Microfluidics Two Phase Flows - SLUG FLOWS - DEWS

Page created by Ruth Patel
 
CONTINUE READING
Microfluidics Two Phase Flows - SLUG FLOWS - DEWS
2/4/2022

1

      Microfluidics
    Two‐Phase Flows
                                                 SLUG FLOWS
               CELL FLOWS

                              Microfluidics
    Microfluidics
                            High Nonlinearity       Macro‐fluidics
     Standard
                    100µm   320µm        640µm   1 mm

2

                                                                           1
Microfluidics Two Phase Flows - SLUG FLOWS - DEWS
2/4/2022

                       TWO‐PHASE FLOW IN MICROCHANNELS

              NAVIER STOKES EQUATION                                          STOKES EQUATION     ?
                                                       Divergence of Stress
                                                                                        INPUT‐1
           Inertia over a Volume    Other Body Force

                                                                                                        INPUT‐2
          ui      ui                               2u j
             ui                   Fi   p  
            t       xj                     xi     x j
                                                           2
                                  

      PROCESS NONLINEARITY
    ANALYTICAL MODELS: Strictly correlated with ADVANTAGEOUS
                                                the with the case study
       Two Fluids Interaction                   Higher velocities
    COMPUTATIONAL FLUID DYNAMICS MODELS: Lack of analytical solution and high
       Straight Or Curved Geometry              Low process time
    computational level
       Viscous Force is not so greater          Enhancement of the fluids mixing
                        NO SUITABLE FOR ON‐CHIP APPLICATIONS!
        than Inertial Force                      Chemical reaction irreversibility
                         IDEA: MOVE TO A DATA‐DRIVE APPROACH

3

                    MICROFLUIDICS ENGINEERING PLATFORM

                                                                                    OPTICAL DETECTION

4

                                                                                                                        2
Microfluidics Two Phase Flows - SLUG FLOWS - DEWS
2/4/2022

                                                               EXPERIMENTAL SET UP

                                                OUTPUT

                WATER                 AIR

5

                      SLUGS FLOW IN MICROCHANNELS

        water                       air front            air                 air rear

                  BY OPTICAL‐ SIGNALS

                      WATER

        [50-500] ms   [50-350] ms                                   5 ms   5 ms

    FRONT AIR         REAR

6

                                                                                              3
Microfluidics Two Phase Flows - SLUG FLOWS - DEWS
2/4/2022

                                     FLOWS & Numbers…

          Air Fraction                    Capillary Number                  Reynolds Number
                                                                                  
         AF 
                     Vair
                                              Ca  V                           Re  V Dh
                Vair  Vwater                                                     
                                                       Ca  O(10 2 )

          M. Bringer et al., Phil. Trans. R. Soc. Lond., 2004

7

                      INPUT FLOW RATES & the Numbers

    CONDITION 1 ‐ AT THE INLETS
    •NO FLUID DOMINANCE
     (AF=0.5)
    •VARYING THE VELOCITY

    CONDITION 2 ‐ AT THE INLETS
    • FLUID DOMINANCE (AF≠0.5)
    • VARYING THE VELOCITY
                                                         320 µm                         640 µm

                                                                           min          max
                                           INPUT FLOW RATE (ml/min)         0.1          10
                                           INPUT FLOW RATE (cm/s)           0.5          50
                                           CAPILLARY NUMBER             0.015 *10‐2   1.5 *10‐2
                                           AIR FRACTION                    10%          90%
                                           REYNOLD NUMBER                   0.1          30
                                           TRANSITORY                     1 mim        2 min

8

                                                                                                        4
Microfluidics Two Phase Flows - SLUG FLOWS - DEWS
2/4/2022

           SLUG FLOW CHARACTERIZATION
             INSIDE THE MICRO‐CHANNEL

             INPUT FLOW RATE, CHANNEL GEOMETRY, FLUIDS

                              …WATER OR AIR DOMINANCE?

