Microfluidics Two Phase Flows - SLUG FLOWS - DEWS
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
2/4/2022 1 Microfluidics Two‐Phase Flows SLUG FLOWS CELL FLOWS Microfluidics Microfluidics High Nonlinearity Macro‐fluidics Standard 100µm 320µm 640µm 1 mm 2 1
2/4/2022 TWO‐PHASE FLOW IN MICROCHANNELS NAVIER STOKES EQUATION STOKES EQUATION ? Divergence of Stress INPUT‐1 Inertia over a Volume Other Body Force INPUT‐2 ui ui 2u j ui Fi p t xj xi x j 2 PROCESS NONLINEARITY ANALYTICAL MODELS: Strictly correlated with ADVANTAGEOUS the with the case study Two Fluids Interaction Higher velocities COMPUTATIONAL FLUID DYNAMICS MODELS: Lack of analytical solution and high Straight Or Curved Geometry Low process time computational level Viscous Force is not so greater Enhancement of the fluids mixing NO SUITABLE FOR ON‐CHIP APPLICATIONS! than Inertial Force Chemical reaction irreversibility IDEA: MOVE TO A DATA‐DRIVE APPROACH 3 MICROFLUIDICS ENGINEERING PLATFORM OPTICAL DETECTION 4 2
2/4/2022 EXPERIMENTAL SET UP OUTPUT WATER AIR 5 SLUGS FLOW IN MICROCHANNELS water air front air air rear BY OPTICAL‐ SIGNALS WATER [50-500] ms [50-350] ms 5 ms 5 ms FRONT AIR REAR 6 3
2/4/2022 FLOWS & Numbers… Air Fraction Capillary Number Reynolds Number AF Vair Ca V Re V Dh Vair Vwater Ca O(10 2 ) M. Bringer et al., Phil. Trans. R. Soc. Lond., 2004 7 INPUT FLOW RATES & the Numbers CONDITION 1 ‐ AT THE INLETS •NO FLUID DOMINANCE (AF=0.5) •VARYING THE VELOCITY CONDITION 2 ‐ AT THE INLETS • FLUID DOMINANCE (AF≠0.5) • VARYING THE VELOCITY 320 µm 640 µm min max INPUT FLOW RATE (ml/min) 0.1 10 INPUT FLOW RATE (cm/s) 0.5 50 CAPILLARY NUMBER 0.015 *10‐2 1.5 *10‐2 AIR FRACTION 10% 90% REYNOLD NUMBER 0.1 30 TRANSITORY 1 mim 2 min 8 4
2/4/2022 SLUG FLOW CHARACTERIZATION INSIDE THE MICRO‐CHANNEL INPUT FLOW RATE, CHANNEL GEOMETRY, FLUIDS …WATER OR AIR DOMINANCE? BY OPTICAL SIGNALS 9 …WATER OR AIR DOMINANCE? WATER 5000 AIR INSIDE X: -0.00311 Y: 4251 Peak1 µchannel 4000 3000 WATER INSIDE Occurance AIR Peak2 µchannel X: 0.01056 Y: 1822 2000 1000 delta (%) Peak 2 Peak1 *100 0 -0.01 -0.005 0 0.005 0.01 0.015 max(Peak1, Peak 2) Luminous intensity Bucolo et al., Experimental Study on the Slug Flow in a Serpentine Micro‐channel , Exp. Thermal and Fluid science (2016) 10 5
2/4/2022 THE INPUT FLOWS AT THE INLETS ARE THE SOME (AF=0.5) WATER DOMINANCE SLOW TRANSITION ZONE FAST ANNULAR 11 100 ‐‐‐ SLOW (V 1 ml/min) 50 de lta (% ) 0 AIR DOMINANCE -50 -100 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Air Fraction INPUT WATER INPUT AIR DOMINANCE DOMINANCE 12 6
