Pixelated detectors for present and future light sources at Elettra - Ralf Hendrik Menk on behalf of many of us

Page created by Darrell Benson
 
CONTINUE READING
Pixelated detectors for present and future light sources at Elettra - Ralf Hendrik Menk on behalf of many of us
Pixelated detectors for present and future light
 sources at Elettra

 Ralf Hendrik Menk on behalf of many of us
 Elettra Sincrotrone Trieste, Italy
 INFN, Trieste, Italy
 University Trieste, Italy
 Midsweden University, Sundsvall, Sweden
Pixelated detectors for present and future light sources at Elettra - Ralf Hendrik Menk on behalf of many of us
Elettra I 150 ps bunch, 2 ns spacing (Elettra II)

 CNR IOM

Seeded Fermi FEL 50 Hz, 150 fs pulse
Pixelated detectors for present and future light sources at Elettra - Ralf Hendrik Menk on behalf of many of us
What we need in accelerator
 based photon science with
 X-rays

 If we can we buy detectors, we will do otherwise we have to develope
• Imaging detectors (Elettra / Fermi)
 • Low energy (30 eV – 2000 eV), frame rate ≥ 50 Hz, pixel size ≥ 5 µm x 5 µm, D ≥ 16 bit
 • mid to high energy (10 keV – 60 keV), frame rate ≥ 1 Hz,
 • Pixel size ≤ 50 µm x 50 µm (direct conversion), spectroscopic properties
 • Pixel size ≤ 5 µm x 5 µm (indirect conversion)
• High Z materials ( III – V group elements -> sufficient absorption for high photon energies )
• Ultra fast single photo counters ( ≤ 100 ) (requires avalanche processes, high mobility)
• Low time jitter (Δ ≤ 10 )
• Scalable multi element Spectroscopic detectors (beamlines want collect more solid angle)

 Valuable properties also in other fields (Astrophysics, HEP, medical imaging, etc)
 12/13/2022 Menk 3
Pixelated detectors for present and future light sources at Elettra - Ralf Hendrik Menk on behalf of many of us
Starting point: state-of-the-art technology Low-powe
 INFN-TS FBK SIRIO preamplifier low noise
 Very-low leakage SIRIO cio, et al. PoliMI preampl. i
 current production Low-power and very- technolog
 process was • Power: 10
 INFN-TS FBK 13 mm2 SDD
 developed at FBK SIRIO preamplifier output buffe
 • Typical: < 150 pA/cm2
 low noise optimized • ENC of 1.2
 • 0.9 e- r.m.s.
 • Minimum: 25 pA/cm2 SIRIO PoliMI
 Very-low leakage preampl. in sub-micron
 109/TNS.2015.2513602

 measurements
 Andrea Vacchi INFN
 sactions on Nuclear Science

 current production

 Main properties:
 technology PoliMI

 20pA/cm2 @20ºC)
 +20
 ❖ 450 µm Si thickness

 ❖ Low leakageTcurrent
 process was

 ❖ Thin entrance window
 • Power: 10 mW including the

 C
 13 mm2 SDD
 6, Volume: 63, Issue: 1Pages: 400 - 406,

 ❖ Implants for temperature
 developed at FBK output buffer

 0(down
 G. Bertuccio, et al., IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 1, FEBRUARY 2016
 • ENC of 1.27 e- r.m.s. at 22 °C
 Trapezoidal SDDs for soft

 • Typical: < 150 pA/cm2 Counts Andrea Vacchi INFN Nov. 4 2016
 X-ray microscopeTwinMic

 • 0.9 e- r.m.s. at -30°C

 600
 800
 1000
 1200
 1400
 1600

 Nov. 4 2016 ATTRACT Symposium
 ❖ Low anode capacitance ( ⁓30 fF) 0 0
 • Minimum: 25 pA/cm2

 to 400 Noise
 corner
 200 165eV

 1
 Pulser

 2
 -

 3
 (7.4 e r.m.s)
 peak

 64 eV FWHM

 4
 = 1.4 s
 T = +20oC
 LC-SDD 13 mm 2

 SIRIO 3G Preamp.