                                                         BY OPTICAL SIGNALS

9

                                …WATER OR AIR DOMINANCE?

                           WATER
                                                                         5000
                                                                                                   AIR INSIDE
                                                                                           X: -0.00311
                                                                                           Y: 4251

                                                                                  Peak1             µchannel
                                                                         4000

                                                                         3000                                                 WATER INSIDE
                                                             Occurance

                AIR                                                                                            Peak2
                                                                                                                               µchannel
                                                                                                                              X: 0.01056
                                                                                                                              Y: 1822
                                                                         2000

                                                                         1000

       delta (%) 
                       Peak 2  Peak1 *100                               0
                                                                          -0.01   -0.005        0        0.005         0.01            0.015
                      max(Peak1, Peak 2)                                                      Luminous intensity

Bucolo et al., Experimental Study on the Slug Flow in a Serpentine Micro‐channel , Exp. Thermal and Fluid science (2016)

10

                                                                                                                                                     5
Microfluidics Two Phase Flows - SLUG FLOWS - DEWS
2/4/2022

                                                 THE INPUT FLOWS AT THE INLETS ARE THE SOME (AF=0.5)

                  WATER DOMINANCE
                                                       SLOW

                                                              TRANSITION
                                                                 ZONE
                                                                               FAST
                                                                                          ANNULAR

11

                                    100                                                   ‐‐‐ SLOW (V 1 ml/min)

                                     50
                  de lta (% )

                                      0
AIR DOMINANCE

                                     -50

                                    -100
                                           0.2        0.3      0.4       0.5        0.6       0.7      0.8
                                                                     Air Fraction
                                             INPUT WATER                             INPUT AIR
                                              DOMINANCE                             DOMINANCE

12

                                                                                                                         6
Microfluidics Two Phase Flows - SLUG FLOWS - DEWS
2/4/2022

                        SLUG FLOW CHARACTERIZATION
                          INSIDE THE MICRO‐CHANNEL

                        INPUT FLOW RATE, CHANNEL GEOMETRY, FLUIDS

                                   …PROCESS NONLINEARITY?

                             IN FAST DYNAMICSNONLINEAR EFFECT IN THE SLUGS
                                        DISPLACEMENT (V≥ 1ml/min)

                                                      BY OPTICAL SIGNALS

13

                                  …PROCESS NONLINEARITY?

                          METHOD 1ANALYSIS IN FREQUENCY DOMAIN
                   1

                  0.8
     Signal (V)

                  0.6

                  0.4

                  0.2

                   0
                    8       8.5       9         9.5                     10
                                   Time (s)
                                                                  12

                                                                  10
                                                       Spectrum

                                                                   8

     • THE PEAK FREQUENCY                                          6
     • THE AREA UNDER THE GAUSSIAN                                 4
                                                                   2

                                                                   0
                                                                    0        20   40         60         80         100
                                                                                  Frequency(Hz)

 Bucolo et al., Experimental Study on the Slug Flow in a Serpentine Micro‐channel , Exp. Thermal and Fluid science (2016)

14

                                                                                                                                  7
Microfluidics Two Phase Flows - SLUG FLOWS - DEWS
2/4/2022

                        3                                           5                                            5
        AF=0.18                                    AF=0.43                                   AF=0.73
                                                                                              20

       [
         8                                        15
           6                                                                                    15
                                                  10
           4                                                                                    10
           2                                        5                                            5

       p
                65 70 75 80         85               20        30       40                           60         70       80
                 Frequency[Hz])                            Frequency[Hz])                                 Frequency[Hz])

                    WATER DOMINANCE                                                              AIR DOMINANCE

15

                                      …PROCESS NONLINEARITY?

