Statistical impact models in agriculture: monitoring, seasonal, long-term and extreme forecastings
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Statistical impact models in agriculture: monitoring, seasonal, long-term and extreme forecastings J. MATHIEU and F. AIRES LERMA/IPSL at Paris Observatory December 7th 2018
Weather-sensitivity and impact models Databases and methodology Forecasting and estimation of the yield The low yield extreme case Conclusions and perspectives 2 / 34
• Estimate the weather impact on crop yield • Can we explain part of the crop yield variability based on indirect weather information? No satellite data used (will be considered in the futur, depending on application) 3 / 34
Weather-based impact models Model that represents the effects of the weather (observations, analysis, forecasts) on some socio-economic activity. 4 / 34
Weather-based impact models Model that represents the effects of the weather (observations, analysis, forecasts) on some socio-economic activity. 1. Physical, agronomic, dynamic, process-based: ◦ Advantages: description of the processes, can extrapolate to another climate... ◦ Drawbacks: complex, auxiliary data necessary (e.g. soil type, properties), numerous parameters 2. Statistical models: ◦ Advantages: data-driven, simplicity, flexibility, low development cost ◦ Drawbacks: less informative in terms of causal relationships 4 / 34
Weather-based impact models Model that represents the effects of the weather (observations, analysis, forecasts) on some socio-economic activity. 1. Physical, agronomic, dynamic, process-based: ◦ Advantages: description of the processes, can extrapolate to another climate... ◦ Drawbacks: complex, auxiliary data necessary (e.g. soil type, properties), numerous parameters 2. Statistical models: ◦ Advantages: data-driven, simplicity, flexibility, low development cost ◦ Drawbacks: less informative in terms of causal relationships −→ Only a part of the crop yield variability can be explained by the weather information (agriculture practice, deseases, irrigation are not taken into account!!!) 4 / 34
Why forecasting crop yield? • Monitoring: estimation at the end of the year • Seasonal forecasting: • Long-term forecasts: Début de la saison de croissance Récolte Années 2060
Why forecasting crop yield? • Monitoring: estimation at the end of the year - Analyse weather sensitivities - Monitoring at the global scale with no delays, yield insurance - Less demanding than field measurements sampling strategies or surveys • Seasonal forecasting: • Long-term forecasts: Début de la saison de croissance Récolte Années 2060 Estimations en fin d’année
Why forecasting crop yield? • Monitoring: estimation at the end of the year - Analyse weather sensitivities - Monitoring at the global scale with no delays, yield insurance - Less demanding than field measurements sampling strategies or surveys • Seasonal forecasting: - Help field management at the shorter time scales - Better water management - Better stock management • Long-term forecasts: Début de la saison de croissance Récolte Années 2060 Prévisions saisonnières Estimations en fin d’année
Why forecasting crop yield? • Monitoring: estimation at the end of the year - Analyse weather sensitivities - Monitoring at the global scale with no delays, yield insurance - Less demanding than field measurements sampling strategies or surveys • Seasonal forecasting: - Help field management at the shorter time scales - Better water management - Better stock management • Long-term forecasts: - Anticipate the next 50 year’s evolution - Choice of the crop and agriculture practices - Investment on long-term infrastructures Début de la saison de croissance Récolte Années 2060 Prévisions saisonnières Estimations en Prévisions fin d’année à long terme
Why forecasting crop yield? • Monitoring: estimation at the end of the year - Analyse weather sensitivities - Monitoring at the global scale with no delays, yield insurance - Less demanding than field measurements sampling strategies or surveys • Seasonal forecasting: - Help field management at the shorter time scales The application - Better water management drives the choice - Better stock management of predictors. • Long-term forecasts: - Anticipate the next 50 year’s evolution - Choice of the crop and agriculture practices - Investment on long-term infrastructures Début de la saison de croissance Récolte Années 2060 Prévisions saisonnières Estimations en Prévisions fin d’année à long terme
