Pixelated detectors for present and future light sources at Elettra - Ralf Hendrik Menk on behalf of many of us
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Pixelated detectors for present and future light sources at Elettra Ralf Hendrik Menk on behalf of many of us Elettra Sincrotrone Trieste, Italy INFN, Trieste, Italy University Trieste, Italy Midsweden University, Sundsvall, Sweden
What we need in accelerator based photon science with X-rays If we can we buy detectors, we will do otherwise we have to develope • Imaging detectors (Elettra / Fermi) • Low energy (30 eV – 2000 eV), frame rate ≥ 50 Hz, pixel size ≥ 5 µm x 5 µm, D ≥ 16 bit • mid to high energy (10 keV – 60 keV), frame rate ≥ 1 Hz, • Pixel size ≤ 50 µm x 50 µm (direct conversion), spectroscopic properties • Pixel size ≤ 5 µm x 5 µm (indirect conversion) • High Z materials ( III – V group elements -> sufficient absorption for high photon energies ) • Ultra fast single photo counters ( ≤ 100 ) (requires avalanche processes, high mobility) • Low time jitter (Δ ≤ 10 ) • Scalable multi element Spectroscopic detectors (beamlines want collect more solid angle) Valuable properties also in other fields (Astrophysics, HEP, medical imaging, etc) 12/13/2022 Menk 3
Starting point: state-of-the-art technology Low-powe INFN-TS FBK SIRIO preamplifier low noise Very-low leakage SIRIO cio, et al. PoliMI preampl. i current production Low-power and very- technolog process was • Power: 10 INFN-TS FBK 13 mm2 SDD developed at FBK SIRIO preamplifier output buffe • Typical: < 150 pA/cm2 low noise optimized • ENC of 1.2 • 0.9 e- r.m.s. • Minimum: 25 pA/cm2 SIRIO PoliMI Very-low leakage preampl. in sub-micron 109/TNS.2015.2513602 measurements Andrea Vacchi INFN sactions on Nuclear Science current production Main properties: technology PoliMI 20pA/cm2 @20ºC) +20 ❖ 450 µm Si thickness ❖ Low leakageTcurrent process was ❖ Thin entrance window • Power: 10 mW including the C 13 mm2 SDD 6, Volume: 63, Issue: 1Pages: 400 - 406, ❖ Implants for temperature developed at FBK output buffer 0(down G. Bertuccio, et al., IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 1, FEBRUARY 2016 • ENC of 1.27 e- r.m.s. at 22 °C Trapezoidal SDDs for soft • Typical: < 150 pA/cm2 Counts Andrea Vacchi INFN Nov. 4 2016 X-ray microscopeTwinMic • 0.9 e- r.m.s. at -30°C 600 800 1000 1200 1400 1600 Nov. 4 2016 ATTRACT Symposium ❖ Low anode capacitance ( ⁓30 fF) 0 0 • Minimum: 25 pA/cm2 to 400 Noise corner 200 165eV 1 Pulser 2 - 3 (7.4 e r.m.s) peak 64 eV FWHM 4 = 1.4 s T = +20oC LC-SDD 13 mm 2 SIRIO 3G Preamp. Energy (keV) 5 FWHM 136 eV 6 5.9 keV 55 Fe 7 6.49 keV icon Drift Detector–CMOS Front-End System with High Energy Resolution at Room Temperature beam line G. Bertuccio, et al., IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 1, FEBRUARY 2016 Andrea Vacchi INFN Nov. 4 2016 ATTRACT Symposium SDDs for X-ray fluorescence spectroscophy (XAFS) SDD systems for Elettra I /II
EXAFS SDD 11 t o a few hundred count s per second in each det ect or element . T he spect rum present ed in t he right panel of Fig.3 required about 12 hours, averaging 18 energy scans. Despit e t he higher st at ist ical noise in t he dat a, t he main spect ral feat ures are clear t o be used for reliable quant it at ive analysis t o assess t he Cr local coordinat ion chemist ry in t he sample. Diluted samples in Ca matrix
Needs for new solutions: increase Imaging detector user throughput Ag 120 mg /ml Sample holder Synchrotron light Asbestos fiber in lung tissue vs new detector systems SDD backscatter Br 160 mg/ml 1.5 mm Operating energies: 183 eV (Kα B) – 2 keV 2018 JI Novel SDD detector ent TwinMic detector system system 8-8 4 - 32 FWHM 240 88 eV 1230 4 27 35,1 195,0 100 556 Menk 6 10:00 1:48 4
