Review of Advanced Implementation of Doppler Backscattering Method in Globus-M - MDPI
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
applied sciences Review Review of Advanced Implementation of Doppler Backscattering Method in Globus-M Alexander Yashin *, Victor Bulanin, Alexander Petrov and Anna Ponomarenko Advanced Plasma Research Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; V.Bulanin@spbstu.ru (V.B.); a.petrov@spbstu.ru (A.P.); ponomar_am@spbstu.ru (A.P.) * Correspondence: a.yashin@spbstu.ru Abstract: Doppler backscattering (DBS) is a microwave diagnostics method typically used to study the plasma rotation velocity. Apart from conventional techniques, more advanced forms of DBS implementation were suggested on Globus-M. More specifically the study of a variety of oscillating processes was performed using DBS. In this review we present a detailed description of all of the methods and techniques employed in Globus-M alongside results obtained using DBS in all the years up until the shutdown of the tokamak. These include research similar to that done on other devices into the properties of such phenomena like geodesic acoustic modes or limit cycle oscillations, along with innovative works regarding the detection and investigation of Alfven eigenmodes and filaments that were the first of their kind and that provided important and novel results. Apart from that, the specific aspects of DBS application on a spherical tokamak are discussed. An in-depth look into the gradual change and improvement of the DBS diagnostics on Globus-M is also presented in this paper. Keywords: Doppler backscattering; spherical tokamak; microwave diagnostics; geodesic acoustic Citation: Yashin, A.; Bulanin, V.; modes; limit cycle oscillations; Alfven eigenmodes; filaments; edge localized modes; quasi coher- Petrov, A.; Ponomarenko, A. Review ent fluctuations of Advanced Implementation of Doppler Backscattering Method in Globus-M. Appl. Sci. 2021, 11, 8975. https://doi.org/10.3390/ 1. Introduction app11198975 Doppler backscattering (DBS) is a microwave diagnostics method applied on many magnetic confinement fusion devices typically with the aim to study the plasma rotation Academic Editor: Gregory Slepyan velocity [1–9]. Since the L-H transition was shown to be caused by the suppression of turbulent plasma perturbations by the shear of the plasma drift velocity in the radial Received: 30 July 2021 electric field (E × B velocity) [10], DBS was successfully applied to study this transition. In Accepted: 21 September 2021 the tokamak ASDEX Upgrade, data for the analysis of L-H transitions with low density Published: 26 September 2021 were obtained using this method [11]. A comparison of neoclassical calculations for the radial electric field and DBS data was made, which showed a good agreement between Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in the two methods for different modes of operation of the tokamak. The TCV tokamak published maps and institutional affil- used a heterodyne V-band Doppler backscattering diagnostic system [12]. The first results iations. show that the perpendicular rotational velocities obtained with DBS are consistent with the estimates of the poloidal rotation obtained from the charge exchange recombination spectroscopy diagnostics. A radial profile of perpendicular velocity was successfully obtained on the LHD tokamak using a Doppler reflectometer system [13]. The radial electric field was extracted from measurements of perpendicular velocity. In the work [14] Copyright: © 2021 by the authors. the rotation characteristics of the plasma in the tokamak HL-2A before and after supersonic Licensee MDPI, Basel, Switzerland. molecular beam injection were also analyzed. It was shown that an SMBI pulse can reduce This article is an open access article distributed under the terms and the Doppler shift frequency, which corresponds to the flattening of the electric field. In a conditions of the Creative Commons series of experiments on the EAST tokamak using two separate DBS systems, one for the Attribution (CC BY) license (https:// Q-band (33–50 GHz) and the other for the V-band (50–75 GHz), Doppler shifted signals creativecommons.org/licenses/by/ were obtained and radial profiles of perpendicular velocities were computed for the L- and 4.0/). H-mode [15]. In the Globus-M2 tokamak, the first results of the Doppler backscattering Appl. Sci. 2021, 11, 8975. https://doi.org/10.3390/app11198975 https://www.mdpi.com/journal/applsci
Appl. Sci. 2021, 11, 8975 2 of 19 diagnostics during a discharge with the L-H transition show that the transition process is linked to the deformation of the poloidal rotation velocity profile [16]. This diagnostic made it possible to conduct studies in the hotter and more central plasma regions, which is a useful addition to the velocity and field data obtained by other methods. Apart from these conventional techniques more advanced forms of DBS implementa- tion were suggested. More specifically the study of a variety of oscillating processes was performed using DBS. For example, for the investigation of the high-frequency branch of zonal flows—the geodesic acoustic mode—the DBS diagnostics were used on JET [17,18], ASDEX Upgrade [19], HL-2A [20], EAST [21], DIII-D [22], TUMAN-3M [23], and other devices [24]. Doppler backscattering has also proved useful for the study of limit cycle oscillations whose typical frequency is significantly lower than that of the geodesic acoustic mode frequency. Such research was carried out in the ASDEX Upgrade tokamak [25], DIII-D [26,27], and HL-2A [28,29]. In this review we aim to present a detailed description of all the methods and tech- niques employed in Globus-M in regard to DBS diagnostics used to study all the various phenomena that occur in plasma during a discharge. A multitude of results that had been obtained using DBS in the last 10 years up until the moments of the tokamak’s ultimate shutdown in 2017 are revisited and described. These include the investigation of such phenomena like geodesic acoustic modes or limit cycle oscillations using similar research practices that had been previously adopted on other devices. Apart from that, innovative works are reexamined regarding Alfven eigenmodes and filaments that were the first of their kind and had provided important and novel results for the plasma physics com- munity. Furthermore, the specific aspects of DBS application on a spherical tokamak are discussed and highlighted. An in-depth look into the gradual change and improvement of the DBS systems on Globus-M from a one-frequency homodyne detection system to several multi-frequency systems can also be found in this review. 