 Energy (keV)
 5
 FWHM
 136 eV

 6
 5.9 keV

 55
 Fe

 7
 6.49 keV
 icon Drift Detector–CMOS Front-End System with High Energy Resolution at Room Temperature

 beam line
 G. Bertuccio, et al., IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 1, FEBRUARY 2016

 Andrea Vacchi INFN Nov. 4 2016 ATTRACT Symposium
SDDs for X-ray fluorescence spectroscophy (XAFS)
 SDD systems for Elettra I /II
Pixelated detectors for present and future light sources at Elettra - Ralf Hendrik Menk on behalf of many of us
EXAFS SDD

 11

t o a few hundred count s per second in each det ect or element . T he spect rum present ed

in t he right panel of Fig.3 required about 12 hours, averaging 18 energy scans. Despit e

t he higher st at ist ical noise in t he dat a, t he main spect ral feat ures are clear t o be used

for reliable quant it at ive analysis t o assess t he Cr local coordinat ion chemist ry in t he

sample.

 Diluted samples in Ca matrix
Pixelated detectors for present and future light sources at Elettra - Ralf Hendrik Menk on behalf of many of us
Needs for new solutions: increase
 Imaging detector user throughput
 Ag 120 mg /ml
 Sample holder

 Synchrotron light Asbestos fiber in lung tissue

vs new detector systems

 SDD backscatter Br 160 mg/ml

 1.5 mm
 Operating energies: 183 eV (Kα B) – 2 keV

 2018 JI
 Novel SDD detector
ent TwinMic detector system
 system
 8-8 4 - 32
 FWHM
 240 88 eV 1230
 4 27
 35,1 195,0
 100 556
 Menk 6
 10:00 1:48
 4
Pixelated detectors for present and future light sources at Elettra - Ralf Hendrik Menk on behalf of many of us
Needs for new solutions: increase
 user throughput
 Ag 120 mg /ml

 In 200 mg /ml

 Elettra - PCO collaboration (Gpixel Gsense Pulsar sensor)
 BSI Sensor Towerjazz Br 160 mg/ml
 Absorption Refraction x Scattering x
 1.5 mm

 Siemens Star pattern Virtual pixel size 300 nm

 R.H. Menk et al 2022 JINST 17 C01058
 DOI 10.1088/1748-0221/17/01/C01058
12/13/2022 Menk 7
 4
Pixelated detectors for present and future light sources at Elettra - Ralf Hendrik Menk on behalf of many of us
50Hz Fermi FEL operation
 Optical delay line to elucidate the coherent
 length for each bunch

 H10 H06

 H6 τFEL ≈ 66.4 fs
 λ = 41.67 nm
 FFT FFT

Simoncig, A. AC/DC: The FERMI FEL Split and Delay Optical Device for Ultrafast X-ray Science, Photonics, vol. 9, issue 5, p. 314, 2022
Pixelated detectors for present and future light sources at Elettra - Ralf Hendrik Menk on behalf of many of us
,K. Bagschi k, N. G uerr
 ini, B.Ma rsh, I. Sedgw i ck, in a mode suppressing

te
reela
 r,a
 d,
 Tnd
 .
 NiHch.Gll
 o r
 sada
 ,f
 Ws.
 ma
 Ni
 ca,
 f
 h,
 i d
 ols ,U.Peder send, P. Shi k ha e❖d,
 li
 ,F. Orsi
 nig, A. Da wiecg,
 F.
 PERCIVAL
 Büttnerk,B. Pf a uj,
 CMOS
 R. Ba tti
 imager
 stellik,
 Note: data rate up to 20 Gbit/s
 C.B.
 A. M

 P
za,ixe
 R.la
 PSe
 nans
 , oGra
 S. CM
 ngaOS
 ,B.Keitela,a
 Higher framerate, a
 ndH . P
 GEraRCI
 a f VA L
 sma
 higher
 ,@
 fi P
 , dynamic
 0 4:H ologr
 a phy
 Operation mode (1) H ologr
 a phy
 Percival 2MM onoli
 thicflavors
 A cti ❖ePi
 x elSe nso r CM OS
 Two Holography
 “P2M”
 (with Beam Stop) (
 withoutBea m Stop)
 sensor
 4 x 4 cm2
 1) BSI (low energy
 27 x 27 mm2 pixels
 • O❖ er2 Mi
 1408x1484 lli
 pixels
 X-rays)
 on 27x27mm2 pixels Percival 2M “P2M”
 sensor
 • 4⚫4cm2 monoli thi
 ci2) FSI (high energy
 magingar
 ea 4 x 4 cm2
 27 x 27 mm2 pixels
 • 1–50 0 0 0photons a t250eV,1 5e-RMS
 X-rays 1408x1484 pixels