Bucolo et al., Experimental Classification of Nonlinear Dynamics in Microfluidics Bubbles’ Flow, Nonlinear Dynamics (2012)

Bucolo et al., Periodic Input Flows Tuning Nonlinear Two‐phase Dynamics in a Snake Micro‐channel, Microfluidics and Nanofluidics (2011)

     METHOD 2NONLINEAR TIME SERIES ANALYSIS

16

                                                                                                                                                8
Microfluidics Two Phase Flows - SLUG FLOWS - DEWS
2/4/2022

              Air 40Hz-Water 5Hz

                                                       Air 15Hz-Water 20Hz
                                                                                                      Air 30Hz-Water 35Hz

                                                                                                     Air 5Hz-Water 15Hz

17

                                 FLOW INSIDE THE µCHANNEL?

Bucolo et al., Experimental Classification of Nonlinear Dynamics in Microfluidics Bubbles’ Flow, Nonlinear Dynamics (2012)

Bucolo et al., Periodic Input Flows Tuning Nonlinear Two‐phase Dynamics in a Snake Micro‐channel, Microfluidics and Nanofluidics (2011)

18

                                                                                                                                                9
Microfluidics Two Phase Flows - SLUG FLOWS - DEWS
2/4/2022

                              PLATFORM FOR SLUG FLOW
                               REAL‐TIME MONITORING

19

                                                  INPUT FLOW RATES
                                   EXP‐SET3     EXP‐SET1
                       0.9
                                                                                   PHOTODIODE
       Fair [ml/min]

                                    EXP‐SET2               OPTO‐MECHANICAL         ACQUISITION
                       0.5                                      SETUP
                                                                                      CCD
                                                                                   ACQUISITION
                       0.1
                             0.1           0.5      0.9
                                    Fwater [ml/min]

 M. Bucolo et. al. , Real‐Time Detection of Slug Velocity in Microchannels, Micromachines, 2020

20

                                                                                                       10
2/4/2022

         VELOCITY & FREQUENCY OF THE SLUGS PASSAGE

                                    1.4 Hz
                                                               SIGNAL SPECTRUM
                                         WATER PASSAGE

                                                  10 Hz
     FREQUENCY OF THE                                  AIR PASSAGE
       SLUGS PASSAGE

      SLUGS VELOCITY

21

         FREQUENCY OF THE SLUGS PASSAGE ‐ EXP‐SET 1
                                    A LONG WATER‐SLUG
         A LONG WATER‐SLUG                                       A TRAIN OF SMALL
                                 FOLLOWED BY A TRAIN OF
        AND A SMALL AIR‐SLUG                                     WATER/AIR SLUGS
                                         AIR‐SLUGS
             0,2 ml/min        0,4 ml/min         0,6 ml/min         0,9 ml/min

22

                                                                                         11
2/4/2022

                             SLUGS VELOCITY‐ EXP‐SET 1
                                          LONG WATER‐SLUGS
           A LONG WATER‐SLUG                                              A TRAIN OF SMALL
                                       FOLLOWED BY A TRAIN OF
          AND A SMALL AIR‐SLUG                                            WATER/AIR SLUGS
                                              AIR‐SLUGS
                0,2 ml/min           0,4 ml/min        0,6 ml/min            0,9 ml/min

23

                         REAL‐TIME SLUG FLOWS VELOCITY

 M. Bucolo et. al. , Real‐Time Detection of Slug Velocity in Microchannels, Micromachines, 2020

24

                                                                                                       12
2/4/2022

             REAL‐TIME SLUG FLOWS VELOCITY

     FR = 0.3 ml/min    FR= 0.5 ml/min   FR = 0.7 ml/min

25

26

                                                                13
2/4/2022

               PLATFORM FOR SLUGS FLOW
                  REAL‐TIME CONTROL

27

       CLOSED LOOP REAL‐TIME CONTROL: IMPLEMENTATION

          SYRINGE PUMPS       TWO‐PHASE
                               PROCESS

                                                 OPTO‐
                                               MECHANICAL          PHOTODIODE
                                                 SETUP             ACQUISITION