2. Doppler Backscattering on Globus-M 2.1. DBS Systems Doppler backscattering (DBS), also known as Doppler reflectometry, is a type of Thom- son’s collective microwave scattering. The method is based on recording the backscattered microwave radiation with an oblique incidence of the microwave beam. Scattering mainly occurs near the cutoff of the microwave beam on plasma fluctuations with a selected wave vector k⊥ , which satisfies the Bragg condition for backscattering—k⊥ = 2 ki . Here ki is the wave vector of the incident wave in the cutoff region and it is oriented in the direction of the electron or ion diamagnetic drift. When scattering fluctuations move in the diamagnetic direction with a certain velocity V⊥ , a Doppler frequency shift of backscattered radiation appears—∆ωD = k⊥ V⊥ . The Doppler frequency shift ∆ωD needed for the calculation of the perpendicular velocity V⊥ can be obtained as the position of the ‘center of gravity’ of the complex signal I(t) + iQ(t) spectral density, or the derivative of the phase of the complex signal [30]. The sign and magnitude of the shift allow us to determine the sign and magnitude of the velocity of fluctuations in the diamagnetic direction V⊥ . The first implementation of DBS on a spherical tokamak was carried out on Globus- M [31]. There are specific requirements for DBS application in a spherical tokamak that is characterized by a significant pitch angle (more than 20◦ ) at the low magnetic field side. To satisfy the Bragg condition, the antenna has to be tilted not only poloidally but also toroidally. To evaluate the required antenna tilt angles, ray tracing of the incident beam was performed for the actual three-dimensional (3D) geometry of the Globus-M flux surfaces [32]. To determine the investigated area of each DBS channel, experimental electron density profiles obtained by Thomson diagnostics and magnetic surface reconstruction data obtained using the EFIT code were used. An example of the performed ray tracing is presented in Figure 1. The locations of the ports available for the installation of the DBS systems are also indicated. The first Globus-M DBS system was based on a monostatic antenna scheme, which allowed one to probe the plasma by O-mode microwaves in the
density profiles obtained by Thomson diagnostics and magnetic surface reconstruction data obtained using the EFIT code were used. An example of the performed ray tracing is Appl. Sci. 2021, 11, 8975 presented in Figure 1. The locations of the ports available for the installation of the3DBS of 19 systems are also indicated. The first Globus-M DBS system was based on a monostatic antenna scheme, which allowed one to probe the plasma by O-mode microwaves in the frequency band 18–26 GHz (system #1 in Table 1). It was possible to change the incident band shot frequency from 18–26toGHz shot.(system The tilt #1 in Table angles 1).incident of the It was possible to change beam were chosenthe as incident 7° in the frequency poloidal from and shot 3° in theto shot. The toroidal tilt angles direction. Theof the incident relevant beam were wavelength of thechosen as 7◦plasma scattering in the poloidal and 3 ◦ in the toroidal direction. The relevant wavelength of the scattering plasma fluctuations was in the range of 1.1–1.8 cm. The cutoff position was in the vicinity of the fluctuations separatrix at was highin the range q-values. Theofradial 1.1–1.8 cm. The cutoff resolution positionwas of the method wasestimated in the vicinity to be of the about separatrix at high q-values. The radial resolution of the method was estimated 0.5 cm. Dual homodyne detection was employed to receive the backscattered radiation to be about 0.5 cm. Dual homodyne detection was employed to receive the backscattered radiation [1]. [1]. - − 0.6 - − 0.4 separatrix - − 0.2 port #1 Z, m - − 0.0 port #2 port #3 − 0.2 − 0.4 − 0.6 0.0 0.2 0.4 0.6 R, m Figure 1. Ray tracing for the geometry of the Globus-M tokamak. Table 1. DBS systems on Globus-M. Table 1. Globus-M. DBS DBS Systems Systems #1 #1 #2 #2 #3 #3 Number Number of systems of systems 11 22 11 Number of Number of 11 11 4 frequencies 4 frequencies Frequency values, Frequency values, 18–26 27–38 20, GHz 18–26 27–38 20, 29, 39,48 29, 39, 48 GHz Waveguide Waveguide WR-42 WR-42 WR-28 WR-28 WR-42, WR-28 WR-42, WR-28 Wave propagation O-mode O-mode O-mode Wave propagation O-mode O-mode O-mode Poloidal tilt angles,◦ o 6–9 6–9 6–9 Poloidal tilt angles, 6–9 6–9 6–9 Toroidal tilt angles, o 2–5 2–5 2–5 Toroidalbeam tilt angles, ◦ 2–5−45 2–5 −45 2–5 Probing angle, o −30, 45, −30, −30 Probing beam angle, ◦ Position −30, #2,3 port −45 45, −30, port −45 #1,2,3 −30#2 port Cut-off radii R, m Position ~0.55–0.58 port #2,3 ~0.53–0.58 port #1,2,3 ~0.51–0.59 port #2 Cut-off radii R, m ~0.55–0.58 ~0.53–0.58 geodesic acoustic ~0.51–0.59 geodesic acoustic modes, limit cycle geodesic acoustic geodesic acoustic Field of study modes, filaments, geodesic acoustic oscillations, filaments, modes, limit cycle Field of study modes, geodesicfilaments acoustic modes,eigenmodes filaments, oscillations, filaments, modes, filaments Alfven Alfven eigenmodes, Alfven eigenmodes Alfven eigenmodes, turbulence turbulence The DBS system #1 was used successfully to study peripheral transport processes as well as to obtain measurements near the separatrix. Due to the usefulness of the diagnostics, the physics research program on the Globus-M tokamak required the expansion of the measured region into the area of the formation of the pedestal. Accordingly, an additional