 • 2-
 si
 8deb
 ADCs ut
 per ta ble⚫ clo❖er
 column leafforFEL
 (scintillators))
 • Full-
 sensordesi
 gn f
 ramer
 a te300Hz
 8 ADCs per column
 (demanding massive parallelization on-chip)
 beamstop
 Lateral Overflow
 The pixel is based on a 3T structure enhanced with a Lateral Overflow
 series of switches and capacitors connected in The pixel is based on a 3T structure enhanced with a
 parallel. Embedded lateral overflow circuitry series of switches and capacitors connected in
 increases the capacity of each individual pixel on aparallel. Embedded lateral overflow circuitry
 frame-to-frame basis, adapting to the photon flux. increases the capacity of each individual pixel on a
 frame-to-frame basis, adapting to the photon flux.

 Beamstop-(frame)-induced-features
 FTH FTH
 e- Back-thinned (~12 µm) e- Back-thinned (~12 µm)
 Wafer Post-Processing Note the
 & shallow doping
 J. Correa et al. The PERCIVAL&detector:
 shallow first
 doping
 user experiments, Journal of synchrotron radiation , Volume 30| Part 1| January 2023| lack of
 streaking
 Different wafer post-process options have been
 https://doi.org/10.1107/S1600577522010347 from beam
 investigated: stop frame
 artefacts!
 ⚫ -doping implemented by JPL/NASA consists
 of Low Temperature Molecular Beam Epitaxy to nmos -in p-well (avoid
 nmos
 bring the window entrance thickness to -in
 fewp-well
 nm (avoidpartially-pinned parasitic collection)
 partially-pinned parasitic collection) photodiode
Pixelated detectors for present and future light sources at Elettra - Ralf Hendrik Menk on behalf of many of us
PERCIVAL CMOS imager
 FSI + CsI scintillator
 Gold nano particle loaded tumor cells implanted in a rat brain

G. Pinaroli et al 2020 JINST 15 C02007
DOI 10.1088/1748-0221/15/02/C02007
SYRMEP beamline Spectral imaging (PIXIRAD CdTe)

 Fixed radius frames
 Radius = 0.5 m
 Focus ~ 0.25 m
 Pixirad 8 -
 detector

 Bent Laue
 Iodine Xenon ∆�
 crystal ≈ 50
White beam ��

 dE = 0.1 keV
 33.2 keV

 ΔE = 5 keV
 Energy

 Sample
 stage 34.6 keV

 Horizontal position 1 cm
 12/13/2022 Menk 11
Tomographic multi-material imaging
 Iodine
 Iodine
 Xenon
 Xenon Iodine Tomographic
 Xenon Iodine
 Xenon reconstruction
 Energy

 Barium
 Barium
 Multi-material
 Barium decomposition
 Barium
 An
(s g
 am ula
 pl r po Multi-material
 e
 ro siti Linear Position density maps
 ta on
 tio
 n)
 iodine

 Goal: simultaneous barium
 cardiovascular + respiratory + xenon
 inflammatory imaging!
 water

 1 cm

 12/13/2022 Menk 12
19

 bin1 - [21, 26] keV bin2 - [26, 33] keV bin3 - [33, 37] keV bin4 - [37, 42] keV

 5 mm

 bin5 - [42, 47] keV bin6 - [47, 50] keV bin7 - [50, 57] keV bin8 - [57, ∞[ keV

L.Brombal Unpublished data INFN PEPI Lab.

12/13/2022 Menk 13
Iodine Barium Gadolinium Soft tissue Bone

 g/ml g/ml g/ml g/ml g/ml

 5 mm

 Composite image

 Nominal Measured
 iodine [mg/ml] [mg/ml]

 barium Iodine 40 37.6 ± 0.8

 gadolinum Barium 35 30.2 ± 0.5
 bone Gadolinium 39 41.2 ± 0.4
 soft tissue

 L.Brombal Unpublished data INFN PEPI Lab.
12/13/2022 Menk 14
GaAs SAM-APD
 PRIN 2015 number 2015WMZ5C8

Partners
• Uni Udine -> simulations
• Uni Trieste -> experiments
• CNR IOM -> MBE
• EST -> electronics and tests Menk 15
(Partial) status and future
 directions

