TVP      TFN
    Observés Positifs (1)       VP              FN        TFP      TVN
   Observés Négatifs (0)        FP              VN

                            Extreme=1, Non-extreme=0

28 / 34
The objectives
• Increased difficulties, classification instead of regression
• 5% of the years are extreme (anoyield < −0.45)
• We focus on yield extreme probability estimation
• Classification by neural network
• Confusion matrix as quality measure for the neural network
                                      Prédits                   Taux
                            Positifs (1)   Négatifs (0)   TVP      TFN
    Observés Positifs (1)       VP              FN        TFP      TVN
   Observés Négatifs (0)        FP              VN

                            Extreme=1, Non-extreme=0

                                                           Maximisation of TVP
• Maximize TVP without too many false alarms ⇒
                                                                s.c. TFP
Extreme=1,   Non-extreme=0
29/36   Extreme=1,   Non-extreme=0
29/36   Extreme=1,   Non-extreme=0
29/36   NN output information richer than its threshold decision
The NN output
                       Alabama                                Illinois
  0.5                                    0.5
         corr = 0.81                            corr = 0.85
    0                                      0

  -0.5                                   -0.5                                      Times series of
                                                                                   the yield anoma-
                                                               Yield anomaly
                                                               NN output x(-1)

                                                                                   lies and of the
   -1                                     -1
    1980        1990       2000   2010     1980        1990        2000     2010

  0.5
                   New Jersey
                                         0.5
                                                        South Carolina
                                                                                   NNoutput×(−1) for
                                                                                   5 distant counties.
         corr = 0.76                            corr = 0.77
    0                                      0

  -0.5                                   -0.5

   -1                                     -1
    1980        1990       2000   2010     1980        1990        2000     2010
                   Tennessee                                  Years
  0.5
         corr = 0.84
    0                                                                                TFP = 15%
  -0.5                                                                               TVP = 71%
   -1
    1980        1990       2000   2010
                       Years

30 / 34
The NN output
                       Alabama                                Illinois
  0.5                                    0.5
         corr = 0.81                            corr = 0.85
    0                                      0

                                                                                   The NN behaves like
  -0.5                                   -0.5
                                                               Yield anomaly
                                                               NN output x(-1)
   -1
    1980        1990       2000   2010
                                          -1
                                           1980        1990        2000     2010   a yield loss index.
                   New Jersey                           South Carolina
  0.5                                    0.5
         corr = 0.76                            corr = 0.77
    0                                      0

  -0.5                                   -0.5

   -1                                     -1
    1980        1990       2000   2010     1980        1990        2000     2010
                   Tennessee                                  Years
  0.5
         corr = 0.84
    0                                                                                 TFP = 15%
  -0.5                                                                                TVP = 71%
   -1
    1980        1990       2000   2010
                       Years

30 / 34
The classification in terms of distributions

          The PDF of the yield anomalies for the samples classified as:
• (1) "extremes" with high confidence (yellow),

31 / 34
The classification in terms of distributions

          The PDF of the yield anomalies for the samples classified as:
• (1) "extremes" with high confidence (yellow),
• (2) "non-extremes" with high confidence (blue),

31 / 34
The classification in terms of distributions

          The PDF of the yield anomalies for the samples classified as:
• (1) "extremes" with high confidence (yellow),
• (2) "non-extremes" with high confidence (blue),
• (3) ambiguous (red)

31 / 34
Conclusion on the extreme case

• Classification is difficult, less studied in the litterature
• Simple classificateur (SPEIjuly, Tjuly, SPEIjune, Taugust),
   non-linear
• 71% of yield extremes well classified
• The NN offers a yield loss extreme index
• This model can anticipate low yield extremes in August
• Some moderate negative anomalies are too ambiguous to be classified (false
   alarms)
                                ——————–

Mathieu, J.A. and Aires, F. (2018) : Using Neural Network classifier approach for
statistically forecasting extreme corn yield losses in Eastern USA, Earth and Space
Sciences, in press.

 32 / 34
Conclusions and perspectives

32 / 34
Conclusions
• Measuring the weather-sensitivity
  → which weather variables are related to yield in a quantitative way
  → where and when weather sensitivity
  → why: need expert-knowledge

33 / 34
Conclusions
• Measuring the weather-sensitivity
• Real assessment of the model ability
  → low number of agriculture data
  → true independence of learning, testing and generalisation datasets
  → specific methodologies: Leave-one-out, Monte-Carlo cross-validation
  → need for metrics!! impose standard practice

33 / 34
Conclusions
• Measuring the weather-sensitivity
• Real assessment of the model ability
• The limitation is the data, not the algorithms: Simple models!
  → low number of agriculture data, the weather explains only a part of
  yield variability
  → classical bias-variance dilemma
  → complex agro-climatic indices not particularly necessary
  → avoid over-training: limited number of parameters and of inputs
  → adapt statistical methodology to avoid over-training

33 / 34
Conclusions
• Measuring the weather-sensitivity
• Real assessment of the model ability
• The limitation is the data, not the algorithms: Simple models!
• The seasonal forecasts and the year-end estimations
  → estimations using mixed-effect models: need to use local specificities
  → the temperature and precipitation information explain 1/3 of the
  variability of corn yield in the US
  → for 1 state over 3, > 60%
  → results coherent with recent studies at global scale:

                        Deepak et al. 2015 (Nature),
                          Lobell et al. 2007 (ERL)

  → seasonal forecast possible starting in July (e.g. 58% in Virginia)

33 / 34
Conclusions
• Measuring the weather-sensitivity
• Real assessment of the model ability
• The limitation is the data, not the algorithms: Simple models!
• The seasonal forecasts and the year-end estimations
• Long-term impact
  → information about the yield evolution
  → localisation of the states that will have biggest impact
  → yield reduction by 50% for the most sensitive states in 2060 (RCP 4.5)
  (assuming constant practice!)
  → Northern States not really impacted (-2% for the RCP 4.5 scenario)

33 / 34
Conclusions
• Measuring the weather-sensitivity
• Real assessment of the model ability
• The limitation is the data, not the algorithms: Simple models!
• The seasonal forecasts and the year-end estimations
• Long-term impact
• Extreme yield case
  → classification and detection of the extreme years
  → only 4 predictors used
  → 71% of the low extremes are well detected
  → again, the information content of the selected predictors is the limiting
  factor, not the methodology

33 / 34
Perspectives
Methodological improvements
• Improvement of the yield model
    additional inputs: satellites (NDVI, soil moisture, fluorescence)
    use of mechanistic model information (e.g. hybrid model)
    collaboration with climate modelers (SPEI, ensemble runs,...)
• Improvement of the extreme classification
    choice of the extreme threshold depending on location
    choice of the decision threshold
    application to the next 50 years (climate simulations) to assess frequency trends

Futur studies
• Application to other continents (Europe), other crops
• Finer temporal resolution (from monthly to weekly)
• Development of an online automatic platform
• Links with financial or insurance solutions to mitigate risks, protection agains adverse
  conditions
 34 / 34
You can also read