Appl. Sci. 2021, 11, 8975 4 of 19 DBS system was developed so as to probe and record the scattered signal at larger radii (system #2 in Table 1). The microwave circuit of system #2 was similar to the one in system #1 with the exception of a higher frequency probing range of 27–38 GHz. The same antenna that was used for system #1 to probe the plasma was employed on system #2. The antenna was connected to this DBS system using the WR-28 to WR-42 waveguide transition. Because only one port (port #2) located in the equatorial plane was initially allocated for the DBS diagnostic, only one of the two available systems could be applied during a discharge. Subsequently, two additional ports (ports #1 and #3) were made available for the development of Globus-M DBS diagnostic that were located at the same toroidal angle, but several centimeters, respectively, above and below the equatorial plane. Additional antenna systems were installed in these ports, and one more DBS system similar to system #2 was acquired. The simultaneous use of several DBS systems, spread out in a poloidal direction, made it possible to develop poloidal correlation Doppler reflectometry and to determine the poloidal scale of the developing plasma instabilities. However, the use of systems #1 and #2 made it difficult to construct radial profiles of the plasma processes under investigation by means of changing the probing frequency from discharge to discharge. This method required precise repetition of plasma discharge parameters. The fluctuation of these very parameters made it difficult to accurately interpret the acquired results. Therefore, a DBS scheme with four fixed probing frequencies was developed. The 4-channel DBS system in Globus-M comprised two × two-channel DBS microwave schemes with different probing frequencies [33]. Two pairs of fixed frequencies were chosen—20, 29 GHz and 39, 48 GHz. Each frequency channel included a microwave circuit with dual homodyne detection. Two steerable antennas were used to probe the plasma by O-mode microwaves. Each of the antennas was used both as an incident and a receiving one, and were connected to a waveguide that allows only a certain range of wavelengths to pass through. One antenna was used for frequencies of 20 and 29 GHz, whereas the second one was used for the 39 and 48 GHz frequencies. The detection region covered a considerable radial interval of normalized small radii ρ = 0.6–1 for a typical Globus-M discharge. 2.2. Data Analysis Table 2 provides the methods of analysis of DBS data that allowed one to inves- tigate and determine the characteristics of plasma processes such as geodesic acoustic modes, limit cycle oscillations, quasi-coherent fluctuations, Alfven eigenmodes, turbulence, and filaments. Table 2. Methods applied to DBS signals to study various phenomena. Method Notes Field of Study geodesic acoustic modes, limit cycle connects the time domain and the oscillations, quasi-coherent Spectral analysis frequency domain fluctuations, Alfven eigenmodes, turbulences, filaments provides information on how strongly two signals are geodesic acoustic modes, Coherence analysis correlated across a frequency quasi-coherent fluctuations range Correlation information on radial correlation geodesic acoustic modes, limit cycle analysis properties of turbulence oscillations, filaments geodesic acoustic modes, limit cycle frequencies at which nonlinear Bicoherent analysis oscillations, quasi-coherent interaction is most effective fluctuations
Appl. Sci. 2021, 11, 8975 5 of 19 Spectral analysis allows for the process of breaking down of any signal into its com- ponents at various frequencies, which is an important characteristic when it comes to turbulences and a large variety of instabilities. The Fourier transform (fast Fourier trans- form) provides this connection between the time domain and the frequency domain. There are various kinds of spectral analysis of the DBS signals available. They were applied to calculate the signal spectrum that describes the distribution of power into frequency components that the signal comprises. The fast Fourier transform is calculated in a window of a certain length that is chosen depending on the phenomenon being investigated. The window is then shifted by a time frame and the process continues. It was also possible to smooth these data so as to remove components of the background noise. Spectrograms were calculated as well in order to also have a visual representation of the spectrum as it changes in time. They are formed as the dependency of frequency on time while the power at each frequency at a given moment in time is represented by color. This is accomplished for the complex data of the DBS signals. The complex DBS signal spectrum is calculated so as to investigate the Doppler shift and consequently the rotation velocity. The velocity spectrum reveals some oscillatory phenomena. The modulus of the complex DBS signal showcases the behavior of the fluctuation amplitude. The calculation of the coherence spectrum leads to the examination of the relation between oscillations of various DBS signals. Correlation analysis of DBS signals can be used for obtaining information on radial correlation properties of turbulence and therefore on the turbulence spectrum with respect to radial wave numbers [34]. However for us the main goal was the detection of periodic components in the Doppler backscattering radiation, as well as the definition of the charac- teristics of such periodic processes. For this purpose, the calculation of cross-correlation functions (CCFs) between velocities measured at different radii or between amplitudes of DBS signals at different radii, and between the amplitude and velocity obtained at the same radius was performed. It was also possible to obtain correlation functions between the DBS signals and other diagnostic signals. The processes of coupling between spectral components of interacting waves could be revealed via bicoherence analysis. Cross-bicoherence as a measure of phase coupling between three spectral components of signals is described by the following expressions: 2 Yk∗ ( f 3 )Yi ( f 1 )Yj ( f 2 ) b2 ( f 1 , f 2 ) = 2 ; f3 = f1 ± f2 h|Yk ( f 3 )|2 ih Yi ( f 1 )Yj ( f 2 ) i where Yi (f), Yj (f), Yk (f) are spectra of amplitude of the complex output signal of the IQ detector or spectra of E × B velocity determined from the Doppler frequency shift. 3. Application Results 3.1. Geodesic Acoustic Mode DBS was implemented to study geodesic acoustic modes (GAMs) on the Globus-M toka- mak in the Ohmic phase of discharges at relatively low plasma density (n ≈ (2–3) × 1019 m−3) when the toroidal ion drift was directed away from the X-point [35–37]. All DBS sys- tems (see Table 1) and in some experiments even their combinations were used to ob- tain information about various properties of GAMs presented in Table 3 (see the end of Section 3.1). GAMs were identified through spectral analysis of the perpendicular veloc- ity V⊥ (t) = VE×B (t) + Vphase (t). Since GAMs lead to oscillations of VE×B (t), they can be detected by DBS. The measured Doppler frequency shift was obtained either from the spectrum shift of the IQ detector signal or as the phase derivative of the complex signal. GAMs manifest themselves as coherent oscillations in the frequency domain of 23–28 kHz in the case of deuterium plasma and around 36 kHz in hydrogen plasma [38,39]. These frequencies are within the large orbit drift width limit when compared with theoretical predictions [40].