Challenges • Difficulties related to agriculture data: not enough data, spatially correlated −→ complex statistical learning • Stationarity of data not warranted • Do not include the impact of several factors not related to weather (complex or unknown information) Two objectives: • Obtain yield forecasts as precise as possible, obtain weather sensitivity • BUT assess realistic model quality!!! (careful with over-training) 6 / 34
Challenges • Difficulties related to agriculture data: not enough data, spatially correlated −→ complex statistical learning • Stationarity of data not warranted • Do not include the impact of several factors not related to weather (complex or unknown information) Complexifying the models might not be useful because the limitation comes from the data, not the algorithm Two objectives: • Obtain yield forecasts as precise as possible, obtain weather sensitivity • BUT assess realistic model quality!!! (careful with over-training) 6 / 34
Databases and methodology 6 / 34
La base de données de l’USDA (1920-2013) USDA database (1920-2013) 200 200 Alabama Texas 1975 Corn yield (bushel/acre) Corn yield (bushel/acre) 150 150 • the corn 100 100 • at the county scale 50 50 0 0 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Years Years 200 200 200 200 Minnesota Iowa Rendement de maïs par cantons,150aux États-Unis (bushel/acre) Alabama Texas Corn yield (bushel/acre) yield(bushel/acre) 150 Corn yield (bushel/acre) 150 150 100 100 100 100 Cornyield 9 / 47 Corn 50 50 50 50 0 00 0 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1920 1920 1930 1930 1940 1940 1950 1950 1960 1960 1970 1970 1980 1980 1990 1990 2000 2000 2010 2010 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Years Years Years Years 200 200 Minnesota Iowa Corn yield (bushel/acre) Corn yield (bushel/acre) 150 150 100 100 7 / 34 50 50
La base de données de l’USDA (1920-2013) USDA database (1920-2013) 200 200 Alabama Texas 1990 Corn yield (bushel/acre) Corn yield (bushel/acre) 150 150 • the corn 100 100 • at the county scale 50 50 0 0 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Years Years 200 200 200 200 Minnesota Iowa Rendement de maïs par cantons,150aux États-Unis (bushel/acre) Alabama Texas Corn yield (bushel/acre) yield(bushel/acre) 150 Corn yield (bushel/acre) 150 150 100 100 100 100 Cornyield 9 / 47 Corn 50 50 50 50 0 00 0 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1920 1920 1930 1930 1940 1940 1950 1950 1960 1960 1970 1970 1980 1980 1990 1990 2000 2000 2010 2010 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Years Years Years Years 200 200 Minnesota Iowa Corn yield (bushel/acre) Corn yield (bushel/acre) 150 150 100 100 7 / 34 50 50
La base de données de l’USDA (1920-2013) USDA database (1920-2013) 200 200 Alabama Texas 2013 Corn yield (bushel/acre) Corn yield (bushel/acre) 150 150 • the corn 100 100 • at the county scale 50 50 0 0 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Years Years 200 200 200 200 Minnesota Iowa Rendement de maïs par cantons,150aux États-Unis (bushel/acre) Alabama Texas Corn yield (bushel/acre) yield(bushel/acre) 150 Corn yield (bushel/acre) 150 150 100 100 100 100 Cornyield 9 / 47 Corn 50 50 50 50 0 00 0 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1920 1920 1930 1930 1940 1940 1950 1950 1960 1960 1970 1970 1980 1980 1990 1990 2000 2000 2010 2010 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Years Years Years Years 200 200 Minnesota Iowa Corn yield (bushel/acre) Corn yield (bushel/acre) 150 150 100 100 7 / 34 50 50
