Matter Cycle in the Interstellar Medium (ISM) - Charlotte VASTEL (IRAP) "The Interstellar Medium is anything not in stars"
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Matter Cycle in the Interstellar Medium (ISM) Charlotte VASTEL (IRAP) cvastel@irap.omp.eu “The Interstellar Medium is anything not in stars” D. Osterbrock 1
Note: • UE45a : Matter cycle in the ISM (Charlotte Syllabus UE 45a Vastel, Katia Ferrière) • UE45b : Extragalactic physics (Roser Pello) C. Vastel, 8 lectures I. Introduction (First course) II. Overview of the ISM (First course) III. Dust (formation, properties, composition) (Second course) IV. Molecular clouds, onset of star formation, shocks from molecular outflows (Third course) V. Neutral gas / HI regions (Third course) VI. Ionized gas / HII regions (Fourth course) VII. Photo-dissociation regions (Fourth course) K. Ferrière, 2 lectures I. Large-scale shocks and dynamics: supernova remnants and super-bubbles, and their impact on the ISM: turbulence, bubbles of hot gas, formation of molecular clouds from atomic clouds II. Magnetic field (optical and IR polarization, Zeeman effect, Faraday rotation, synchroton emission) III. Cosmic-ray radiation 2
Textbooks, schedule, exam, etc ✤ “The Interstellar Medium”, Lequeux ✤ "The Physics of the Interstellar Medium", Dyson & Williams ✤ “The Physics and Chemistry of the Interstellar Medium”, Tielens ✤ “Physical Processes in the Interstellar Medium”, Spitzer ✤ “Radiative Processes in Astrophysics”, Rybicki & Lightman ✤ http://astro.uwo.ca/~houde/courses/astronomy_9603.html ✤ http://www.astronomy.ohio-state.edu/~pogge/Ast871/ ✤ Schedule: see http://ezomp2.omp.obs-mip.fr/asep/index.php/Planning ✤ Oral exam in january: present your analysis of a recent article (chosen among a given list) and answer course questions. http://userpages.irap.omp.eu/~cvastel/Welcome_files/M2_2015_2016.html 3
Chapter 1 Introduction 1.1 A few facts and some definitions 1.2 Historical review of the ISM 1.3 Matter cycle 4
1.1. A few facts and some definitions Structure of the Universe Universe Galaxy Ionised Molecular Atomic Interstellar medium 5 Stellar systems
1.1. A few facts and some definitions The ISM in the Milky Way (MW) ✤ Molecular gas ~ atomic gas ~ 2×109 M⊙ ✤ Total ~ 4×109 M⊙ (1/10 of luminous matter in stars) ✤ Assume 2.4×10-24 g/H (local abundances) ⇒ total number of H nuclei (H, H+, H2) = 3.3×1066 ✤ ISM confined to disk of radius ~10 kpc and thickness ~200 pc ✤ ⇒ nH ~ 1.8 cm-3 (Earth’s atmosphere: 2.7×1019 cm-3) 6
1.1. A few facts and some definitions Stellar classification F. 1.1 – Spectres d’étoiles montrant les absorptions dues au gaz autour de l’é (ex. : celui présent dans l’atmosphère terrestre). < 1900 >~ 1910 Spectral Atmospheric Hydrogen Fleming / Spectrum dominated Secchi Type Temperature (Balmer) Other Features M/M! R/R Draper by / type of object (K) Features O > 33, 000 weak Ionized Helium (He+ ) some- 20-60 9-15 I A, B, C, D Hydrogen Balmer times in emission Strong UV continuum E, F, G, H, B 10,500-30,000 medium Neutral He absorption 3-18 3.0-8 II Ca, Na I, K, L A 7,500-10,000 strong H features maximum at A0 2.0-3.0 1.7-2 Some features of heavy ele- III M Wide bands ments, eg Ca+ F 6,000-7,200 medium 1.1-1.6 1.2-1 IV N Carbon stars G∗ 5,500-6,000 weak Ca+ H&K, Na “D” 0.9-1.05 0.85-1 K 4,000-5,250 v. weak Ca+ , Fe 0.6-0.8 0.65-0 O W-R stars, bright lines Strong molecules, eg CH, CN M 2,600-3,850 v. weak Molecules, eg TiO 0.08-0.5 0.17-0 P Planetary Nebulae Very red continuum ∗ Sun is G2V Q Other Sub-division (0-5) Main sequence H-R diagram – Les atmosphères des étoiles provoquent des absorptions spécifiques : (Herzsprung-Russell) 7 Ces absorptions ont été le premier critère de classification des étoiles :