V⊥(t) = VE×B(t) + Vphase(t). Since GAMs lead to oscillations of VE×B(t), they can be detected by DBS. The measured Doppler frequency shift was obtained either from the spectrum shift of the IQ detector signal or as the phase derivative of the complex signal. GAMs manifest themselves as coherent oscillations in the frequency domain of 23–28 kHz in the case of Appl. Sci. 2021, 11, 8975 deuterium plasma and around 36 kHz in hydrogen plasma [38,39]. These frequencies are 6 of 19 within the large orbit drift width limit when compared with theoretical predictions [40]. The study of the temporal evolution of GAMs showed that they do not exist contin- ually; rather, an intermittent increase and decrease of GAM amplitude was observed. ThereThewerestudy twoof the temporaltimes characteristic evolution of GAM for the GAMslevelshowed that they changes [39]. do Thenot exist first onecontinu- is the ally; rather, an intermittent increase and decrease of GAM amplitude was observed. There duration of a quasi-coherent GAM burst which was about 0.2 ms with an interval of 0.4 were two characteristic times for the GAM level changes [39]. The first one is the duration ms between bursts. This behavior corresponds to the well-known predator-prey model of a quasi-coherent GAM burst which was about 0.2 ms with an interval of 0.4 ms between [41]. Another timescale is a very slow evolution of the GAM level with a period of about bursts. This behavior corresponds to the well-known predator-prey model [41]. Another 5 ms. This is also the characteristic time of the evolution of the ion pressure gradient on timescale is a very slow evolution of the GAM level with a period of about 5 ms. This is Globus-M. also the characteristic time of the evolution of the ion pressure gradient on Globus-M. The GAMs velocity amplitude V⊥(t) was recalculated to the radial electric field Er The GAMs velocity amplitude V⊥ (t) was recalculated to the radial electric field Er assuming that the phase velocity Vphase(t) induced by GAM oscillations is relatively small. assuming that the phase velocity Vphase (t) induced by GAM oscillations is relatively small. The amplitude of the electric field oscillations reached up to 3 kVm−−11, which sometimes The amplitude of the electric field oscillations reached up to 3 kVm , which sometimes exceeded the mean value of the radial electric field causing a velocity reversal at a certain exceeded the mean value of the radial electric field causing a velocity reversal at a certain phase of the GAMs oscillations [39]. phase of the GAMs oscillations [39]. Initially the GAM location was studied by varying the probing frequencies from shot Initially the GAM location was studied by varying the probing frequencies from to shot while all plasma parameters were kept identical. These experiments showed that shot to shot while all plasma parameters were kept identical. These experiments showed GAMs exist in a very narrow layer of a few centimeters inside the separatrix [39]. The that GAMs exist in a very narrow layer of a few centimeters inside the separatrix [39]. obtained radial profile of the GAM velocity amplitude is presented in Figure 2. A clear The obtained radial profile of the GAM velocity amplitude is presented in Figure 2. A maximum and decrease in amplitude is observed in this several centimeter layer. The clear maximum and decrease in amplitude is observed in this several centimeter layer. GAM The GAMfrequency was also frequency was investigated in different also investigated locations in different and itand locations wasit determined was determined that no significant that change no significant of its of change values was present. its values Experiments was present. with awith Experiments foura frequency DBS four frequency scheme confirmed the narrow localization of GAM [42]. Only the peripheral DBS scheme confirmed the narrow localization of GAM [42]. Only the peripheral DBS DBS channel could channelregister couldGAM oscillations register near the normalized GAM oscillations minor radius near the normalized minor0.95, whereas radius 0.95,the other whereas channels did not detect oscillations exceeding the background level at the other channels did not detect oscillations exceeding the background level at the GAM the GAM fre- quency. This narrow area of GAM existence might be caused by the frequency. This narrow area of GAM existence might be caused by the prevention of prevention of GAMs development GAMs developmentby Landau dampingdamping by Landau induced induced by the steep q-value by the steepdecrease in the edge q-value decrease re- in the gion of Globus-M. The width of the GAMs existence layer was about edge region of Globus-M. The width of the GAMs existence layer was about 1 cm with 1 cm with the GAM frequency the GAM not changing frequency notsignificantly within this within changing significantly area [39]. Such this areaobservations correspond [39]. Such observations to the global GAM eigenmode nature which was predicted in work correspond to the global GAM eigenmode nature which was predicted in work [43]. [43]. 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 5 70 a sep. 60 4 VExB, km/s fGAM, kHz 50 3 40 2 30 20 1 10 600 0 fGAM=22.4 kHz (deuterium) b Te, eV fGAM=38 kHz (hydrogen) 400 200 0 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 R, m Figure Figure2.2.Radial Radialprofiles profilesof: of:(a) (a)GAM GAMamplitude amplitudeand andfrequency; frequency;(b) (b)electron electrontemperature temperature [39]. [39]. Poloidal correlation DBS using two microwave schemes with the cut-offs positioned at different poloidal angles (−30◦ and 45◦ ) of the same minor cross-section was employed in Globus-M to study the poloidal structure of GAMs [32,44]. The zero phase delay between the GAM oscillations in the two simultaneously detected DBS signals was discovered by coherent spectrum analysis of the velocity oscillations, which is presented in Figure 3. The observation is consistent with an m = 0 mode structure of the GAM E × B flow as predicted by theory in [41].
Poloidal correlation DBS using two microwave schemes with the cut-offs positioned at different poloidal angles (−30° and 45°) of the same minor cross-section was employed in Globus-M to study the poloidal structure of GAMs [32,44]. The zero phase delay be- tween the GAM oscillations in the two simultaneously detected DBS signals was discov- Appl. Sci. 2021, 11, 8975 ered by coherent spectrum analysis of the velocity oscillations, which is presented in7 of 19 Figure 3. The observation is consistent with an m = 0 mode structure of the GAM E×B flow as predicted by theory in [41]. −4 ... φ(f), rad 0.8 m=0 fGAM −2 ... C(f) −0 ... 