La base de données de l’USDA (1920-2013) USDA database (1920-2013) 200 200 Alabama Texas 2013 Corn yield (bushel/acre) Corn yield (bushel/acre) 150 150 • the corn 100 100 • at the county scale 50 50 0 0 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Years Years 200 200 200 200 Minnesota Iowa Rendement de maïs par cantons,150aux États-Unis (bushel/acre) Alabama Texas Corn yield (bushel/acre) yield(bushel/acre) 150 Corn yield (bushel/acre) 150 150 100 100 100 100 Cornyield 9 / 47 Corn 50 50 50 50 0 00 0 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 1920 1920 1930 1930 1940 1940 1950 1950 1960 1960 1970 1970 1980 1980 1990 1990 2000 2000 2010 2010 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Years Years Years Years 200 200 Very important long-term trend, not related to climate change Minnesota Iowa Corn yield (bushel/acre) Corn yield (bushel/acre) 150 150 We focus on anomalies with respect to this trend 100 100 7 / 34 50 50
Weather data (1979-2013) • ERA-interim reanalyses from ECMWF • Spatial resolution of ∼80km → projected to counties Mean temperature, May 1979 Precipitation, May 1979 • Monthly data: Air temperature, precipitation, soil moisture, normalized difference precip-evapotranspiration (SPEI) Daily data: Tmin and Tmax 8 / 34
Some agro-climatic indices 60 Chapitre III - Bases de données Variables les plus courantes Unités • Date of the last frozen day in spring Pj Précipitation du jour j mm Pmois Précipitations cumulées du mois "mois" mm T avej Température moyenne du jour j oC T min +T max j T avej = 2 Tbase Seuil de température de croissance oC Tf rost Seuil de température gélive oC • Cumul of growth degree days (DJ) Tmois Température moyenne du mois "mois" oC T minj Température minimale du jour j oC T maxj Température maximale du jour j oC Indices agroclimatiques (nom et formule) CDF5 Cumul des degrés-froid durant la période d’endurcissement (po- Jour • Number of days with higher than 30◦ C tentiel d’endurcissement) F PP E−1 CDF 5 = CDF 5j j=213 0 si j = 212 temperature CDF 5j = max{0, CDF 5j−1 + DFj } sinon F P E = min{j|T minj 6 −10o C et j > 212} CDj − DJj DFj = 0 si T avej > 5o C CDj = o |T avej − 5| si T avej < 5o C 0 si T avej 6 5 C DJj = .. T avej − 5 si T avej > 5o C DGP Date du dernier gel printanier Jour julien Chapitre III - Bases de données 61 . DGPTf rost = max {j|T minj 6 Tf rost } j=1, ..., 212 FSC DJ Date de Cumul des findegré-jours de la saisond’avril de croissance à octobre Jour Degré-jours Pmax {j|T M M P 5j > 5.5o C} F SC 304 = DJ = DJj j=91 j=1, ..., 365 FU T M Date DJ j = de max fin de(T {0, cumul avej − des unités thermiques du maïs T base)} Jour DJOHIV Cumul FU T M des = min {j|T minjau6cours degré-jours −2o C} de la période froide (perte d’en- Degré-jours durcissement)j=213, ..., 365 • Total degree-days higher than 6◦ C during LSC Longueur de FP la saison de croissance hiv Jour DJOHIV = max{0, T avej } LSC = F SC − DSC Dhiv LSSG Dhiv = min{j|T Longueur de la saisonmin j 6 −15 o C} sans gel Jour the growing season GAjTf6rost o FLSSG hiv = Tmax{j|T f rost = Pmin −15 C} Tf rost − DGP DJsc OCA Cumul des degré-jours Fréquence durantsupérieures des températures la saison deàcroissance 30o C Degré- Jour jours FP SC P 365 DJsc OCA=T SU P 30 = DDj T SU P 30j j=DSC j=1 ( DSC Date de début de1 lasi saison de jcroissance T max > 30o C Jour T SU P 30 = o • Thermal unity of corn DSC = min {j|T0M M j si P 5Tjmax > 5.56C} 30o C j PGA j=1, ..., gel Date du premier 365automnal Jour julien DU T M Date de début de cumul des unités thermiques du maïs Jour P GA Tf rost = min {j|T minj 6 Tf rost } 5j > 12.8o C} .. DU T M = minj=213,{j|T M...,M365 Psc Cumul des précipitations pendant la saison de croissance mm FP SC . Psc = Pj j=DSC TMA Température minimale annuelle oC T M A = min {T minj }, j=1, ..., 365 T M M P 5j Moyenne mobile pondérée des températures moyennes quoti- diennes sur 5 jours 1/16( T avej−4 + 4.T avej−3 + 6.T avej−2 + 4.T avej−1 + T avej ) ,→ Linked to the agriculture practice T M M 5j moyenne mobile sur 5 jours de la température moyenne quoti- dienne 1/5( T avej−4 + T avej−3 + T avej−2 + T avej−1 + T avej ) ,→ Requires daily weather data UTM Cumul des unités thermiques du maïs CHU P FU TM UTM = U T Mj j=DU T M U T Mj = 1/2(Y maxj + Y minj ) 0.33(T maxj − 10) − 0.084(T maxj − 10)2 Y maxj = si T maxj > 30o C 0 si T maxj 6 10o C 1.8(T minj − 4.44) si T minj > 4.44o C Y minj = 0 si T minj 6 4.44o C 9 / 34 TABLEAU III.1 – Indices agroclimatiques utilisés dans cette thèse par ordre alphabétique. Plus de détails sont disponibles dans [Côt12]. Les dates habituelles de plantation et de 1810 récolte par état aux États-Unis sont disponibles dans [USDA10].