2/4/2022 SLUG FLOW CHARACTERIZATION INSIDE THE MICRO‐CHANNEL INPUT FLOW RATE, CHANNEL GEOMETRY, FLUIDS …PROCESS NONLINEARITY? IN FAST DYNAMICSNONLINEAR EFFECT IN THE SLUGS DISPLACEMENT (V≥ 1ml/min) BY OPTICAL SIGNALS 13 …PROCESS NONLINEARITY? METHOD 1ANALYSIS IN FREQUENCY DOMAIN 1 0.8 Signal (V) 0.6 0.4 0.2 0 8 8.5 9 9.5 10 Time (s) 12 10 Spectrum 8 • THE PEAK FREQUENCY 6 • THE AREA UNDER THE GAUSSIAN 4 2 0 0 20 40 60 80 100 Frequency(Hz) Bucolo et al., Experimental Study on the Slug Flow in a Serpentine Micro‐channel , Exp. Thermal and Fluid science (2016) 14 7
2/4/2022 3 5 5 AF=0.18 AF=0.43 AF=0.73 20 [ 8 15 6 15 10 4 10 2 5 5 p 65 70 75 80 85 20 30 40 60 70 80 Frequency[Hz]) Frequency[Hz]) Frequency[Hz]) WATER DOMINANCE AIR DOMINANCE 15 …PROCESS NONLINEARITY? Bucolo et al., Experimental Classification of Nonlinear Dynamics in Microfluidics Bubbles’ Flow, Nonlinear Dynamics (2012) Bucolo et al., Periodic Input Flows Tuning Nonlinear Two‐phase Dynamics in a Snake Micro‐channel, Microfluidics and Nanofluidics (2011) METHOD 2NONLINEAR TIME SERIES ANALYSIS 16 8
2/4/2022 Air 40Hz-Water 5Hz Air 15Hz-Water 20Hz Air 30Hz-Water 35Hz Air 5Hz-Water 15Hz 17 FLOW INSIDE THE µCHANNEL? Bucolo et al., Experimental Classification of Nonlinear Dynamics in Microfluidics Bubbles’ Flow, Nonlinear Dynamics (2012) Bucolo et al., Periodic Input Flows Tuning Nonlinear Two‐phase Dynamics in a Snake Micro‐channel, Microfluidics and Nanofluidics (2011) 18 9
2/4/2022 PLATFORM FOR SLUG FLOW REAL‐TIME MONITORING 19 INPUT FLOW RATES EXP‐SET3 EXP‐SET1 0.9 PHOTODIODE Fair [ml/min] EXP‐SET2 OPTO‐MECHANICAL ACQUISITION 0.5 SETUP CCD ACQUISITION 0.1 0.1 0.5 0.9 Fwater [ml/min] M. Bucolo et. al. , Real‐Time Detection of Slug Velocity in Microchannels, Micromachines, 2020 20 10
2/4/2022 VELOCITY & FREQUENCY OF THE SLUGS PASSAGE 1.4 Hz SIGNAL SPECTRUM WATER PASSAGE 10 Hz FREQUENCY OF THE AIR PASSAGE SLUGS PASSAGE SLUGS VELOCITY 21 FREQUENCY OF THE SLUGS PASSAGE ‐ EXP‐SET 1 A LONG WATER‐SLUG A LONG WATER‐SLUG A TRAIN OF SMALL FOLLOWED BY A TRAIN OF AND A SMALL AIR‐SLUG WATER/AIR SLUGS AIR‐SLUGS 0,2 ml/min 0,4 ml/min 0,6 ml/min 0,9 ml/min 22 11
2/4/2022 SLUGS VELOCITY‐ EXP‐SET 1 LONG WATER‐SLUGS A LONG WATER‐SLUG A TRAIN OF SMALL FOLLOWED BY A TRAIN OF AND A SMALL AIR‐SLUG WATER/AIR SLUGS AIR‐SLUGS 0,2 ml/min 0,4 ml/min 0,6 ml/min 0,9 ml/min 23 REAL‐TIME SLUG FLOWS VELOCITY M. Bucolo et. al. , Real‐Time Detection of Slug Velocity in Microchannels, Micromachines, 2020 24 12
2/4/2022 REAL‐TIME SLUG FLOWS VELOCITY FR = 0.3 ml/min FR= 0.5 ml/min FR = 0.7 ml/min 25 26 13
2/4/2022 PLATFORM FOR SLUGS FLOW REAL‐TIME CONTROL 27 CLOSED LOOP REAL‐TIME CONTROL: IMPLEMENTATION SYRINGE PUMPS TWO‐PHASE PROCESS OPTO‐ MECHANICAL PHOTODIODE SETUP ACQUISITION SOFT SENSORS CONTROL LAW CONTROL DATA ACQUISITION VISUALIZATION LAW ANALYSIS Desired Timeout [s] Number of cycles Error in frequency [Hz] Frequency [Hz] Sample rate [Hz] Spectrum peak [Hz] Flow rate change [ml/min] Amplitude [V] Signals and Spectra plot M. Bucolo et. al. , A Real Time Feed Forward Control of Slug Flow in Microchannels, Energies (2019) 28 14