0.4 −2 0.0 0 10 20 30 40 50 f, kHz Figure 3. Coherence spectrum C(f) and cross-phase spectrum φ(f) of two Doppler shift oscillations Figure 3. Coherence recorded spectrum by reflectometers C(f) and at positioned cross-phase spectrum poloidal angles −30◦ϕ(f) andof45two Doppler ◦ , (#34504, shift time = oscillations 170 ms) [44]. recorded by reflectometers positioned at poloidal angles −30° and 45°, (#34504, time = 170 ms) [44]. Cross-bicoherence analysis of perpendicular velocity and amplitude of the complex DBSCross-bicoherence analysis signal was successfully usedofto perpendicular velocity demonstrate the and amplitude interaction of the between the GAM complex oscilla- DBS tionssignal was successfully and plasma turbulenceused to demonstrate [32,44,45]. The resultsthe of interaction this analysisbetween indicatethe thatGAM oscil- a nonlinear lations and plasma turbulence [32,44,45]. The results of this analysis indicate that a interaction takes place that manifests itself in the appearance of the amplitude oscillationnon- linear interaction takes place that manifests itself in the appearance of the amplitude at the GAMs frequency fGAM . This can be caused by the influence of turbulent Reynolds os- cillation stress onatzonal the GAMs frequency flows or GAMs [41].fGAM. This can be caused by the influence of turbulent Reynolds stress on zonal flows or GAMs [41]. Table 3. Properties of GAMs in Globus-M. Table 3. Properties of GAMs in Globus-M. Investigated Property Range of Values Notes Investigated Property Mode of operation Range of Values Ohmic heating regime Notes not detected in H-mode Mode of operation Ohmic heating regime not detected in H-mode 23–28 (D) Gao formula, influenced by f, kHz 23–28 f, kHz ~36 (H)(D) Gao formula, influenced isotope effect [40] by ~36 (H) isotope effect [40] consistent with the inverse of the Spectral peak width ∆f, kHz 2–6 consistent Spectral peak width ∆f, kHz 2–6 GAM with burst the inverse of lifetime the GAM burst lifetime Type burst Predator-prey model [41] Type burst Predator-prey model [41] determined as the time of tlifetime, ms 0.2–0.4 determined damping of as thethe time of velocity tlifetime, ms 0.2–0.4 damping of the autocorrelation functionvelocity autocorrelation assumption of relation function to the Modulation frequency f mod , Hz 300 assumption of relation evolution of the ion pressureto the Modulation frequency fmod, Hz 300 gradient evolution of the ion pressure exceeds the gradient mean radial electric Amplitude, kV m−1 up to 3 exceeds the field mean radial Amplitude, kV m−1 up to 3 related to electric the sharp field decrease in Location R, m 0.56 the safetyto related factor values decrease the sharp followed by Landau damping [41] in the safety factor values Location R, m 0.56 globalfollowed GAM eigenmode nature Location width, cm 1 by1 Landau 2 3 3 = LT ρi[41] damping λGAM [43] global Linear GAM eigenmode dynamics of zonal flow Poloidal structure m=0 Location width, cm 1 modes [41] nature =L [43] the influence of turbulent Non-linear interaction with present Reynolds stress on zonal flows or turbulences GAMs [41] 3.2. Limit Cycle Oscillations The four-frequency microwave DBS system was used to study a variety of limit cycle oscillations (LCO) characteristics (see Table 4 in the end of Section 3.2) on Globus-M. LCOs were discovered in plasma discharges with neutral beam injection (NBI) when the direction of the magnetic field was favorable for transition to H-mode (i.e., the toroidal ion drift was
Appl. Sci. 2021, 11, 8975 8 of 19 directed towards the X-point). LCOs were found in the form of low-frequency (5–9 kHz) oscillations in E × B drift velocity with the duration of their existence ranging from 2 to 20 ms [46]. Low frequency LCOs (~6 kHz) led to a transition to H-mode while high frequency LCOs (~8.5 kHz) resulted in the transition to L-mode or even in a disruption. The LCO frequencies in Globus-M are much higher in comparison to medium size devices [47]. A strong radial dependence of LCO frequency was not predicted by the model of limit cycle oscillations induced by a predator-prey coupling of turbulence with zonal flows [48]. However, it is in accordance with the Stringer spin-up mechanism [49]. The multichannel DBS system made it possible to estimate the velocity shear ωs of the oscillations at LCO frequency. The amplitude of these oscillations was about 105 s−1 , but it increased up to 106 s−1 just before L-H transition in the case of the low frequency LCOs. The transition to H-mode after these LCOs can be caused by an increase in the efficiency of the action of the oscillating velocity shear on the plasma turbulence while decreasing its oscillation frequency [50,51]. A periodic suppression of the turbulence power was observed as well. However, in the event of the high LCO frequency, the turbulence level would decrease not to zero, but to a certain value, after which it began to increase (standard oscillations). For the lower LCO frequency, the turbulence level decreased periodically to zero. Such bursty dynamics were also observed on TCV [52]. Table 4. Properties of LCO in Globus-M. LCO in Discharges with LCO in Discharges Investigated Property Notes H-Mode without H-Mode Additional heating NBI not detected in Ohmic phase the higher LCO frequencies predicted by f, kHz ~6 ~8.5 Stringer spin-up [49] Spectral peak width ∆f, corresponds to the calculation of spectra in 1.5 1.5 kHz a 512 ms window the duration of the LCO phase tends to be Duration of LCO phase τ, closer to the value of 2 ms in discharges 2–20 ms with H-mode and to the values of 20 ms without H-mode Velocity shear, s−1 order of 105 –106 order of 105 a significant increase before no significant changes predator-prey model [48] Velocity shear behavior transition to H-mode in behavior Turbulence suppression present during LCO Turbulence modulation, % 98 81 dependence of the onset of the transition on frequency corresponds to the transition standard oscillations appearance model developed for the case Type bursty dynamics around a certain value of the appearance of zonal flows [51] possibly, the significant coupling indicates Nonlinear coupling of that LCOs are dominated by zonal flows; present turbulence similar results were obtained in the HL-2A tokamak in the ‘type-Y’ LCO phase [53] 2 cm inside the separatrix which is similar Location ρ ~0.75 to other tokamaks close to the radial wavelength of the zonal Location width ∆ρ ~0.4 √ flows λ ZF ∼ ρi a [41]
Appl. Sci. 2021, 11, 8975 9 of 19 Auto-bicoherence analysis of the perpendicular velocity demonstrated the nonlinear coupling of the broadband turbulence and velocity oscillations at the LCOs frequency in the case of high frequency LCOs [46]. It is possible to assume that this significant coupling indicates that LCOs are dominated by zonal flows caused by Reynolds stress [41]. Similar results were obtained in the HL-2A tokamak in the ‘type-Y’ LCO phase [53]. The radial scale of the observed flow is estimated to be 4 cm [42,46]. This scale is close to the radial wavelength of the zonal flows [41]. The maximum of the amplitude profile of the velocity oscillations at LCO frequency was located at about 2 cm inside the separatrix. Moreover, the velocity profile maximum moves from the boundary to the core region during the LCO period. This was investigated by studying phase relations between the perpendicular velocity and turbulence amplitude for two radial positions, which are presented in the form of Lissajous phase diagrams in Figure 4. It was demonstrated that at R = 54.4 cm the clockwise direction in the figure corresponds to a predator-prey model [48], while at R = 56.6 cm the counterclockwise direction was associated with a transition to H-mode in work [53]. Using DBS it was possible to observe both trajectories simultaneously. The calculated autocorrelation and cross-correlation functions of amplitude and perpendicular velocity lead to the estimation of the velocity of the movement to be about 3 km s−1 . Apart from that, it was shown that the amplitude