III M Bandes larges IV N Etoiles carbones 1.1. A few facts and some definitions O P Etoiles Wolf-Rayet, raies brillantes Nébuleuses planétaires Stellar classification Q Autres F. 1.2 – Diagramme de Hertzsprung-Russell. Depuis les années 1910, la classification se base sur la température et la luminosité des étoiles (cf. diagramme H-R) : Spectral Atmospheric Hydrogen Main Type Temperature (Balmer) Other Features M/M! R/R! L/L! Sequence (K) Features Lifetime O > 33, 000 weak Ionized Helium (He+ ) some- 20-60 9-15 90,000-800,000 10-1 Myr times in emission Strong UV continuum B 10,500-30,000 medium Neutral He absorption 3-18 3.0-8.4 95-52,000 400-11 Myr A 7,500-10,000 strong H features maximum at A0 2.0-3.0 1.7-2.7 8-55 3 Gyr - 440 Myr Some features of heavy ele- ments, eg Ca+ F 6,000-7,200 medium 1.1-1.6 1.2-1.6 2.0-6.5 7-3 Gy G∗ 5,500-6,000 weak Ca+ H&K, Na “D” 0.9-1.05 0.85-1.1 0.66-1.5 15-8 Gy K 4,000-5,250 v. weak Ca+ , Fe 0.6-0.8 0.65-0.80 0.10-0.42 17 Gy Strong molecules, eg CH, CN M 2,600-3,850 v. weak Molecules, eg TiO 0.08-0.5 0.17-0.63 0.001-0.08 56 Gy Very red continuum ∗ Sun is G2V 8
1.1. A few facts and some definitions Magnitude, extinction ✤ Hipparchus (-150 av. J-C): apparent magnitude = 1 for the brightest star, 6 for the dimmest (to the naked eye) ✤ 19th century: eye responds to the difference in the logarithms of the brightness ⇒ scale in which difference of one magnitude between two stars implies constant ratio between their brightness m = -2.5 log(I/I0) ✤ A difference of 5 magnitudes corresponds exactly to a factor 100 in intensity (with the smallest magnitude corresponding to the highest intensity) : I2 = 100(m1 m2 )/5 I1 9
1.1. A few facts and some definitions Magnitude, extinction aille et de la longueur d’onde. ✤ Extinction : characterized by extinction coefficient Qext = Qabs + Qsca (absorption ction+scattering), Qext = Qabs + t.q. : I = I0 exp( ng ⇥a2 Qext ⌥) Qdifthat such Measured magnitudes ✤ as aAmagnitude † : soit le nombredifference: de magnitudes dû à l’extinction let A! the number of magnitudes due to I!,0 I! ur d’onde entre l’intensité non affectée, I ,0 , et celle observée, extinction at a wavelength " between I!,0 and I! (observed). I ,0 e, on peut donc écrire : = 100A /5 = 10A /2.5 , d’où I ✤ From the definition of the magnitude, we have : I ,0 ✓ ◆ = 100A /5 = 10A /2.5 ⇥ I I hence A = 2.5I log A = 2.5 log I ,0 (1.7) I ,0 ✤ Moreover, we also define the optical depth # such that: I ! = I ,0 e ⌧ ion : By combining I ⇤ the previous equations, we get : =e , (1.8) I ,0 A = 2.5 log(e ⌧ ) = 2.5⌧ ⇥ log e = 1.086⌧ 10
1.1. A few facts and some definitions Distance determination in the ISM ✤ Recall : stellar distances determined by the parallax or by comparison between apparent and absolute magnitudes (determined from the spectral type). ✤ Parallax method first used by Friedrich Wilhelm Bessel in 1838 for the binary star 61 Cyg. D=1AU/tan $ ≈ 1/$ AU ✤ Parsec (pc) = distance for which the annual parallax is 1 arcsec (1/3600 of a degree) ; e.g. Proxima Centauri has D=1/p(“)=1/0.76=1.32pc ✤ Except for a few cases, method impossible to use for distance determination of the ISM ✤ For dark (absorbing) clouds, one can use extinction method 11