2/4/2022 CLOSED CONTROL LOOP FR’w,a=FRw,a+FR Hypothesis pdes + p y Control p=slug frequency FRW = FRA ‐ Law Σ FRW,A = M * p + Q pact ( pdes , FRdes ) Soft p = pdes – pact sensor STOP CONDITIONS If ( FRdes ThMAX | p|< ThMIN else ThMAX = 3 Hz ThMIN = 0.5 Hz ΔFR T T r r a S a n n ‐ThMAX ‐ThMIN T ThMIN ThMAX p s s i O i e P e n n t t 29 CLOSED LOOP REAL‐TIME CONTROL: THE PLATFORM FREQDES = 1 HZ FREQDES = 5 HZ FREQDES = 10 HZ Freq = 1.12 Hz Freq = 4.95 Hz Freq = 10.33 Hz 30 15
2/4/2022 MICRO‐OPTOFLUIDICS IN A SISTEM‐ON‐CHIP • FREQUENCY OF THE SLUGS PASSAGE • SLUGS VELOCITY 31 WHAT WE NEED …. PDMS based OPTICS Technology MICRO‐OPTICS TRANSPARANCE BIOCOMPATIBILITY OPTICAL PROPERTY FLUIDCS MECHANICS CHEMICAL PROPERTY INTEGRATION CMOS COMPATIBLE MICRO‐FLUIDCS MICRO‐MECHANICS RAPID PROTOTYPE MEMS ELECTRONICS SOFT‐LITHOGRAPHY MICRO‐ELECTRONICS 32 16
2/4/2022 PDMS MICRO‐OPTIC INTERFACE PHOTODIODE ACQUISITION PUMPS MICROFLUIDIC OPTO‐MECHANICAL LIGHT CHANNEL SETUP CCD ACQUISITION PHOTODIODE ACQUISITION PUMPS MICROFLUIDC MICRO‐OPTIC CHANNEL INTERFACE LASER CCD ACQUISITION 33 PDMS MICRO‐OPTIC INTERFACE ‐1 nair=1 nPDMS=1.41 34 17
2/4/2022 PDMS MICRO‐OPTIC INTERFACE ‐1 SLUGs FLOW DETECTION RBCs FLOW DETECTION Bucolo et al, A Polymeric Mirco‐optical Interface for Flow Monitoring in Biomicrofluidics, Biomicrofluidics. (2009) 35 PDMS MICRO‐OPTIC INTERFACE ‐2 LOCAL ACTION DISTRIBUTED ACTION OUTPUT OPTIC FIBER DETECTION 4 LIGTH WAVELENGTHS 4 INPUT OPTIC FIBERS Bucolo et al., A Polimeric Micro‐optical System for Spatial Monitoring in Two‐Phase Microfluidics, Microfluidics and Nanofluidics (2012) 36 18
2/4/2022 PDMS MICRO‐OPTOFLUIDIC DEVICES PDMS based Technology TRANSPARANCE BIOCOMPATIBILITY EMBEDDED MICRO‐ OPTICAL PROPERTY OPTO FLUIDIC DEVICE CHEMICAL PROPERTY CMOS COMPATIBLE RAPID PROTOTYPE 3D‐PRINTING 37 PDMS MICRO‐OPTOFLUIDIC DEVICES: FABRICATION Design of the project Exposition of master’s surfaces to UV‐light and realization by 3D printer for 1 hour at 35°C 35 °C Put the beaker in the Inject liquid PDMS in Extraction of the device oven for 36 hours the beaker 38 19
2/4/2022 PDMS MICRO‐OPTOFLUIDIC DEVICES: CONCEPT PHOTODIODE ACQUISITION PUMPS MICROFLUIDC MICRO‐OPTIC CHANNEL INTERFACE LASER CCD ACQUISITION PHOTODIODE ACQUISITION PUMPS MICRO‐OPTOFLUIDIC LASER DEVICE CCD ACQUISITION 39 PDMS MICRO‐OPTOFLUIDIC DEVICES: SET‐UP 40 20
2/4/2022 MICRO‐OPTOFLUIDC FLOW DETECTOR‐1 Chip size 10 cm AIR WATER 400 Two-Phase Flow Acquisition 3 OF1 OF2 2.5 2 Voltage (V) 1.5 1 0.5 0 0 100 200 300 400 500 600 700 800 900 1000 Counts Bucolo et al, 3D Printed Embedded PDMS Micro‐Optofluidcs Switch, Microfluidics and Nanofluidics ,2016 41 MICRO‐OPTICAL COMPONENTS PDMS WAVEGUIDE Bucolo et al, Micro‐Optical Waveguides Realization by Low‐Cost Technologies, Micro (2022) PDMS MIRROR Bucolo et al, Advanced technologies in the fabrication of a micro‐optical light splitter, Micro and Nano Eng. J. (submitted) 42 21