Databases and methodology Databases Yield estimation methodology 9 / 34
Yield estimation methodology Rendement de maïs Données météo Analyse de la tendance (Modèle mixte non linéaire) Ajout des Prédicteurs potentiels Comparaison Anomalie de rendement meilleurs (anomalies) (modèle linéaire) predicteurs Sélection de modèles Si insuffisant Information N entrées sélectionnées de groupe Modèle linéaire / Modèle Réseau de neurones mixte anoyield = yieldtrend −trend Prévision du rendement 10 / 34
Yield estimation methodology Rendement de maïs Données météo Analyse de la tendance (Modèle mixte non linéaire) Ajout des Prédicteurs potentiels Comparaison Anomalie de rendement meilleurs (anomalies) (modèle linéaire) predicteurs Sélection de modèles Si insuffisant Information N entrées sélectionnées de groupe Modèle linéaire / Modèle Réseau de neurones mixte anoyield = yieldtrend −trend Prévision du rendement 10 / 34
Yield trend • a sigmoïd and a mixed-effect model (parametric) Alabama county Texas county 200 200 Yield data Yield data 150 150 Corn yield (bu/acre) Trend from ME logistic regression Trend from ME logistic Yield (bu/acre) regression 100 100 50 50 anoyield = yieldtrend −trend 0 0 1920 1940 1960 1980 2000 2020 1920 1940 1960 1980 2000 2020 Years Years 1 1 0.5 0.5 Corn yield anomalies Corn yield anomalies 0 0 -0.5 -0.5 -1 -1 1920 1940 1960 1980 2000 2020 1920 1940 1960 1980 2000 2020 Years Years 11 / 34
Yield trend • a sigmoïd and a mixed-effect model (parametric) Alabama county Texas county 200 200 Yield data Yield data 150 150 Corn yield (bu/acre) Trend from ME logistic regression Trend from ME logistic Yield (bu/acre) regression 100 100 50 50 anoyield = yieldtrend −trend 0 0 1920 1940 1960 1980 2000 2020 1920 1940 1960 1980 2000 2020 Years Years 1 1 0.5 0.5 Corn yield anomalies Corn yield anomalies anoyield = −0.2 0 0 ,→ is the variable to estimate -0.5 -0.5 -1 -1 1920 1940 1960 1980 2000 2020 1920 1940 1960 1980 2000 2020 Years Years 11 / 34
Yield estimation methodology Rendement de maïs Données météo Analyse de la tendance (Modèle mixte non linéaire) Ajout des Prédicteurs potentiels Comparaison Anomalie de rendement meilleurs (anomalies) (modèle linéaire) predicteurs Sélection de modèles Si insuffisant Information N entrées sélectionnées de groupe Modèle linéaire / Modèle Réseau de neurones mixte Prévision du rendement 12 / 34
Weather predictor’s selection • Many redundant predictors • Several considered criteria (COR, RMSE, AIC) • An iterative and multivariate selection approach, avoiding colinearities 0.21 0.46 For the estimation at the year’s end: 0.205 0.44 0.42 Tjuly 0.2 SPEIjuly RMSE COR 0.4 0.38 0.195 SPEIjune 0.36 0.19 DJaugust 0.34 DJavril 0.32 0.185 au e SP Ijuly S SP y A ril D st ay SM er oc er D jun ul LG C ap gu b D tob m Tj O to E EI D c To D D • Small number of selected predictors 13 / 34
Weather predictor’s selection • Many redundant predictors • Several considered criteria (COR, RMSE, AIC) • An iterative and multivariate selection approach, avoiding colinearities 0.21 0.46 For the estimation at the year’s end: 0.205 0.44 0.42 Tjuly 0.2 SPEIjuly RMSE COR 0.4 0.38 0.195 SPEIjune 0.36 0.19 DJaugust 0.34 DJavril 0.32 0.185 au e SP Ijuly S SP y A ril D st ay SM er oc er D jun ul LG C ap gu b D tob m Tj O to E EI D c To D D • Small number of selected predictors 13 / 34
Weather predictor’s selection • Many redundant predictors • Several considered criteria (COR, RMSE, AIC) • An iterative and multivariate selection approach, avoiding colinearities 0.21 0.46 For the estimation at the year’s end: 0.205 0.44 0.42 Tjuly 0.2 SPEIjuly RMSE COR 0.4 0.38 0.195 SPEIjune 0.36 0.19 DJaugust 0.34 DJavril 0.32 0.185 au e SP Ijuly S SP y A ril D st ay SM er oc er D jun ul LG C ap gu b D tob m Tj O to E EI D c To D D • Small number of selected predictors 13 / 34
