QUAX-aγ: Search for the QCD Axion with the LNF Haloscope - CLAUDIO GATTI FOR THE QUAX-LNF GROUP
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
QUAX-aγ: Search for the QCD Axion with the LNF Haloscope CLAUDIO GATTI FOR THE QUAX-LNF GROUP 1 FFF - LNF January 13th 2021
¡ QUAX R&D ¡ QUAX Experiment at LNF ¡ Multicavity approach a. The Resonant Cavities b. The Magnet OUTLINE c. Signal Amplification d. Data Acquisition e. Single Photon Detection 2
QUAX: Quest for Axions gd 5 µ⌫ gaN N µ 5 gaee µ 5 L = i a N̄ µ⌫ N F +i @µ a N̄ N +i @µ a ē e +ga aE·B 2 2mN 2me Quax-ag Quax-ae B0 B0 Axion DM Axion Wind M0 Coil Coil Ma Bc Bc Ec Ec Antenna Antenna 4 Amplifier Amplifier Cryostat Cryostat
QUAX-ae with Quantum-Limited Ferromagnetic Haloscope Phys. Rev. Lett. 124, 171801 (2020) EPJC (2018) 78:703 Experimental Setup B [T] 0.5 N. of GaYIG Sphere 10 (diameter =2.1 mm) ns [spin/m3] 2.1×1028 Ba < 5 10-19 T tmin [µs] 0.1 Frequency [GHz] 10.7 Cu-cavity Q (mode TM110) 50,000 Tcavity [mK] 90 T amplifier [K] (JPA) 0.5-1 6
QUAX-ag Searh for QCD Axion with ma=43 µeV -6 10 Axion Coupling |gag g | (GeV-1) PVLAS 10- 7 ALPS I -8 OSQAR 10 -9 10 10 - 10 CAST RBF+UF ORGAN 10- 11 QUAX-ag 10- 12 ADMX - 13 10 CAPP HAYSTAC 10- 14 D 10 - 15 QC Experimental Setup - 16 KS VZ 10 SZ B [T] 8 DF 10- 17 -6 -5 -3 10-7 10 10 10-4 10 10-2 10-1 Frequency [GHz] 10.4 Axion Mass ma (eV) Cu cavity Q (mode TM010) 76,000 7 Tcavity [mK] 100 Arxiv:2012.09498 Phys. Rev. D 99, 101101(R) (2019) T amplifier [K] (JPA) 0.5
QUAX 2021-2025 2021 2022 2023 2024 2025 Assembly of haloscopes at LNL and LNF Data Taking Scan in range 8.5 - 11 GHz 9
http://coldlab.lnf.infn.it VNA 20 GHz WFG 20GHz SA 20 GHz FET LNA 8-12 GHz and IQ-mixer (10-12 GHz) HEMT (6-20 GHz) 4K amplifier 4 RF lines installed from 300 K to MixCh Leiden CF-CS-110-1000 Room T ampli & DAQ Sumitomo PT 1.5 W at 4.2 K Cooldown time (with LN) 2 days Base temperature (measured) 8.5 mK Sample holder for SC chip at Cooling power at 100 mK 450 µW (up to 700 µW with a 10 10 mK for single photon (measured) new pumping system) device
QUAX-LNF Haloscope Tasks Cavity design & Fabrication Materials for resonant cavity • Cu • NbTi (LNL) • Nb3Sn (SQMS, LNL) • YBCO (Enea, Uni Roma Tre) Frequency tuning Feedline coupling Signal Amplification DART WARS SIMP Single Photon Detection SIMP SUPERGALAX Digitization&Acquisition (1GHz) Data analysis
QUAX-LNF Resonant Cavity 1) HFSS simulation 2) Superconducting 3) Frequency tuning single cavity coating Length 30 cm NbTi TM010 8.5 GHz Nb3Sn YBCO 4) Multicavity fabrication Di Gioacchino et al IEEE TRANS. APP. SUPERCOND. 29, 5 (2019) 12
