QUANTUM METROLOGY AND TESTS OF FUNDAMENTAL PHYSICS WITH TRAPPED IONS - DAVIDHUME, NIST, IONSTORAGEGROUP KITP WORKSHOP MAY 3, 2021

Page created by Fernando Ingram
 
CONTINUE READING
QUANTUM METROLOGY AND TESTS OF FUNDAMENTAL PHYSICS WITH TRAPPED IONS - DAVIDHUME, NIST, IONSTORAGEGROUP KITP WORKSHOP MAY 3, 2021
Quantum Metrology and Tests of
Fundamental Physics with Trapped Ions
 David Hume, NIST, Ion Storage Group
 KITP Workshop
 May 3, 2021
QUANTUM METROLOGY AND TESTS OF FUNDAMENTAL PHYSICS WITH TRAPPED IONS - DAVIDHUME, NIST, IONSTORAGEGROUP KITP WORKSHOP MAY 3, 2021
Outline

I. Precision measurements with trapped ions
II. Tests of fundamental physics
III. Extending the reach of trapped-ion
 measurements
 A. Quantum logic spectroscopy
 B. Improving measurement stability

5/3/2021 D. Hume
QUANTUM METROLOGY AND TESTS OF FUNDAMENTAL PHYSICS WITH TRAPPED IONS - DAVIDHUME, NIST, IONSTORAGEGROUP KITP WORKSHOP MAY 3, 2021
Outline

I. Precision measurements with trapped ions
II. Tests of fundamental physics
III. Extending the reach of trapped-ion
 measurements
 A. Quantum logic spectroscopy
 B. Improving measurement stability

5/3/2021 D. Hume
QUANTUM METROLOGY AND TESTS OF FUNDAMENTAL PHYSICS WITH TRAPPED IONS - DAVIDHUME, NIST, IONSTORAGEGROUP KITP WORKSHOP MAY 3, 2021
Trapped Atomic Ions

A “Single Atomic Particle Forever
 Floating at Rest in Free Space”
 Hans Dehmelt
• Quantum-limited experiments
• Long interaction times Hans Dehmelt 1988 Phys.
 Scr. 1988 102
• Small relativistic shifts
• Small perturbation from EM fields
 + Strong, controllable
Predicted resolution of 1x10-18
 interactions between ions
 5/3/2021 D. Hume
QUANTUM METROLOGY AND TESTS OF FUNDAMENTAL PHYSICS WITH TRAPPED IONS - DAVIDHUME, NIST, IONSTORAGEGROUP KITP WORKSHOP MAY 3, 2021
Principle of Optical Clocks

 Femtosecond Laser

 Drive atomic resonance 0.1 s – 10 s
 Laser

 Atomic System

 Frequency feedback
 ~0.1 Hz
 11:00 am

 Clock frequency: ≈1015 Hz
5/3/2021 D. Hume 5
QUANTUM METROLOGY AND TESTS OF FUNDAMENTAL PHYSICS WITH TRAPPED IONS - DAVIDHUME, NIST, IONSTORAGEGROUP KITP WORKSHOP MAY 3, 2021
Atomic Clock Performance
 ( )/ 0 = 1 + + 

 Accuracy Stability
• Systematic uncertainty in clock frequency.
 • Average fractional frequency variations
• Two types of shifts
 • Typically characterized by the Allan deviation:
 1. Field shifts e.g. Zeeman shift and
 black body shift
 2. Motional shifts e.g. Relativistic
 Doppler 1 1 
 ( ) ≅ 
 2
 ∆ ⃗ � � 2 ⃗ � �
 = − 2 − +⋯
 2 2 2

 5/3/2021 D. Hume 6
QUANTUM METROLOGY AND TESTS OF FUNDAMENTAL PHYSICS WITH TRAPPED IONS - DAVIDHUME, NIST, IONSTORAGEGROUP KITP WORKSHOP MAY 3, 2021
Trends in Precision Frequency Metrology
 In recent years, optical frequency measurements have. . .
…improved more than 100x in accuracy …been applied to a vast array of atomic species
 …extended across continental
 distances

 + Molecules
 + Highly-charged ions
 +…

…approached quantum limits in precision …found numerous applications in fundamental and applied physics

 M. S. Safronova, D. Budker, D. J. Kimball, D. Demille, A. Derevianko, C. W. Clark

 5/3/2021 D. Hume 7
QUANTUM METROLOGY AND TESTS OF FUNDAMENTAL PHYSICS WITH TRAPPED IONS - DAVIDHUME, NIST, IONSTORAGEGROUP KITP WORKSHOP MAY 3, 2021
Outline

I. Precision measurements with trapped ions
II. Tests of fundamental physics
III. Extending the reach of trapped-ion
 measurements
 A. Quantum logic spectroscopy
 B. Improving measurement stability