Yield estimation methodology Rendement de maïs Données météo Analyse de la tendance (Modèle mixte non linéaire) Ajout des Prédicteurs potentiels Comparaison Anomalie de rendement meilleurs (anomalies) (modèle linéaire) predicteurs Sélection de modèles Si insuffisant Information N entrées sélectionnées de groupe Modèle linéaire / Modèle Réseau de neurones mixte Prévision du rendement 14 / 34
Yield estimation methodology Rendement de maïs Données météo Analyse de la tendance (Modèle mixte non linéaire) Ajout des Prédicteurs potentiels Comparaison Anomalie de rendement meilleurs (anomalies) (modèle linéaire) predicteurs Sélection de modèles Si insuffisant Information N entrées sélectionnées de groupe Modèle linéaire / Modèle Réseau de neurones mixte Prévision du rendement 14 / 34
The mixed-effect models The database can be divided into m groups. Classical linear model pooling no-pooling 50 45 40 35 30 Y = PT β + ε ∀i ∈ 1, m, Yi = PiT βi + εi 25 -130 -120 -110 -100 -90 -80 -70 • P: predictor’s matrix • ε ∼ N (0, Σ): noise • β: parameter’s vector −→ fixed effect vector 15 / 34
The mixed-effect models The database can be divided into m groups. Classical linear model pooling no-pooling 50 45 40 35 30 Y = PT β + ε ∀i ∈ 1, m, Yi = PiT βi + εi 25 -130 -120 -110 -100 -90 -80 -70 • P: predictor’s matrix • ε ∼ N (0, Σ): noise • β: parameter’s vector −→ fixed effect vector Mixed-effect models Yi = XiT β + ZiT bi + εi ∼ N (XiT β, Σi ) bi ∼ N (0, ∆i ) −→ these are the random iid εi ∼ N (0, σ2 Λi ) ind 15 / 34
Forecasting and estimation of the yield Corn yield estimation at the end of the year Corn yield seasonal forecast Long-term impact: yield assessment through 2060 16 / 34
Forecasting and estimation of the yield Corn yield estimation at the end of the year Corn yield seasonal forecast Long-term impact: yield assessment through 2060 Début de la saison de croissance Récolte Années 2060 Estimations en fin d’année 16 / 34
End-of-year estimation (monitoring) in the US • Results exploitable on August • Generalisation results only, on independent years M o n Correlation i between obser- t vations and o estimation of the r yield anomaly i n Corr = 0.53 g • Good spatial coherency, provides a weather-sensitivity information 17 / 34
End-of-year estimation in Virginia Model Monitoring mode in a Virginia district for the yield anomaly estima- tion (left) and yield (right). 18 / 34
End-of-year estimation in Virginia saturation Model Monitoring mode in a Virginia district for the yield anomaly estima- tion (left) and yield (right). 18 / 34
End-of-year estimation in Virginia saturation Model CorrUSDA =0.95 Monitoring mode in a Virginia district for the yield anomaly estima- tion (left) and yield (right). 18 / 34
Forecasting and estimation of the yield Corn yield estimation at the end of the year Corn yield seasonal forecast Long-term impact: yield assessment through 2060 Début de la saison de croissance Récolte Années 2060 Prévisions saisonnières 19 / 34
J on (W) Seasonal forecast over the US u Configuration (I) n Configuration (W) e Configuration (I) • Different predictors depending on the M forecasting month a y J Correlation map between the observed u and forecasted yield anomalies, from May to August. l y J u n e J A u u g l u y s t 20 / 34
J on (W) Seasonal forecast over the US u Configuration (I) n Configuration (W) e Configuration (I) • Different predictors depending on the M forecasting month a y J Correlation map between the observed u and forecasted yield anomalies, from May to August. l y J u n e Corr = 0.30 J A u u g l u y s t Corr = 0.53 Corr = 0.50 20 / 34
J u on (W) Seasonal forecast over the US n Configuration (I) e Configuration (W) Configuration (I) • Different predictors depending on the M forecasting month a J Monthly forecasts, but methodol- y u l y ogy applicable at the weekly level J u n e Corr = 0.30 A J u u g l u s y t Corr = 0.53 Corr = 0.50 20 / 34
Seasonal forecasts over Virginia Model 21 / 34