Needs for new solutions: increase user throughput Ag 120 mg /ml In 200 mg /ml Elettra - PCO collaboration (Gpixel Gsense Pulsar sensor) BSI Sensor Towerjazz Br 160 mg/ml Absorption Refraction x Scattering x 1.5 mm Siemens Star pattern Virtual pixel size 300 nm R.H. Menk et al 2022 JINST 17 C01058 DOI 10.1088/1748-0221/17/01/C01058 12/13/2022 Menk 7 4
50Hz Fermi FEL operation Optical delay line to elucidate the coherent length for each bunch H10 H06 H6 τFEL ≈ 66.4 fs λ = 41.67 nm FFT FFT Simoncig, A. AC/DC: The FERMI FEL Split and Delay Optical Device for Ultrafast X-ray Science, Photonics, vol. 9, issue 5, p. 314, 2022
,K. Bagschi k, N. G uerr ini, B.Ma rsh, I. Sedgw i ck, in a mode suppressing te reela r,a d, Tnd . NiHch.Gll o r sada ,f Ws. ma Ni ca, f h, i d ols ,U.Peder send, P. Shi k ha e❖d, li ,F. Orsi nig, A. Da wiecg, F. PERCIVAL Büttnerk,B. Pf a uj, CMOS R. Ba tti imager stellik, Note: data rate up to 20 Gbit/s C.B. A. M P za,ixe R.la PSe nans , oGra S. CM ngaOS ,B.Keitela,a Higher framerate, a ndH . P GEraRCI a f VA L sma higher ,@ fi P , dynamic 0 4:H ologr a phy Operation mode (1) H ologr a phy Percival 2MM onoli thicflavors A cti ❖ePi x elSe nso r CM OS Two Holography “P2M” (with Beam Stop) ( withoutBea m Stop) sensor 4 x 4 cm2 1) BSI (low energy 27 x 27 mm2 pixels • O❖ er2 Mi 1408x1484 lli pixels X-rays) on 27x27mm2 pixels Percival 2M “P2M” sensor • 4⚫4cm2 monoli thi ci2) FSI (high energy magingar ea 4 x 4 cm2 27 x 27 mm2 pixels • 1–50 0 0 0photons a t250eV,1 5e-RMS X-rays 1408x1484 pixels • 2- si 8deb ADCs ut per ta ble⚫ clo❖er column leafforFEL (scintillators)) • Full- sensordesi gn f ramer a te300Hz 8 ADCs per column (demanding massive parallelization on-chip) beamstop Lateral Overflow The pixel is based on a 3T structure enhanced with a Lateral Overflow series of switches and capacitors connected in The pixel is based on a 3T structure enhanced with a parallel. Embedded lateral overflow circuitry series of switches and capacitors connected in increases the capacity of each individual pixel on aparallel. Embedded lateral overflow circuitry frame-to-frame basis, adapting to the photon flux. increases the capacity of each individual pixel on a frame-to-frame basis, adapting to the photon flux. Beamstop-(frame)-induced-features FTH FTH e- Back-thinned (~12 µm) e- Back-thinned (~12 µm) Wafer Post-Processing Note the & shallow doping J. Correa et al. The PERCIVAL&detector: shallow first doping user experiments, Journal of synchrotron radiation , Volume 30| Part 1| January 2023| lack of streaking Different wafer post-process options have been https://doi.org/10.1107/S1600577522010347 from beam investigated: stop frame artefacts! ⚫ -doping implemented by JPL/NASA consists of Low Temperature Molecular Beam Epitaxy to nmos -in p-well (avoid nmos bring the window entrance thickness to -in fewp-well nm (avoidpartially-pinned parasitic collection) partially-pinned parasitic collection) photodiode
PERCIVAL CMOS imager FSI + CsI scintillator Gold nano particle loaded tumor cells implanted in a rat brain G. Pinaroli et al 2020 JINST 15 C02007 DOI 10.1088/1748-0221/15/02/C02007
SYRMEP beamline Spectral imaging (PIXIRAD CdTe) Fixed radius frames Radius = 0.5 m Focus ~ 0.25 m Pixirad 8 - detector Bent Laue Iodine Xenon ∆� crystal ≈ 50 White beam �� dE = 0.1 keV 33.2 keV ΔE = 5 keV Energy Sample stage 34.6 keV Horizontal position 1 cm 12/13/2022 Menk 11
Tomographic multi-material imaging Iodine Iodine Xenon Xenon Iodine Tomographic Xenon Iodine Xenon reconstruction Energy Barium Barium Multi-material Barium decomposition Barium An (s g am ula pl r po Multi-material e ro siti Linear Position density maps ta on tio n) iodine Goal: simultaneous barium cardiovascular + respiratory + xenon inflammatory imaging! water 1 cm 12/13/2022 Menk 12