oscillations that occur at Appl. Sci. 2021, 11, x FOR PEER REVIEWdifferent cutoff positions are approximately in-phase. From all the obtained data we 9 ofcould 20 conclude that it is impossible to apply the known 0D predator-prey models to explain the observed differences at different radii. / −0 #37000 R = 54.4 cm / −0 #37000 R = 56.6 cm −2 −2 V, km/s V, km/s −4 −4 −6 −6 −8 a −8 b 0 1 2 3 4 5 0 1 2 3 4 5 A, a.u. A, a.u. (a) (b) Figure 4. Lissajous Figure diagrams 4. Lissajous of perpendicular diagrams rotation of perpendicular velocity rotation and DBS velocity signal and DBSamplitude for dif- for signal amplitude ferent radii (a) R = 54.4 cm, (b) R = 56.6 cm [46]. different radii (a) R = 54.4 cm, (b) R = 56.6 cm [46]. Quasi-Coherent Table 4. Fluctuations Properties of LCO in Globus-M. Quasi-coherent fluctuations (QCFs) were also discovered in the spectra of the DBS LCO in Discharges with LCO in Discharges without Investigated Property amplitude fluctuations. Their main properties are presented in Table 5.Notes QCFs appear in the H-Mode H-Mode form of a spectral peak at the 110 kHz frequency with a spectral width of ∆fQC = 80 kHz [54]. Additional heating QC fluctuations with similarNBIparameters were observed on notthe detected in Ohmic T-10 tokamak phase in [55]. Unlike T-10, the fluctuations in Globus-M were observed during the theI-phase higherdischarge LCO frequencies with LCOs. f, kHz ~6 QCFs were strongly modulated by LCO.~8.5 They were observedpredicted by twoby Stringer spin-DBS high-frequency channels of 39 and 48 GHz at once. It corresponds to the normalized upminor [49] radii values from ρ = 0.6 to ρ = 0.7. ASTRA 7 and GENE simulations showed corresponds to the in an increase diffusion calcula- Spectral peak width ∆f, kHz coefficient caused 1.5 by the ion temperature 1.5gradient (ITG) instability tion of spectra in a 512location. in the QCF ms Auto-bicoherence analysis of the DBS amplitude fluctuations demonstrated window nonlinear coupling of the broadband turbulence and QCFs. High level of cross-coherence of velocity the duration of the LCO fluctuations and DBS amplitude (about 0.8 at QCFs frequencies) indicates the presence phase tends to be closer to QCFs in velocity. Low level of coherence of DBS amplitude and magnetic field fluctuations the value of 2 ms in dis- Duration of LCO phase τ, ms (
Appl. Sci. 2021, 11, 8975 10 of 19 Table 5. Properties of QCFs in Globus-M. Investigated Property Range of Values Notes f, kHz 110 similar to values on other Spectral peak width ∆f, kHz 80 tokamaks like T-10 [55] Type burst tlifetime , ms 0.1–0.2 modulated by LCO Location ρ 0.65 in the QCF location there is an observed increase in diffusion Location width ∆ρ 0.1 coefficient caused by ITG present only during a certain Mode of operation I-phase phase of LCO a peak of summed bicoherence at Non-linear interaction with the QCFs frequency demonstrates present turbulences the existence of a relationship with turbulent fluctuations Coherence of velocity fluctuations 0.8 near QCFs and DBS amplitude frequencies Coherence of DBS amplitude and less than 0.3 near not of a magnetic nature magnetic field fluctuations QCFs frequencies 3.3. Filaments Appl. Sci. 2021, 11, x FOR PEER REVIEW For the first time DBS diagnostics was implemented to study filaments [56].11Such of 20 an implementation is possible when the poloidal size of the filaments is close to π/k⊥ (1–3 cm in the case of DBS on Globus-M), where k⊥ is the wave vector of the incident wave in the cutoff region. Such filaments were discovered using DBS inside the separatrix in H-mode with NBI [31,57] and in Ohmic H-mode with high MHD activity [58,59]. Fila- ELMy H-mode with NBI [31,57] and in Ohmic H-mode with high MHD activity [58,59]. ments were observed as a sequence of bursts of quasi-coherent fluctuations (BQFs) in the Filaments were observed as a sequence of bursts of quasi-coherent fluctuations (BQFs) IQ DBS signals. The frequency of IQ signal oscillations during a burst was used to calcu- in the IQ DBS signals. The frequency of IQ signal oscillations during a burst was used late the poloidal velocity of the filaments. The distance between filaments in the perpen- to calculate the poloidal velocity of the filaments. The distance between filaments in the dicular direction was calculated by measuring the temporal delay between adjacent perpendicular direction was calculated by measuring the temporal delay between adjacent bursts. bursts.The Thefour fourfrequency frequencyDBSDBSscheme schemeallows allowsone onetotoestimate estimatethe theradial radialsize sizeofoffilaments. filaments. The The reconstruction of the location and spatial distribution of filaments inthe reconstruction of the location and spatial distribution of filaments in the Globus-M Globus-M tokamak tokamakisispresented presentedin inFigure Figure5.5. Sideview Figure5.5.Side Figure viewofof the the magnetic magnetic surface surface of of thethe Globus-M Globus-M tokamak. tokamak. TheThe reconstruction reconstruction of the of the locationofoffilaments location filaments(I–V) (I–V)at atfixed fixedtime. time. Filaments Filaments are are conventionally conventionally shown by lines directed along along magnetic magnetic field lines. field lines. The arrows The arrows indicate indicate the direction the direction of theofmotion the motion of theoffilaments. the filaments. The The rectangle rectangle denotes denotes the the of location location the DBSof receiving the DBS receiving antenna [59]. antenna [59]. Intotal, In total, three types typesof offilaments filamentswere discovered. were One discovered. Oneof them is ELM of them filaments. is ELM They filaments. werewere They observed during observed ELMsELMs during triggered by sawtooth triggered oscillations by sawtooth [60] in oscillations discharges [60] with in discharges H-mode initiated by NBI when plasma density was relatively small n < 1.2 × 10 19 m−193 [61]. with H-mode initiated by NBI when plasma density was relatively small e ne < 1.2 × 10 m−3 [61]. If the plasma density was higher, the waveform during ELMs ceased to resemble quasi-coherent oscillations, although the signal level increased greatly during ELMs. Ap- parently, this is due to the fact that the poloidal size of the filament depends on the density and, when the critical value is exceeded, it greatly differs from π/k⊥. Measured parameters
Appl. Sci. 2021, 11, 8975 11 of 19 If the plasma density was higher, the waveform during ELMs ceased to resemble quasi- coherent oscillations, although the signal level increased greatly during ELMs. Apparently, this is due to the fact that the poloidal size of the filament depends on the density and, when the critical value is exceeded, it greatly differs from π/k⊥ . Measured parameters of ELM filaments can be found in Table 6. Table 6. Properties of filaments in Globus-M. Investigated Property ELM Filament Inter-ELM Filament MHD Induced Filament Radial size, cm 2–6