Seasonal forecasts over Virginia Model Corr 2 = 58% ,→ Forecasts possible starting in July, for weather-sensitive States like Virginia 21 / 34
Two published papers: • Mathieu, J.A. and Aires, F. (2016) Statistical weather impact models: an application of neural network and mixed-effects forn corn production over the United-States, Journal of applied Meteorology and Climatology, 55 (11) • Mathieu, J.A. and Aires, F. (2018) Impact of agro-climatic indices to improve crop yield forecasting, Agricultural and forest Meteorology, 15 (30) 22 / 34
Forecasting and estimation of the yield Corn yield estimation at the end of the year Corn yield seasonal forecast Long-term impact: yield assessment through 2060 Début de la saison de croissance Récolte Années 2060 Prévisions à long terme 23 / 34
Long-term yield forecasts through 2060 • Impact on agriculture potentially important • Some important limitations: ◦ Uncertainty on the climate evolution, ◦ Uncertainty on the agriculture practice (we do not extrapolate long-term trend), ◦ Uncertainty of the joint evolution of the non-weather factors 24 / 34
Long-term yield forecasts through 2060 • Impact on agriculture potentially important • Some important limitations: 24 / 34
Long-term yield forecasts through 2060 • Impact on agriculture potentially important • Some important limitations: • Describe the global trend of the yield anomalies and their spatial distribution. • Use of a mixed-effect model with six simple weather inputs (Tmay, Tjune, Tjuly, Taugust, Pjuly and Paugust) easy to obtain from climate models. 24 / 34
contrast, there is a decrease in radiative forcing, for RCP4.5 and RCP2.6, of 0.07 and 0.2 W/m2, Estimate the future climate: RCP scenarios of the GIEC 1000 5000 500 900 N O concentrations (ppb) CO2 concentration (ppm) CH4 concentration (ppb) 4000 400 800 3000 300 700 600 2000 200 RCP2.6 • RCP4.5 500 RCP6 1000 100 • RCP8.5 2 400 300 0 0 2000 2025 2050 2075 2100 2000 2025 2050 2075 2100 2000 2025 2050 2075 2100 Trends in greenhouse gases contraction [Clarke et al. 2010] Fig. 9 Trends in concentrations of greenhouse gases. Grey area indicates the 98th and 90th percentiles (light/dark grey) of the recent EMF-22 study (Clarke et al. 2010) ,→ Compare the evolution of the yield anomalies following the RCP 4.5 & RCP 8.5 scenarios 25 / 34
contrast, there is a decrease in radiative forcing, for RCP4.5 and RCP2.6, of 0.07 and 0.2 W/m2, Estimate the future climate: RCP scenarios of the GIEC 1000 5000 500 900 N O concentrations (ppb) CO2 concentration (ppm) CH4 concentration (ppb) 4000 400 800 3000 300 700 600 2000 200 RCP2.6 • RCP4.5 500 RCP6 1000 100 • RCP8.5 2 400 300 0 0 2000 2025 2050 2075 2100 2000 2025 2050 2075 2100 2000 2025 2050 2075 2100 Trends in greenhouse gases contraction [Clarke et al. 2010] Fig. 9 Trends in concentrations of greenhouse gases. Grey area indicates the 98th and 90th percentiles (light/dark grey) of the recent EMF-22 study (Clarke et al. 2010) ,→ Compare the evolution of the yield anomalies following the RCP 4.5 & RCP 8.5 scenarios • Global simulations of the climate CMIP 5 of IPSL • Weather conditions too different after 2060: - unreliable extrapolation of the long-term trend (agriculture practice) - temperatures too different compared to record used to calibrate model 25 / 34
Yield temporal evolution Alabama Indiana Missouri rcp45 rcp45 rcp45 0.25 0.25 0.25 Anomalies de rendement (%) Anomalies de rendement (%) Anomalies de rendement (%) 0 0 0 -0.25 -0.25 -0.25 -0.5 -0.5 -0.5 -0.75 -0.75 -0.75 -1 -1 -1 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060 South Carolina South Dakota Virginia Années Années Années rcp45 rcp45 rcp45 0.25 0.25 0.25 Anomalies de rendement (%) Anomalies de rendement (%) Anomalies de rendement (%) 0 0 0 -0.25 -0.25 -0.25 -0.5 -0.5 -0.5 -0.75 -0.75 -0.75 -1 -1 -1 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060 Années Années Années 26 / 34
