RSME Springer Series Volume 6
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
RSME Springer Series Volume 6 Editors-in-Chief Joaquín Pérez, Departamento de Geometría y Topología, University of Granada, Granada, Spain Series Editors Nicolas Andruskiewitsch, FaMAF - CIEM (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina María Emilia Caballero, Instituto de Matemáticas, Universidad Nacional Autónoma de México, México, Mexico Pablo Mira, Departamento de Matematica Aplicada y Estadistica, Universidad Politécnica de Cartagena, Cartagena, Spain Timothy G. Myers, Centre de Recerca Matemàtica, Barcelona, Spain Marta Sanz-Solé, Department of Mathematics and Informatics, Barcelona Graduate School of Mathematics (BGSMath), Universitat de Barcelona, Barcelona, Spain Karl Schwede, Department of Mathematics, University of Utah, Salt Lake City, UT, USA
As of 2015, RSME - Real Sociedad Matemática Española - and Springer cooperate in order to publish works by authors and volume editors under the auspices of a co-branded series of publications including advanced textbooks, Lecture Notes, collections of surveys resulting from international workshops and Summer Schools, SpringerBriefs, monographs as well as contributed volumes and conference pro- ceedings. The works in the series are written in English only, aiming to offer high level research results in the fields of pure and applied mathematics to a global readership of students, researchers, professionals, and policymakers. More information about this series at http://www.springer.com/series/13759
Rubén Figueroa Sestelo • Rodrigo López Pouso • Jorge Rodríguez López Degree Theory for Discontinuous Operators Applications to Discontinuous Differential Equations
Rubén Figueroa Sestelo Rodrigo López Pouso IES Pedras Rubias Department of Statistics, Mathematical Salceda de Caselas Analysis and Optimization, Faculty of Pontevedra, Spain Mathematics University of Santiago de Compostela Santiago de Compostela La Coruña, Spain Jorge Rodríguez López Department of Statistics, Mathematical Analysis and Optimization, Faculty of Mathematics University of Santiago de Compostela Santiago de Compostela La Coruña, Spain ISSN 2509-8888 ISSN 2509-8896 (electronic) RSME Springer Series ISBN 978-3-030-81603-2 ISBN 978-3-030-81604-9 (eBook) https://doi.org/10.1007/978-3-030-81604-9 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
Preface This book brings together in an unified extended form the work carried out by the authors in the last few years on degree theory techniques applied to discontinu- ous differential equations. Besides many new existence results for discontinuous differential equations, the core contribution in this book is an extension of the Leray–Schauder’s degree theory which underlies our proofs. Alternative potential uses of such theory are vast: any theorem proven by means of the classical “continuous” degree theory can have its generalization through the “discontinuous” theory introduced here. Readers may get the best account of possible applications from Mawhin’s expository paper “Leray–Schauder degree: a half century of exten- sions and applications,” included in the list of references. For readability, we have split the monograph into two parts. A first part devoted to degree theory, and a second part concerning applications to discontinuous differential equations. Our new degree theory yields interesting results for discon- tinuous differential equations because it allows us to replace some typical stringent assumptions. For example, we can find in the literature many existence results for discontinuous equations with monotone right-hand sides deduced by means of fixed point theorems for monotone operators, such as Tarski’s, or Heikkilä’s well-order chains of iterations. Here we prove new fixed point theorems for discontinuous operators which need not be monotone and whose application to differential equations yield novel existence results. In this sense, this monograph provides researchers interested in Carathéodory solutions for discontinuous ODEs with a new approach, complementary to classical ones which can be found in the books by Filippov or Carl, Heikkilä, and Lakshmikantham. Santiago de Compostela, Spain Rubén Figueroa Sestelo Santiago de Compostela, Spain Rodrigo López Pouso Santiago de Compostela, Spain Jorge Rodríguez López April 2021 v
Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 1 2 Degree Theory for a Class of Discontinuous Operators . . . . . . . . . . . . . . . . . 5 2.1 A Topological Degree for Discontinuous Operators . . . . . . . . . . . . . . . . . . 6 2.2 Basic Properties of the Degree . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 10 2.3 Fixed Point Index for Discontinuous Operators . . . . . . . . . . . . . . . . . . . . . . . 17 3 Fixed Point Theorems for Some Discontinuous Operators .. . . . . . . . . . . . . 25 3.1 Schauder Type Fixed Point Theorems . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 26 3.2 Krasnosel’skiı̆’s Compression–Expansion Type Fixed Point Theorems in Cones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 27 3.3 Krasnosel’skiı̆ Type Fixed Point Theorems in Cones for Monotone Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 31 3.4 A Generalization of Leggett–Williams’ Three-Solutions Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 34 3.5 A Vectorial Version of Krasnosel’skiı̆’s Fixed Point Theorem .. . . . . . . 39 4 First Order Problems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 45 4.1 Existence Result for First Order Scalar Problems with Functional Initial Conditions . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 47 4.2 Existence Results for Non-autonomous Systems . .. . . . . . . . . . . . . . . . . . . . 57 4.3 Discontinuous First-Order Functional Boundary Value Problems .. . . 72 4.3.1 An Application to Second-Order Problems with Functional Boundary Conditions .. . . .. . . . . . . . . . . . . . . . . . . . 77 5 Second Order Problems and Lower and Upper Solutions . . . . . . . . . . . . . . 83 5.1 Existence Results on Bounded Domains . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 84 5.1.1 Existence Results via Well-Ordered Lower and Upper Solutions . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 86 5.1.2 Existence of Extremal Solutions Between the Lower and Upper Solutions . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 103 vii
viii Contents 5.1.3 Existence Results via Non-ordered Lower and Upper Solutions . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 108 5.1.4 Multiplicity Results . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 113 5.2 Existence Results on Unbounded Domains . . . . . . . .. . . . . . . . . . . . . . . . . . . . 118 5.2.1 Existence Results on the Half Line . . . . . . . .. . . . . . . . . . . . . . . . . . . . 119 5.2.2 Extremal Solutions Between the Lower and Upper Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 131 6 Positive Solutions for Second and Higher Order Problems . . . . . . . . . . . . . 135 6.1 Second Order Problems with Sturm–Liouville Boundary Conditions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 136 6.2 Second Order Systems .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 149 6.3 Multiplicity Result to a Three-Point Problem . . . . .. . . . . . . . . . . . . . . . . . . . 160 6.4 Positive Solutions to a One Dimensional Beam Equation . . . . . . . . . . . . 167 6.4.1 Existence Results . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 168 6.4.2 A Multiplicity Result . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 177 A Degree Theory for Multivalued Operators .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 181 References .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 185
You can also read