                                                                                         SOFT SENSORS

                                                                                         CONTROL LAW

     CONTROL                                            DATA
                            ACQUISITION                                            VISUALIZATION
       LAW                                             ANALYSIS
        Desired             Timeout [s]             Number of cycles             Error in frequency [Hz]
     Frequency [Hz]         Sample rate [Hz]        Spectrum peak [Hz]           Flow rate change [ml/min]
                                                    Amplitude [V]                Signals and Spectra plot

 M. Bucolo et. al. , A Real Time Feed Forward Control of Slug Flow in Microchannels, Energies (2019)

28

                                                                                                                  14
2/4/2022

                           CLOSED CONTROL LOOP
                                                FR’w,a=FRw,a+FR
          Hypothesis      pdes + p                                                                                      y
                                         Control
     p=slug frequency
     FRW = FRA                ‐           Law                                                Σ
     FRW,A = M * p + Q      pact
     ( pdes , FRdes )                                   Soft
     p = pdes – pact                                  sensor

                                                 STOP CONDITIONS If ( FRdes  ThMAX
                                                 |  p|< ThMIN
                                                                 else                                  ThMAX = 3 Hz
                                                                    ThMIN = 0.5 Hz

                                                                                   ΔFR

                                                                 T                                           T
                                                                 r                                           r
                                                                 a                       S                   a
                                                                 n                                           n
                                                                       ‐ThMAX   ‐ThMIN   T   ThMIN   ThMAX            p
                                                                 s                                           s
                                                                 i                       O                   i
                                                                 e                       P                   e
                                                                 n                                           n
                                                                 t                                           t

29

     CLOSED LOOP REAL‐TIME CONTROL: THE PLATFORM
        FREQDES = 1 HZ                FREQDES = 5 HZ                            FREQDES = 10 HZ
         Freq = 1.12 Hz               Freq = 4.95 Hz                            Freq = 10.33 Hz

30

                                                                                                                                  15
2/4/2022

             MICRO‐OPTOFLUIDICS IN A
                 SISTEM‐ON‐CHIP

              • FREQUENCY OF THE SLUGS PASSAGE
              • SLUGS VELOCITY

31

WHAT WE NEED ….
                                        PDMS based
                            OPTICS
                                           Technology

                        MICRO‐OPTICS                          TRANSPARANCE
                                                              BIOCOMPATIBILITY
                                                              OPTICAL PROPERTY
                                               FLUIDCS
       MECHANICS
                                                              CHEMICAL PROPERTY
                          INTEGRATION                           CMOS COMPATIBLE
                                            MICRO‐FLUIDCS
     MICRO‐MECHANICS                                            RAPID PROTOTYPE

           MEMS           ELECTRONICS                       SOFT‐LITHOGRAPHY

                       MICRO‐ELECTRONICS

32

                                                                                        16
2/4/2022

      PDMS MICRO‐OPTIC INTERFACE

                                                    PHOTODIODE
                                                    ACQUISITION
     PUMPS    MICROFLUIDIC       OPTO‐MECHANICAL
     LIGHT      CHANNEL               SETUP
                                                        CCD
                                                     ACQUISITION

                                                   PHOTODIODE
                                                   ACQUISITION
 PUMPS         MICROFLUIDC           MICRO‐OPTIC
                CHANNEL               INTERFACE
     LASER
                                                      CCD
                                                   ACQUISITION

33

              PDMS MICRO‐OPTIC INTERFACE ‐1

                             nair=1
                             nPDMS=1.41

34

                                                                        17
2/4/2022

                         PDMS MICRO‐OPTIC INTERFACE ‐1

       SLUGs FLOW DETECTION                                         RBCs FLOW DETECTION

Bucolo et al, A Polymeric Mirco‐optical Interface for Flow Monitoring in Biomicrofluidics, Biomicrofluidics. (2009)