Yield temporal evolution Alabama Indiana Missouri rcp45 rcp45 rcp45 0.25 0.25 0.25 Anomalies de rendement (%) Anomalies de rendement (%) Anomalies de rendement (%) 0 0 0 -0.25 -0.25 -0.25 -0.5 -0.5 -0.5 -0.75 -0.75 -0.75 -1 -1 -1 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060 South Carolina South Dakota Virginia Années Années Années rcp45 rcp45 rcp45 0.25 0.25 0.25 Anomalies de rendement (%) Anomalies de rendement (%) Anomalies de rendement (%) 0 0 0 -0.25 -0.25 -0.25 -0.5 -0.5 -0.5 -0.75 -0.75 -0.75 -1 -1 -1 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060 2010 2020 2030 2040 2050 2060 Années Années Années • Non-homogeneous impact, close scenarios 26 / 34
Spatial distribution of the yield evolution 2020-2030 2030-2040 2040-2050 2050-2060 Mean yield anomaly per decade (RCP 4.5) 27 / 34
Spatial distribution of the yield evolution 2020-2030 2030-2040 2040-2050 2050-2060 Mean yield anomaly per decade (RCP 4.5) ,→ stress the need for adaptation strategies 27 / 34
The low yield extreme case The objectives Extreme classification results 27 / 34
The objectives • Increased difficulties, classification instead of regression • 5% of the years are extreme (anoyield < −0.45) • We focus on yield extreme probability estimation • Classification by neural network 28 / 34
The objectives • Increased difficulties, classification instead of regression • 5% of the years are extreme (anoyield < −0.45) • We focus on yield extreme probability estimation • Classification by neural network • Confusion matrix as quality measure for the neural network Prédits Taux Positifs (1) Négatifs (0) TVP TFN Observés Positifs (1) VP FN TFP TVN Observés Négatifs (0) FP VN Extreme=1, Non-extreme=0 28 / 34
The objectives • Increased difficulties, classification instead of regression • 5% of the years are extreme (anoyield < −0.45) • We focus on yield extreme probability estimation • Classification by neural network • Confusion matrix as quality measure for the neural network Prédits Taux Positifs (1) Négatifs (0) TVP TFN Observés Positifs (1) VP FN TFP TVN Observés Négatifs (0) FP VN Extreme=1, Non-extreme=0 Maximisation of TVP • Maximize TVP without too many false alarms ⇒ s.c. TFP
Extreme=1, Non-extreme=0
29/36 Extreme=1, Non-extreme=0
29/36 Extreme=1, Non-extreme=0
29/36 NN output information richer than its threshold decision
The NN output Alabama Illinois 0.5 0.5 corr = 0.81 corr = 0.85 0 0 -0.5 -0.5 Times series of the yield anoma- Yield anomaly NN output x(-1) lies and of the -1 -1 1980 1990 2000 2010 1980 1990 2000 2010 0.5 New Jersey 0.5 South Carolina NNoutput×(−1) for 5 distant counties. corr = 0.76 corr = 0.77 0 0 -0.5 -0.5 -1 -1 1980 1990 2000 2010 1980 1990 2000 2010 Tennessee Years 0.5 corr = 0.84 0 TFP = 15% -0.5 TVP = 71% -1 1980 1990 2000 2010 Years 30 / 34
The NN output Alabama Illinois 0.5 0.5 corr = 0.81 corr = 0.85 0 0 The NN behaves like -0.5 -0.5 Yield anomaly NN output x(-1) -1 1980 1990 2000 2010 -1 1980 1990 2000 2010 a yield loss index. New Jersey South Carolina 0.5 0.5 corr = 0.76 corr = 0.77 0 0 -0.5 -0.5 -1 -1 1980 1990 2000 2010 1980 1990 2000 2010 Tennessee Years 0.5 corr = 0.84 0 TFP = 15% -0.5 TVP = 71% -1 1980 1990 2000 2010 Years 30 / 34
The classification in terms of distributions The PDF of the yield anomalies for the samples classified as: • (1) "extremes" with high confidence (yellow), 31 / 34
The classification in terms of distributions The PDF of the yield anomalies for the samples classified as: • (1) "extremes" with high confidence (yellow), • (2) "non-extremes" with high confidence (blue), 31 / 34
The classification in terms of distributions The PDF of the yield anomalies for the samples classified as: • (1) "extremes" with high confidence (yellow), • (2) "non-extremes" with high confidence (blue), • (3) ambiguous (red) 31 / 34