Appl. Sci. 2021, 11, 8975 12 of 19 the amplitude of the Alfven perpendicular velocity, radial electric field can be extracted from the measurements. Studies were conducted in the Globus-M tokamak with early neutral beam injection at the stage of growth of the plasma current [66,67]. Initially, the detection of toroidal Alfven eigenmodes (TAE) using DBS was confirmed by comparing the experimentally obtained frequency of the fluctuations presented in Table 7 to the Alfven continuum frequency gaps f TAE = v A /4πqR, where v A = B/µ0 ρ D is the Alfven velocity (B-magnetic field, ρ D -mass density of plasma ions), q is the safety factor, and R is the major radius [68]. The results of the calculations were similar to those acquired in experiments. Apart from that, the calculated spectrograms of rotation velocity determined using the DBS method highlighted the fact that the frequency of the TAE decreases with time, which corresponds to the concept of the slowing down of the Alfven wave. These properties were also observed in the spectrograms of the magnetic probe signals that confirmed the observation of Alfven eigenmodes. The nature of the TAE varied depending on the characteristics of the injected beam (it was shown that the isotope of the injected particles had an effect on what type of Aflven mode could develop) as well as the plasma density. The instability was observed either in the form of a short burst lasting from 0.1 up to 0.5 ms or as continuous oscillations of several ms. The length of the TAE burst apparently can be defined through a predator-prey model [69]. The DBS measurements were used to calculate various properties of the Alfven eigen- modes such as the amplitude of the radial electric field and accordingly their magnetic field. The obtained values are presented in Table 7 as well as works [70–72]. It is worthy of note that the magnetic field amplitude determined using DBS was compared with the measurements of the magnetic probes B MP located on the wall of the vacuum chamber. Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 20 It was observed that the B MP values were generally significantly smaller than those cal- culated from the DBS measurements, which seems to indicate the spatial damping of the instability [71]. While several DBS systems were used to study the location of the Alfven eigenmodes, While several DBS systems were used to study the location of the Alfven eigenmodes, the four-frequency system had yielded the best results. The toriodal number n = 1 TAE the four-frequency system had yielded the best results. The toriodal number n = 1 TAE was detected in the area with major radii values of 0.50–0.56 m. It was noted that a clear was detected in the area with major radii values of 0.50–0.56 m. It was noted that a clear maximum of the amplitude for this n was not determined. However, the location of TAE maximum of the amplitude for this n was not determined. However, the location of TAE with higher toriodal number values (n = 2, 3) was determined to be closer to the periphery with higher toriodal number values (n = 2, 3) was determined to be closer to the periphery with R ~ 0.51–0.59 m. The examples of profiles obtained for a variety of Alfven eigenmodes with R ~ 0.51–0.59 m. The examples of profiles obtained for a variety of Alfven eigenmodes is presented in Figure 6. It clearly highlights that there is a possibility of the existence of is presented in Figure 6. It clearly highlights that there is a possibility of the existence of the the toroidal Alfven eigenmodes in the core plasma regions. The shift of the main TAE toroidal Alfven eigenmodes in the core plasma regions. The shift of the main TAE harmonic harmonic (i.e., with (i.e., n = 1)with n =inner to the 1) to the innerregions plasma plasmaappears regionstoappears to be be related torelated to the increas- the increasing plasma ing plasma current current [73]. [73]. Distributionof Figure6.6.Distribution Figure ofamplitudes amplitudes of magnetic field field oscillations oscillationsfor forvarious varioustoroidal toroidalmode modenumbers num- bers n inndischarges in discharges withwith different different plasma plasma currents: currents: (a) (a) # 37001, # 37001, t =t 141.2 = 141.2 ms;ms;(b) (b)# #36988, 36988,t t==147.5 147.5ms; ms; (c) #(c)36944, # 36944, t = 146.2 t = 146.2 ms;ms; q— stability q—stability factor factor (#),(○), n = n1 =(squares), 1 (squares), 2 (circles), 2 (circles), 3 (triangles) 3 (triangles) [73].[73]. Table 7. Properties of Alfven eigenmodes in Globus-M. Investigated Property Range of Values Notes Additional heating NBI only observed during NBI
Appl. Sci. 2021, 11, 8975 13 of 19 Table 7. Properties of Alfven eigenmodes in Globus-M. Investigated Property Range of Values Notes Additional heating NBI only observed during NBI vA f, kHz ~99–160 Alfven continuum frequency gaps f TAE = 4πqR [68] the decrease of the TAE frequency is related to the Spectral peak width ∆f, kHz 80 slowing down of the Alfven wave Type continuous or burst dependent on the injected beam parameters [69] tlifetime (for burst type), ms ~0.1–0.5 predator-prey model [69] Radial electric field amplitude, kV m−1 ~0.5–3 the oscillations of the Alfven magnetic field are accompanied by the oscillations of the measured electric Magnetic field amplitude, 10−4 T ~6–25 field according to Maxwell’s equation Bfθ = Eer [73] vA shift of TAE to the inner plasma regions is related to the Location R, m ~0.50–0.56 increasing plasma current different toroidal numbers correspond to different TAE Toroidal number, n 1–3 harmonics 3.5. Turbulence The four frequency DBS system was used to study turbulence in H-mode with and without ELMs. The experiments were performed in the Globus-M spherical tokamak operated in H-mode initiated by NBI. Plasma density fluctuations as well as plasma velocity fluctuations were investigated during the transition to the ELM-free H-mode. Studies showed a decrease in both plasma density and plasma velocity fluctuation near the separatrix in the absence of ELMs [74,75]. A more in-depth study of turbulence during ELMs allowed us to identify two types of ELMs and two corresponding types of transition to the ELM-free H-mode [76]. Low- frequency ELMs in the Globus-M tokamak are characterized by the transition to the ELM-free regime during plasma current decrease alongside a similar change in the current density profile. This transition is associated with a decrease in the intensity of sawtooth oscillations. The level of turbulence at the periphery in this case varies only slightly, which was demonstrated by analyzing the amplitude of the complex DBS signal as demonstrated in Figure 7a. It can be assumed that the transport does not change, which is indicated by the constancy of the Dα level and average density. High-frequency ELMs are characterized by a spontaneous transition to the ELM-free regime. The peripheral turbulence amplitude decreases during this transition (as seen in Figure 7b), which was accompanied by the typical features of peripheral transport suppression: the electron density increases and Dα emission drops. A study of the turbu- lence amplitude spectra during this regime led to the discovery of quasi-coherent (QC) fluctuations in the ELM-free H-mode in the highest frequency (48 GHz) channel with a the cutoff radius of ρ = 0.6 [77]. The properties of these fluctuations were similar to the QCFs observed in I-phase (see Table 5), except for the fact that the QC fluctuations in ELM-free H-mode were not modulated by anything. They existed continuously during the period of ELM-free H-mode. Such QCFs were not detected in the spectra of the complex IQ signal. This, apparently, indicates that the poloidal scale of the fluctuations is much larger than the method resolution of π/k⊥ .