35

                         PDMS MICRO‐OPTIC INTERFACE ‐2

               LOCAL ACTION                                 DISTRIBUTED ACTION

                                                   OUTPUT OPTIC FIBER

                                                          DETECTION

4 LIGTH WAVELENGTHS

 4 INPUT OPTIC FIBERS

 Bucolo et al., A Polimeric Micro‐optical System for Spatial Monitoring in Two‐Phase Microfluidics, Microfluidics
                                              and Nanofluidics (2012)

36

                                                                                                                           18
2/4/2022

                  PDMS MICRO‐OPTOFLUIDIC DEVICES

            PDMS based Technology
                                                                     TRANSPARANCE
                                                                     BIOCOMPATIBILITY

                    EMBEDDED MICRO‐                                  OPTICAL PROPERTY
                   OPTO FLUIDIC DEVICE                               CHEMICAL PROPERTY
                                                                     CMOS COMPATIBLE
                                                                     RAPID PROTOTYPE

                                                                        3D‐PRINTING

37

     PDMS MICRO‐OPTOFLUIDIC DEVICES: FABRICATION

          Design of the project             Exposition of master’s surfaces to UV‐light
       and realization by 3D printer                    for 1 hour at 35°C

                                        35 °C

                                       Put the beaker in the         Inject liquid PDMS in
         Extraction of the device
                                        oven for 36 hours                 the beaker

38

                                                                                                  19
2/4/2022

        PDMS MICRO‐OPTOFLUIDIC DEVICES: CONCEPT
                                                 PHOTODIODE
                                                 ACQUISITION
     PUMPS     MICROFLUIDC    MICRO‐OPTIC
                CHANNEL        INTERFACE
     LASER
                                                    CCD
                                                 ACQUISITION

                                            PHOTODIODE
                                            ACQUISITION
       PUMPS      MICRO‐OPTOFLUIDIC
       LASER           DEVICE
                                               CCD
                                            ACQUISITION

39

         PDMS MICRO‐OPTOFLUIDIC DEVICES: SET‐UP

40

                                                                    20
2/4/2022

                    MICRO‐OPTOFLUIDC FLOW DETECTOR‐1                                                                            Chip size 10 cm

                                        AIR

                                        WATER
                                                                                                     400 Two-Phase Flow Acquisition
                                                                                3
                                                                                                                                                   OF1
                                                                                                                                                   OF2
                                                                               2.5

                                                                                2

                                                                 Voltage (V)
                                                                               1.5

                                                                                1

                                                                               0.5

                                                                                0
                                                                                     0   100   200   300   400    500     600    700   800   900    1000
                                                                                                                 Counts

Bucolo et al, 3D Printed Embedded PDMS Micro‐Optofluidcs Switch, Microfluidics and Nanofluidics ,2016

41

                                    MICRO‐OPTICAL COMPONENTS

 PDMS WAVEGUIDE

Bucolo et al, Micro‐Optical Waveguides Realization by Low‐Cost Technologies, Micro (2022)

     PDMS MIRROR

Bucolo et al, Advanced technologies in the fabrication of a micro‐optical light splitter, Micro and Nano Eng. J. (submitted)

42

                                                                                                                                                                21
2/4/2022

 Refractive index
 nPDMS =1.41                  MICRO‐OPTOFLUIDC FLOW DETECTORS‐2
 nWater = 1.33
 nAir =1
 nGold =0.47

                                                                                                         Signal
                                                                               6

                                                                               5

                                                                               4

                                                              Voltage [Volt]
                                                                               3

                                                                               2

                                                                               1

                                                                               0

                                                                                       1mW            5 mW               10 mW
                 Water 0,15 ml/mm –Air 0,3 ml/mm                               -1
                                                                                 0       20      40        60       80      100   120
                                                                                                       Time [sec]

Bucolo et al, 3D‐Printed micro‐optofluidic device for chemical fluids and cells detection, Biomedical Microdevices, 2020

43

                            MICRO‐OPTOFLUIDC VELOCITY DETECTORS

                                                                                          D1

                                                                                     PDMS micro‐optofluidic velocity detector with gold‐
          VeroClear micro‐splitter                                                                PDMS micro‐splitter.