5/3/2021 D. Hume
QUANTUM METROLOGY AND TESTS OF FUNDAMENTAL PHYSICS WITH TRAPPED IONS - DAVIDHUME, NIST, IONSTORAGEGROUP KITP WORKSHOP MAY 3, 2021
Searching for Spacetime-Variation in Clock Frequencies
 ̇
 
 = −5.3 2.3 × 10−17 /year
 −1.6 ± 7.9
 
 × 10-15

 1 
 ( ) =
 2 ( )
 
What might cause clock frequencies to vary? 
• Drifts in the fundamental constants
• Violations of relativity theory
 • Local position invariance
 • Lorentz invariance
• Coupling to exotic particles or fields
 • Ultralight dark matter (mass ~ 10-22 – 10-15 eV)

 5/3/2021 D. Hume 9
QUANTUM METROLOGY AND TESTS OF FUNDAMENTAL PHYSICS WITH TRAPPED IONS - DAVIDHUME, NIST, IONSTORAGEGROUP KITP WORKSHOP MAY 3, 2021
Boulder Atomic Clock Optical Network

 + ⁄ = 2.162 887 127 516 663 703(13)
 + ⁄ = 2.611 701 431 781 463 025(21)
 ⁄ = 1.207 507 039 343 337 848 2(82)
 Beloy et al., Nature 591, 564 (2021)
 5/3/2021 D. Hume 10
New Bounds on Ultralight Dark Matter
Search for oscillations in the frequency ratio

 Compton Frequency:

 Atom, transition 
 199Hg+, 2 
 1/2 → 2 5/2 - 3.0
 27Al+, 1 
 0 → 3 0 + 0.0079
 171Yb, 1 
 0 → 3 0 + 0.31 disfavored by astrophysical
 87Sr, 1 3 +0.06 observations
 0 → 0

 ~ 10X improvement over several orders of magnitude in mass
Depends on dark matter density (0.4 GeV/cm3), Beloy et al., Nature 591, 564 (2021)
coupling constant (de) and atom-dependent sensitivity
 5/3/2021 D. Hume 11
Testing Lorentz Symmetry

 Sanner et al., Nature 567, 204 (2019)

5/3/2021 D. Hume 12
Outline

I. Precision measurements with trapped ions
II. Tests of fundamental physics
III. Extending the reach of trapped-ion
 measurements
 A. Quantum logic spectroscopy
 B. Improving measurement stability

5/3/2021 D. Hume
Quantum logic spectroscopy (QLS)
 Sympathetic cooling + state detection using a quantum gate
 1. Cool to motional ground-state with qubit
 2. Sideband pulse on Al+ (excites state-dependent motion)
 3. Detect vibrational quantum with qubit
 QND measurement can also serve as state preparation
 0.8 0.14
 27Al+ 25Mg+ 27Al+ 3P D. J. Wineland, et al.
 27Al+ 1S 0 Proc. 6th Symp. Freq.
 0.7 0 0.12
 Mean = 1.3 Mean = Stds. and Metr. (2001)
 Brewer et al., PRL 123, 033201 (2018) 0.6
 0.1 6.9 P.O. Schmidt, et al.

 Probability
 3P , mF = 7/2 0.5 Science 309, 749 (2005)

 Probability
 1 0.08
 F = 2, mF = -2 0.4
 3P , mF = 5/2
 0 0.06
25Mg+ blue 0.3 T. Rosenband, et al.
 PRL 98, 220801 (2007)
 sideband 0.04
 0.2
 red 27Al+
 sideband 0.1 0.02 D. B. Hume, et al.
 PRL 99, 120502 (2007)
 1S 0 0
 F = 3, mF = -3 0, mF = 5/2 0 10 20 0 10 20
 PMT counts
 Photon counts Photon counts
 5/3/2021 D. Hume 14
Quantum logic spectroscopy in new systems
Zeeman sublevels in the ground state of Al+ Highly-charged ions (here Ar13+)

 Micke et al., Nature 578, 60 (2020)

 Molecular ions (CaH+, MgH+)

 Chou et al., Science 367, 6485 (2020)
 Wolf et al., Nature 530, 7591 (2016)
 Hume et al., PRL 107 24392 (2011)

 5/3/2021 D. Hume 15
An Atomic Observatory for Fundamental Physics
 Space clock
Features: Relativity,
• Broad science reach
 Gravitational waves
 • QED, fundamental constants,
 relativity, dark matter, gravitational Core Ensemble
 waves… Lattice clock
 MASER
• Modular and extensible
• Core ensemble based on proven
 technology
 Optical frequency comb
• Science modules (local or remote) Free-Space
 connected via fiber optic or free-space Transceiver
 links

 Optical cavity
 .μ,Molecular Ions Ion clock
 dark matter…
 Highly-charged Ions Mobile clock
 .
 α, QED…
 .α,Nuclear Clock
 nuclear physics… Relativity, Geodesy
Outline

I. Precision measurements with trapped ions
II. Tests of fundamental physics
III. Extending the reach of trapped-ion
 measurements
 A. Quantum logic spectroscopy
 B. Improving measurement stability

5/3/2021 D. Hume
Improving measurement stability
 Example of the Al+ optical clock
 Δ 1 
 =
 2 0 
 Assuming:
 • No technical noise Measured against 171Yb clock
 • Uncorrelated atomic states
 • Global addressing
 Higher-stability laser
 Larger atom number
 Longer measurement
 (more robust operation)

 Brewer et al., PRL 123, 033201 (2018)

 5/3/2021 D. Hume 18
Scaling up Quantum Logic Spectroscopy?