ations in the ELM-free H-mode in the highest frequency (48 GHz) channel with a the cut- off radius of = 0.6 [77]. The properties of these fluctuations were similar to the QCFs observed in I-phase (see Table 5), except for the fact that the QC fluctuations in ELM-free H-mode were not modulated by anything. They existed continuously during the period of ELM-free H-mode. Such QCFs were not detected in the spectra of the complex IQ sig- Appl. Sci. 2021, 11, 8975 14 of 19 nal. This, apparently, indicates that the poloidal scale of the fluctuations is much larger than the method resolution of π/k⊥. Evolutionofof Figure7.7.Evolution Figure DBS DBS amplitude amplitude forfor different different cut-off cut-off radii. radii. (a)(a) low-frequency low-frequency ELMs, ELMs, (b)(b) high- high- frequency frequencyELMs. ELMs.The Theturbulence turbulenceamplitude amplitudeofofeach eachDBS-channel DBS-channelisiscalculated calculatedinindifferent differentarbi- arbitrary trary unitsunits [76].[76]. 4.4.Conclusions Conclusions InInsummary, summary,thetheDBS DBSdiagnostics diagnosticswas wassuccessfully successfullyused usedtotostudy studyperipheral peripheralplasma plasma processes in the Globus-M tokamak. The application of this method was implemented on processes in the Globus-M tokamak. The application of this method was implemented ona spherical tokamak for the first time. Subsequently, DBS was implemented on a spherical tokamak for the first time. Subsequently, DBS was implemented on the spher- the spherical tokamak ical tokamak MAST MAST[8].[8]. The simultaneous applicationofofseveral The simultaneous application severalDBS DBSsystems systemslocated locatedatatdifferent differentpoloidal poloidal angles and with different probing frequencies made it possible to determine angles and with different probing frequencies made it possible to determine the spatial the spatial structure of different plasma processes. As a result, geodesic acoustic modes, limit cy- cle oscillations, quasi-coherent fluctuations, filaments, Alfven eigenmodes, and plasma turbulence were investigated. Two types of systems were used to study the radial distribution of GAMs: (1) two single-frequency systems with the possibility to change the probing frequency in the ranges of 18–26 GHz and 27–38 GHz, (2) a four-frequency system with fixed probing frequencies of 20, 29, 39, and 48 GHz. It turned out that the very narrow localization of GAMs near the periphery could only be studied in detail with the first type of system. It is worth noting, however, that discharge repetition in this case required much effort and additional diagnostics of various plasma parameters. It was not possible to construct a radial profile of the GAM oscillation amplitude using a four-frequency system, as the cut-offs for the selected frequencies were spaced much farther apart than the size of the GAM localization layer. Therefore, GAMs were only detected on the peripheral channel of the four-frequency system, whereas on other channels they were not observed. It was also useful for the purpose of GAM research to use poloidally spread single-frequency DBS systems positioned in a manner so that their cut-offs were located on the same magnetic surface. Such an application of DBS diagnostics in this configuration allowed for the determination of the poloidal mode number of the GAM velocity oscillations to be m = 0. A four-frequency DBS system was used with the intent to study LCO. In contrast to GAMs, the localization of the LCO turned out to be much wider, and all four DBS channels were able to detect oscillations at this frequency, albeit with different amplitudes. The study of fluctuations in the velocity and amplitude of turbulence at different radii had made it possible to investigate the characteristic properties of the development of LCO. The phase relationship between oscillations of velocity and turbulence amplitude near the top of the pedestal region corresponded to the interaction of zonal fluxes and turbulence observed on other devices (see [78], for example). Yet near the separatrix where both velocity and turbulence fluctuations were observed, their phase coupling changed and the velocity started to increase slightly earlier than the level of turbulence. These results contradict
Appl. Sci. 2021, 11, 8975 15 of 19 the known zero-dimensional model of the interaction of zonal flows and turbulence [48] and indicate that the description of LCO should be at least one-dimensional. A study of the spectral characteristics of the LCO oscillations on Globus-M showed an increase in their frequency when compared to larger devices. The dependence of the frequency of oscillations on the size of the devices cannot be predicted by a predator-prey model of coupling of zonal flows with turbulence. DBS was first utilized for filament research. Subsequently, the detection of filaments using DBS on the ASDEX Upgrade tokamak was reported [79]. The use of various probing frequencies on Globus-M made it possible to detect them both near the separatrix and in the more inner plasma regions. The simultaneous use of several probing frequencies allowed one to study their radial size. It had been found that the filaments that develop during ELMs are radially longer than the filaments that develop during inter-ELM periods. The use of poloidally spread DBS schemes helped investigate the localization of filaments and track their movement in the poloidal direction. The poloidal rotation velocity of the filaments, determined from the phase delay between the signals of the two poloidally spread antennas of the DBS diagnostic, was equal to the one determined from the Doppler frequency shift. Full-wave simulations of scattering on the filaments later confirmed the correctness of the interpretation of the obtained experimental data. For the first time, the DBS method had also been used to perform research into Alfven oscillations that had been detected in the phase derivative of the complex DBS signal. Alfven fluctuations in the phase of the complex IQ signal were detected in the DIII-D tokamak using reflectometry [80]. On Globus-M the application of a four-frequency probing system enabled us to study the radial distribution of the TAE amplitude. It was noted that there were no fluctuations in the probing frequencies corresponding to the regions near the separatrix. The largest oscillation amplitude values were recorded on the highest frequency channel. Such measurements demonstrated the need to develop the DBS diagnostics with a higher frequency range for the inner plasma area with the goal of TAE detection in the core region. The study of turbulence spectra led to the discovery of quasi-coherent fluctuations. Such fluctuations were detected in the ELM-free H-mode and I-phase near the top of the pedestal. The development of the QCFs was accompanied by a sharp increase in the local diffusion rate leading to the deformation of the density profile. The appearance of the QCF is associated with the development of ITG instability. All of the operational DBS systems are now utilized on the new and improved Globus- M2 tokamak. Moreover, the DBS diagnostic continues to evolve in response to the de- mand associated with the development of the scientific plans for the modernization of the tokamak. In particular, an additional six-channel DBS circuit with a frequency range of 50–75 GHz has recently been installed for core region research. In experiments that aimed to completely replicate the Globus-M working conditions that were favorable for the development of TAEs, the use of a high-frequency DBS system allowed to observe the decline in the TAE amplitude in the central region of the discharge and thus the final localization profile of these oscillations was determined [81]. Author Contributions: Conceptualization, A.Y. and V.B.; methodology, A.P. (Alexander Petrov); software, A.P. (Anna Ponomarenko); validation, A.Y., A.P. (Alexander Petrov) and A.P. (Anna Ponomarenko); formal analysis, A.Y.; investigation, A.Y.; resources, A.Y.; data curation, A.Y.; writing— original draft preparation, A.Y. and A.P. (Alexander Petrov); writing—review and editing, A.Y.; visualization, A.Y.; supervision, A.Y.; project administration, A.Y.; funding acquisition, A.Y. All authors have read and agreed to the published version of the manuscript. Funding: This research was funded by Ministry of Science and Higher Education of the Russian Federation: 0784-2020-0020. Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable.
You can also read