                                                                                         D2
                                                                                       PDMS micro‐optofluidic velocity detector with
                                                                                                VeroClear micro‐splitter.

44

                                                                                                                                                22
2/4/2022

     WHAT’S
     NEXT?

45

      MICRO‐OPTOFLUIDICS IN A SISTEM‐ON‐CHIP

                                     PROCESSES MODELLING
                                        AND CONTROL

          MICRO‐OPTOFLUIDC DEVICES
                REALIZATION

46

                                                                23
2/4/2022

                              CELLS FLOW INVESTIGATION BY
                                HYDRODYNAMIC RESPONSE
                                                   In Vivo                                              In Vitro

•        Bucolo et. al., CNN Real‐time Technology for the Analysis of Microfluidic Phenomena In Blood Vessel, Nanotechnology
         (2006)
•        M. Bucolo et al., Microfluidics real‐time monitoring using CNN technology, IEEE Trans. on Biomedical Circuits and
         Systems (2008)

    •       M. Bucolo et al., Hydrodynamic study of biological fluids in micro‐channels for cell classification, Biomicrofluidics
            (submitted)
    •       M. Bucolo et al., Emergent behaviors in RBCs flows in micro‐channels using digital particle image velocimetry,
            Microvascular Research (2018)
    •       M. Bucolo et al., Quantitative Analysis of Spatial Irregularities in RBCs Flows, Chaos Solitons and Fractals (2018)
    •       M. Bucolo et al., DPIV analysis of RBCs flows in serpentine micro‐channel, European conf. on circuit theory and design
            (ECCTD 2017)

47

                         CELL FLOWS INVESTIGATION BY HYDRODYNAMIC RESPONSE

                     FROM Digital Particle Image Velocimetry (DPIV) TO Optical Signals

                                      TIME DOMAIN                                              FREQUENCY DOMAIN
                2
                                                                                 20
                                                                      A = 0 .1
        A=0.1

                0                                                                10
                -2                                                                0
                     0    1   2   3   4   5    6     7    8     9                     0   10       20   30        40         50
                5

48

                                                                                                                                          24
2/4/2022

                                      RBCsCELLS
                                RED BLOOD   FLOWS:
                                                FLOWS IN‐VITRO
                                                      IN MICRO‐CHANNEL

     RECTILINEAR CHANNEL
                               f=0.1 Hz A=0.1 mmHg   f=0.1 Hz A=10 mmHg   f=0.1 Hz A=100 mmHg

                           A      B     C            A     B     C         A      B          C

                                 WEAK                    VORTICITY             ALIGNMENT
49

                                      RBCs BEHAVIORAL CLASSIFICATION
                                                                                 ALIGNMENT
                                                                                 VORTICITY
                                                                                 WEAK

50

                                                                                                      25
2/4/2022

                    HeLa Cells       Yeast Cells         MicroBeads

51

      APPLICATIONS IDEAS……

      BLOOD AND MICRO‐CIRCULATION INVESTIGATION
        • blood viscosity
        • RBC aggregation
        • Artificial blood
      CELLS DIFFERENTIATION BASED ON THEIR DYNAMICAL BEHAVIOR
        • under pressure stress
        • under temperature stress
        • Cell interaction

52

                                                                           26
2/4/2022

     THANKS TO:
     •   Dr. FRANCESCA SAPUPPO
     •   Dr. FLORINDA SCHEMBRI
     •   Dr. PRINCIA ANADAN
     •   Dr. SEVI GAGLIANO
     •   Dr. FABIANA CAIRONE
     •   ENG GIOVANNA STELLA

53

                                      27
You can also read