Conclusion on the extreme case • Classification is difficult, less studied in the litterature • Simple classificateur (SPEIjuly, Tjuly, SPEIjune, Taugust), non-linear • 71% of yield extremes well classified • The NN offers a yield loss extreme index • This model can anticipate low yield extremes in August • Some moderate negative anomalies are too ambiguous to be classified (false alarms) ——————– Mathieu, J.A. and Aires, F. (2018) : Using Neural Network classifier approach for statistically forecasting extreme corn yield losses in Eastern USA, Earth and Space Sciences, in press. 32 / 34
Conclusions and perspectives 32 / 34
Conclusions • Measuring the weather-sensitivity → which weather variables are related to yield in a quantitative way → where and when weather sensitivity → why: need expert-knowledge 33 / 34
Conclusions • Measuring the weather-sensitivity • Real assessment of the model ability → low number of agriculture data → true independence of learning, testing and generalisation datasets → specific methodologies: Leave-one-out, Monte-Carlo cross-validation → need for metrics!! impose standard practice 33 / 34
Conclusions • Measuring the weather-sensitivity • Real assessment of the model ability • The limitation is the data, not the algorithms: Simple models! → low number of agriculture data, the weather explains only a part of yield variability → classical bias-variance dilemma → complex agro-climatic indices not particularly necessary → avoid over-training: limited number of parameters and of inputs → adapt statistical methodology to avoid over-training 33 / 34
Conclusions • Measuring the weather-sensitivity • Real assessment of the model ability • The limitation is the data, not the algorithms: Simple models! • The seasonal forecasts and the year-end estimations → estimations using mixed-effect models: need to use local specificities → the temperature and precipitation information explain 1/3 of the variability of corn yield in the US → for 1 state over 3, > 60% → results coherent with recent studies at global scale: Deepak et al. 2015 (Nature), Lobell et al. 2007 (ERL) → seasonal forecast possible starting in July (e.g. 58% in Virginia) 33 / 34
Conclusions • Measuring the weather-sensitivity • Real assessment of the model ability • The limitation is the data, not the algorithms: Simple models! • The seasonal forecasts and the year-end estimations • Long-term impact → information about the yield evolution → localisation of the states that will have biggest impact → yield reduction by 50% for the most sensitive states in 2060 (RCP 4.5) (assuming constant practice!) → Northern States not really impacted (-2% for the RCP 4.5 scenario) 33 / 34
Conclusions • Measuring the weather-sensitivity • Real assessment of the model ability • The limitation is the data, not the algorithms: Simple models! • The seasonal forecasts and the year-end estimations • Long-term impact • Extreme yield case → classification and detection of the extreme years → only 4 predictors used → 71% of the low extremes are well detected → again, the information content of the selected predictors is the limiting factor, not the methodology 33 / 34
Perspectives Methodological improvements • Improvement of the yield model additional inputs: satellites (NDVI, soil moisture, fluorescence) use of mechanistic model information (e.g. hybrid model) collaboration with climate modelers (SPEI, ensemble runs,...) • Improvement of the extreme classification choice of the extreme threshold depending on location choice of the decision threshold application to the next 50 years (climate simulations) to assess frequency trends Futur studies • Application to other continents (Europe), other crops • Finer temporal resolution (from monthly to weekly) • Development of an online automatic platform • Links with financial or insurance solutions to mitigate risks, protection agains adverse conditions 34 / 34
You can also read