 … …
 25Mg+ 27Al+

5/3/2021 D. Hume
A Schrödinger Cat Interferometer
 Sensitive detection of ion motional displacement

Motional phase-space picture

 1. Qubit π/2 pulse 2. State-dependent 3. Unknown 4. Reverse SDD 5. Qubit π/2 pulse,
 Displacement (SDD) displacement Detect
 p p p p p

 φ φ

 x x x x x

 |↓⟩ |↑⟩ 1
 |↓⟩ + |↑⟩ ↓⟩ − ⟩ |↑⟩ |+ ⟩ |− + ⟩ |+ + ⟩ −2 φ |↓⟩ + 2 φ |↑⟩ ↓ = 1 + cos 4φ
 2

 Unknown displacement affects qubit populations via a geometrical phase
 5/3/2021 D. Hume
Demonstrations/Applications of Cat States
 Detecting single-photon recoils

 Monroe et al., Science 272, 1131 (1996)

Studying motional decoherence Benhelm et al., Nat. Phot. 7, 630 (2013)

 Sensitive force detection

 Gilmore et al., PRL
 118, 263602 (2017)

Turchette et al., PRA 62, 053807 (2000)

5/3/2021 D. Hume
Cat state spectroscopy
 Mg+ MS 1 Al+ Al+ MS Mg+ MS 2
 Mg+ Cooling Mg+ Detection
 = 0 carr. = = 
 2 2

 ~ 1 ms ~ 20 us ~ 3 us ~ 20 us ~ 20 us ~ 100 us

 3P , mF = 7/2
 1
 F = 2, mF = -2

 rsb
Mg+ rsb bsb bsb Al+

 1S
 F = 3, mF = -3 0, mF = 5/2

 5/3/2021 D. Hume
Detection Efficiency
 Each qubit ion acts as an independent detector of the clock ion state
 State detection is more efficient at the Doppler limit
 3P , mF = 7/2
 1
F = 2, mF = -2
 3P , mF = 5/2
 0

 rsb
rsb bsb bsb

 1S
F = 3, mF = -3 0, mF = 5/2

 5/3/2021 D. Hume
Reaching the Projection Noise Limit
 Both the spectroscopy ions and the logic ions will contribute to the projection noise

 NL: number of “logic ions”
 NS: number of “spectroscopy ions” 10 0

 N
 L

 32 ion Ramsey experiment

 Phase Uncertainty
 1

 N = 32, N = 32 2
 20 L S

 4
 10 1/N
 1/2
 L

 S
 8
m

 0
,

 16
 L
m

 -10
 32
 64
 -1 128
 10
 -20

 0 1 2
 -1 -0.5 0 0.5 1 10 10 10
 /2 N
 Number of Spectroscopy
 S
 Ions

 5/3/2021 D. Hume
Outline

I. Precision measurements with trapped ions
II. Tests of fundamental physics
III. Extending the reach of trapped-ion
 measurements
 A. Quantum logic spectroscopy
 B. Improving measurement stability

5/3/2021 D. Hume
Improving measurement stability
 Example of the Al+ optical clock
 Δ 1 
 =
 2 0 
 Assuming:
 • No technical noise Measured against 171Yb clock
 • Uncorrelated atomic states
 • Global addressing
 Higher-stability laser
 Larger atom number
 Longer measurement
 (more robust operation)
 New techniques to mitigate laser noise
 Brewer et al., PRL 123, 033201 (2018)

 5/3/2021 D. Hume 26
Probing Beyond the Laser Coherence Time I
 Decoherence free subspace
 Synchronized laser pulses
Clock A: /2 Free evolution T /2 Detect

 Free evolution T
 
Clock B: /2 2
 +ф Detect

 Measure 2-atom parity after second /2 pulse

 Common-mode laser noise

 Clements et al. PRL 125, 243602 (2020)

 5/3/2021 D. Hume 27
Probing Beyond the Laser Coherence Time IV
Comparisons between different clock species?

 Hume PRA 93,
 032138 (2016)

 Doerscher Comm. Phys. 3, 185 (2020)

 5/3/2021 D. Hume 28
Thanks!
 Ion Storage Group

 5/3/2021 D. Hume 29
You can also read