2/4/2022 Refractive index nPDMS =1.41 MICRO‐OPTOFLUIDC FLOW DETECTORS‐2 nWater = 1.33 nAir =1 nGold =0.47 Signal 6 5 4 Voltage [Volt] 3 2 1 0 1mW 5 mW 10 mW Water 0,15 ml/mm –Air 0,3 ml/mm -1 0 20 40 60 80 100 120 Time [sec] Bucolo et al, 3D‐Printed micro‐optofluidic device for chemical fluids and cells detection, Biomedical Microdevices, 2020 43 MICRO‐OPTOFLUIDC VELOCITY DETECTORS D1 PDMS micro‐optofluidic velocity detector with gold‐ VeroClear micro‐splitter PDMS micro‐splitter. D2 PDMS micro‐optofluidic velocity detector with VeroClear micro‐splitter. 44 22
2/4/2022 WHAT’S NEXT? 45 MICRO‐OPTOFLUIDICS IN A SISTEM‐ON‐CHIP PROCESSES MODELLING AND CONTROL MICRO‐OPTOFLUIDC DEVICES REALIZATION 46 23
2/4/2022 CELLS FLOW INVESTIGATION BY HYDRODYNAMIC RESPONSE In Vivo In Vitro • Bucolo et. al., CNN Real‐time Technology for the Analysis of Microfluidic Phenomena In Blood Vessel, Nanotechnology (2006) • M. Bucolo et al., Microfluidics real‐time monitoring using CNN technology, IEEE Trans. on Biomedical Circuits and Systems (2008) • M. Bucolo et al., Hydrodynamic study of biological fluids in micro‐channels for cell classification, Biomicrofluidics (submitted) • M. Bucolo et al., Emergent behaviors in RBCs flows in micro‐channels using digital particle image velocimetry, Microvascular Research (2018) • M. Bucolo et al., Quantitative Analysis of Spatial Irregularities in RBCs Flows, Chaos Solitons and Fractals (2018) • M. Bucolo et al., DPIV analysis of RBCs flows in serpentine micro‐channel, European conf. on circuit theory and design (ECCTD 2017) 47 CELL FLOWS INVESTIGATION BY HYDRODYNAMIC RESPONSE FROM Digital Particle Image Velocimetry (DPIV) TO Optical Signals TIME DOMAIN FREQUENCY DOMAIN 2 20 A = 0 .1 A=0.1 0 10 -2 0 0 1 2 3 4 5 6 7 8 9 0 10 20 30 40 50 5 48 24
2/4/2022 RBCsCELLS RED BLOOD FLOWS: FLOWS IN‐VITRO IN MICRO‐CHANNEL RECTILINEAR CHANNEL f=0.1 Hz A=0.1 mmHg f=0.1 Hz A=10 mmHg f=0.1 Hz A=100 mmHg A B C A B C A B C WEAK VORTICITY ALIGNMENT 49 RBCs BEHAVIORAL CLASSIFICATION ALIGNMENT VORTICITY WEAK 50 25
2/4/2022 HeLa Cells Yeast Cells MicroBeads 51 APPLICATIONS IDEAS…… BLOOD AND MICRO‐CIRCULATION INVESTIGATION • blood viscosity • RBC aggregation • Artificial blood CELLS DIFFERENTIATION BASED ON THEIR DYNAMICAL BEHAVIOR • under pressure stress • under temperature stress • Cell interaction 52 26
2/4/2022 THANKS TO: • Dr. FRANCESCA SAPUPPO • Dr. FLORINDA SCHEMBRI • Dr. PRINCIA ANADAN • Dr. SEVI GAGLIANO • Dr. FABIANA CAIRONE • ENG GIOVANNA STELLA 53 27
You can also read