19 bin1 - [21, 26] keV bin2 - [26, 33] keV bin3 - [33, 37] keV bin4 - [37, 42] keV 5 mm bin5 - [42, 47] keV bin6 - [47, 50] keV bin7 - [50, 57] keV bin8 - [57, ∞[ keV L.Brombal Unpublished data INFN PEPI Lab. 12/13/2022 Menk 13
Iodine Barium Gadolinium Soft tissue Bone g/ml g/ml g/ml g/ml g/ml 5 mm Composite image Nominal Measured iodine [mg/ml] [mg/ml] barium Iodine 40 37.6 ± 0.8 gadolinum Barium 35 30.2 ± 0.5 bone Gadolinium 39 41.2 ± 0.4 soft tissue L.Brombal Unpublished data INFN PEPI Lab. 12/13/2022 Menk 14
GaAs SAM-APD PRIN 2015 number 2015WMZ5C8 Partners • Uni Udine -> simulations • Uni Trieste -> experiments • CNR IOM -> MBE • EST -> electronics and tests Menk 15
(Partial) status and future directions • Spectroscopic XRF system is mature and being commercialized • Twinmic system has still to be improved (less bulky) • Spectral X-ray imaging for Elettra II life science beam line • Crystal based • Detector based • Respin Percival (mitigating remaining shortcomings) -> choice for high end experiments • PCO Gsense -> will become workhorses • GaAs APD pixel arrays • THz pixel detector (Attract II ) • SiC pixel detector (SAL, Austria) 12/13/2022 Menk 16
Co authors Ralf Hendrik Menk(1,2,3) , M. Antonelli(2), G. Aquilanti(1), P. Bellutti(4,5), G. Bertuccio(6,7), G. Borghi(4,5), G. Cautero(1,2), D. Cirrincione(2,8), F. Ficorella(4,5), M. Gandola(6,7), A. Gianoncelli(1), D. Giuressi(1,2), G. Kourousias(1), F. Mele(7,8), L. Olivi(3), G. Orzan(1), A. Picciotto(4,5), M. Sammartini(6,7), A. Rachevski(2), I. Rashevskaya(5), L. Stebel(1), G. Zampa(2), N. Zampa(2), N. Zorzi(4,5) and A. Vacchi(2,8) (1) Elettra-Sincrotrone Trieste, Italy, (2) INFN Trieste, Padriciano, 99, Italy, (3) University of Saskatchewan, Saskatoon, Canada, (4) Fondazione Bruno Kessler, Povo, Italy, (5) TIFPA – INFN, Povo, Italy, (6) Politecnico di Milano, Via Anzani, 42, 22100 Como (CO), Italy, (7) INFN Milano, Via Celoria 16, 20133 Milano (MI), Italy, 8) University of Udine, Via delle Scienze 206, 33100 Udine (UD), Italy J. Correaa,f, C.B. Wunderera,f, A. Marrasa,f, V. Felka,f, T. Hironoa,f, F. Krivana, S. Langea,f, I. Shevyakova, V. Vardanyana,f, M. Zimmera, M. Hoescha, K. Bagschika, N. Guerrinia, B. Marshb, I. Sedgwickb,G. Cauteroc, D. Giuressic, R.H. Menkc,h, L. Stebelc, A. Greerd, T. Nichollsd, W. Nicholsd, U. Pedersend, P. Shikhalievd, N. Tartonid, H.J. Hyune, K.S. Kime, S.H. Kime, S.Y. Parke, F. Orsinig, A. Dawiecg, F. Büttnerk, B. Pfauj, R. Battistellik, E. Plönjesa, M. Mehrjooa, K. Kharitonova, M. Ruiz- Lopeza, R. Pana, S. Ganga, B. Keitela, and H. Graafsmaa,f,i a DESY, b Rutherford Lab, c Elettra, d Diamond light source, e, PAL, f CFEL, g Soleil, h University of Saskatchewan, I Midsweden University, j Max Born institute, k HZB 12/13/2022 Menk 17
Co authors Di Trapani, Vittorio1; Oliva, Piernicola2; Arfelli, Fulvia1,3 ; Brombal, Luca1,3 ; Menk, Ralf H.3,4,5 ; Delogu, Pasquale6,7 1). University Trieste, 2). University Sassary, 3.) INFN Trieste, 4). University of Saskatchewan, 5). Elettra Sincrotrone Trieste, 6). INFN Pisa, 7). University Siena Tereza Steinhartova1,3, Camilla Nichetti1,2, Matias Antonelli2, Giuseppe Cautero2,4, Dario De GaAs APD Angelis1, Alessandro Pilotto6, Francesco Driussi6, Pierpaolo Palestri6, Luca Selmi7, Fulvia Arfelli1,4 , Giorgio Biasiol3, Ralf Hendrik Menk2,4,5 1). University Trieste, 2). Elettra-Sincrotrone Trieste 3).IOM CNR, 4). INFN Sezione di Trieste. 5). University of Saskatchewan, 6).DPIA, University of Udine, 7). University of Modena and Reggio Emilia, 12/13/2022 Menk 18
Thank you 12/13/2022 Menk 19
You can also read