13 Cancellation coil to host SC Delivery Summer 2021 New radiation screens 9T SC Magnet (AMI) 40 cm height 10 cm bore devices • • • • • • CF-CS110 Dimensions exper 1011 164 315 67 164.6 FC 200 85 120.6 SEE DETAIL C SCALE 0.120 MATERIAL: mbr.materiaal COMMENT: LEIDEN CRYOGENICS THIS DRAWING BELONGS SURFACE TREATMENT: TO LEIDEN CRYOGENICS IT IS GIVEN WITH THE FILE LOCATION: d:\\ProE\ \CF-CS110X3-2PT-TOT-OPEN. CONDITION THAT IT 09 SEP 2020 PROPRIETARY INFORMATION - DO NOT DISCLOSE WITHOUT AMI PERMISSION IS NOT COPIED, REPRINTED M25192.DSN RELATED TO: OR DISCLOSED EITHER IN FULL OR IN PART TO A THIRD PARTY WITHOUT Z-Axis (cm) THE WRITTEN CONSENTMENT OF LEIDEN CRYOGENICS CF-CS110X3-2PT-TO PART DESCRIPTION: 90 100 80 70 60 50 40 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 0 9T FIELD DIRECTION QUAX-LNF Magnet 5 10 10000g 15 5000g 20 25 30 1000g 35 40 R-Axis (cm) 500g 45 400g 50 300g 55 200g 60 65 70 75 100g 80 85 90 95 50g 100 Theoretical Stray Field Map (M25192) 9.0T-100mm CC Bucking Coil PROPRIETARY INFORMATION - DO NOT DISCLOSE WITHOUT AMI PERMISSION
Signal Amplification (DART WARS): TWJPA Travelling Wave Josephson Parametric Amplifiers amplify microwave signal over a broad range adding the minimum noise set by quantum mechanics. 14 Detector Array Readout with Travelling Wave AmplifieRS Call GRV approved by INFN
Signal Amplification: TWJPA fpump=18 GHz Pump On Preliminary results November 2020 Pump Off 15
DATA Acquisition and Analysis 3. Downconversion Power spectrum Noise Power=kBTDn 300 K LO Dn=10 kHz P(w) 100 MHz 30 dB I-Q 10 GHz RF IF 1 GHz 2. Amplification 30 dB 4K Continous readout 0 1 GHz 20 dB TWJPA 4. Acquisition 100 kHz 1. Detection 5. Analysis Storage 16 Signal Power 10-24 W
Single Microwave Photon Detection with JJ SIMP Single Microwave Photon detection JJ switch induced by incoming photon Incoming photon Flux bias EBL chip by CNR-IFN Simulation 17 J. Phys.: Conf. Ser. 1559 012020 DC SQUID Journal of Low Temperature Physics https://doi.org/10.1007/s10909-020-02381-x
Single Microwave Photon Detection with Qubits Network of N interacting superconducting qubits |CS> ΔωS ωc Supercon- |0> ω ducting coplanar wave guide E resonator Single microwave photon with frequency ω Magnetic field arXiv:2005.09250 PHYS. REV. X 10, 021038 (2020) arXiv:2008.12231
QUAX-LNF Group Quax LNF (CSN II) SIMP LNF (CSN V) DART WARS LNF (Call CSN V) Danilo Babusci Danilo Babusci Daniele Di Gioacchino Fabio Chiarello Daniele Di Gioacchino Claudio Gatti Daniele Di Gioacchino Claudio Gatti (RL) Giovanni Maccarrone Claudio Gatti (RN) Luca Piersanti Giovanni Maccarrone Giovanni Maccarrone Carlo Ligi (RL) Dario Moricciani Alessio Rettaroli Alessio Rettaroli Guido Torrioli SUPERGALAX LNF (H2020) Simone Tocci Luca Piersanti Daniele Di Gioacchino David Alesini David Alesini Claudio Gatti (RN) Thanks also to the collaboration of: Matteo Beretta Carlo Ligi S. Lauciani (mechanical design of resonant cavities) Carlo Ligi Carlo Ligi (RL) P. Ciambrone (servizio elettronica DR) P. Albicocco (DAQ) Bruno Buonomo G. Papalino (electronics support) Giulietto Felici G. Pileggi (mechanical support) 19 G. Ceccarelli (mechanical support) Luca Foggetta LNF mechanical workshop and services Sandro Gallo
You can also read