 • Spectroscopic XRF system is mature and being commercialized
 • Twinmic system has still to be improved (less bulky)
 • Spectral X-ray imaging for Elettra II life science beam line
 • Crystal based
 • Detector based
 • Respin Percival (mitigating remaining shortcomings) -> choice
 for high end experiments
 • PCO Gsense -> will become workhorses
 • GaAs APD pixel arrays
 • THz pixel detector (Attract II )

 • SiC pixel detector (SAL, Austria)

12/13/2022 Menk 16
Co authors
 Ralf Hendrik Menk(1,2,3) , M. Antonelli(2), G. Aquilanti(1), P. Bellutti(4,5), G. Bertuccio(6,7), G.
 Borghi(4,5), G. Cautero(1,2), D. Cirrincione(2,8), F. Ficorella(4,5), M. Gandola(6,7), A.
 Gianoncelli(1), D. Giuressi(1,2), G. Kourousias(1), F. Mele(7,8), L. Olivi(3), G. Orzan(1), A.
 Picciotto(4,5), M. Sammartini(6,7), A. Rachevski(2), I. Rashevskaya(5), L. Stebel(1), G.
 Zampa(2), N. Zampa(2), N. Zorzi(4,5) and A. Vacchi(2,8)

 (1) Elettra-Sincrotrone Trieste, Italy, (2) INFN Trieste, Padriciano, 99, Italy, (3) University of Saskatchewan, Saskatoon, Canada,
 (4) Fondazione Bruno Kessler, Povo, Italy, (5) TIFPA – INFN, Povo, Italy, (6) Politecnico di Milano, Via Anzani, 42, 22100 Como
 (CO), Italy, (7) INFN Milano, Via Celoria 16, 20133 Milano (MI), Italy, 8) University of Udine, Via delle Scienze 206, 33100 Udine
 (UD), Italy

 J. Correaa,f, C.B. Wunderera,f, A. Marrasa,f, V. Felka,f, T. Hironoa,f, F. Krivana, S. Langea,f,
 I. Shevyakova, V. Vardanyana,f, M. Zimmera, M. Hoescha, K. Bagschika, N. Guerrinia, B. Marshb, I.
 Sedgwickb,G. Cauteroc, D. Giuressic, R.H. Menkc,h, L. Stebelc, A. Greerd, T. Nichollsd, W. Nicholsd,
 U. Pedersend, P. Shikhalievd, N. Tartonid, H.J. Hyune, K.S. Kime, S.H. Kime, S.Y. Parke, F. Orsinig, A.
 Dawiecg, F. Büttnerk, B. Pfauj, R. Battistellik, E. Plönjesa, M. Mehrjooa, K. Kharitonova, M. Ruiz-
 Lopeza, R. Pana, S. Ganga, B. Keitela, and H. Graafsmaa,f,i
 a DESY, b Rutherford Lab, c Elettra, d Diamond light source, e, PAL, f CFEL, g Soleil, h University of Saskatchewan, I Midsweden
 University, j Max Born institute, k HZB

12/13/2022 Menk 17
Co authors
 Di Trapani, Vittorio1; Oliva, Piernicola2; Arfelli, Fulvia1,3 ; Brombal, Luca1,3 ; Menk, Ralf H.3,4,5 ;
 Delogu, Pasquale6,7
 1). University Trieste, 2). University Sassary, 3.) INFN Trieste, 4). University of Saskatchewan, 5). Elettra Sincrotrone Trieste, 6).
 INFN Pisa, 7). University Siena

 Tereza Steinhartova1,3, Camilla Nichetti1,2, Matias Antonelli2, Giuseppe Cautero2,4, Dario De
GaAs APD

 Angelis1, Alessandro Pilotto6, Francesco Driussi6, Pierpaolo Palestri6, Luca Selmi7, Fulvia
 Arfelli1,4 , Giorgio Biasiol3, Ralf Hendrik Menk2,4,5

 1). University Trieste, 2). Elettra-Sincrotrone Trieste 3).IOM CNR, 4). INFN Sezione di Trieste. 5). University of Saskatchewan,
 6).DPIA, University of Udine, 7). University of Modena and Reggio Emilia,

12/13/2022 Menk 18
Thank you

12/13/2022 Menk 19
You can also read