1.1. A few facts and some definitions Distance determination in the ISM ✤ Kinematic distance: determined from the radial velocity of the clouds, obtained from spectroscopic absorption or emission lines: ✤ galactic disk rotation is not that of a solid body (same angular velocity, linear velocity ➚ with radial distance) but it is a differential rotation (angular velocity ➘ with radial distance) ⇒ all points along the line of sight have a different radial velocity. ✤ origin = point close to the Sun, which has a circular orbit and velocity equal to the mean velocity of stars in the solar neighborhood (around 10-20pc) ✤ neighboring stars appear stationary w.r.t Sun hence the name “Local Standard of Rest” (LSR) 12
1.1. A few facts and some definitions Units, abbreviations ✤ “cgs” units (centimeters, grams, seconds) frequently used (instead of “mks” ⇔ S.I. : meters, kilograms, seconds) ✤ moreover, use of “practical” or “historical” units (e.g., km/s for velocities, cm-1 for energies) ⇒ take great care with calculations! ✤ Abbreviations for wavelength ranges: NIR (near infra-red), MIR (mid infra-red), FIR (far infra-red), FUV (far ultra-violet), submm (sub- millimeter) 10-4nm 1nm 200nm 380nm 780nm 5'm 30'm 200'm 1mm 1cm " (-rays X-rays FUV UV VIS NIR MIR FIR cm/ submm mm radio & (GHz) 13
1.2. Historical review of the ISM: Before the 1900s ✤ Herschel & cie realized that the MW is not just stars in vacuum. ✤ Bright nebulae : “clouds” of gas that do not resolve into stars (when viewed with a telescope). 3 categories : diffuse nebulae (e.g. reflection nebulae) planetary nebulae filamentary nebulae About planetary nebulae: Herschel called these spherical clouds planetary nebulae because they were round like 14 the planets.
1.2. Historical review of the ISM: Before the 1900s The first reflection nebula, proof of interstellar dust “...the nebula is disintegrated matter similar to what we know in the solar system, in the rings of Saturn, comets, etc., and... it shines by reflected star light.” Slipher, V.M.,Lowell Obs. Bull. 2, 26 (1912) 15
1.2. Historical review of the ISM: Before the 1900s ✤ Dark nebulae: originally thought to be holes in the star clouds ; later recognized to be dark clouds of obscuring material seen in silhouette against rich star fields. Especially prominent in the brightest regions of the Milky Way (e.g., the Great Rift in Cygnus or the Coal Sack in the Southern Milky Way) ✤ In general, these were viewed as isolated entities in otherwise mostly empty space, and not as a manifestation of a general ISM. 16
1 1.2. Historical review of the ISM: Early 1900s ✤ Johannes Franz Hartmann (January 11, 1865 – September 13, 1936) was a German physicist and astronomer. In 1904, while studying the spectroscopy of 1904ApJ....19..268H δ Ori he noticed that most of the spectrum had a shift, which he interpreted as indicating the presence of interstellar medium. Black: FUSE observation of LB3459; blue: synthetic stellar spectrum; red: synthetic stellar spectrum+ISM (Fleig et al. 2008) 17
1919ApJ....49.... 1.2. Historical review of the ISM: Early 1900s ✤ Barnard (1919): proximity of dark/bright regions ➙ obscuring matter rather than vacuum, blocking light from more distant stars. 1930PASP...42..214T ✤ Survey of atomic absorption lines convinced astronomers that the space between stars was filled with interstellar gas, transparent in the visible, except for a few spectral lines arising from atomic ground states. (but this could not explain the dark clouds catalogued by Barnard.) Diameter distance 4000 No absorption ✤ Trumpler effect (1930): apparent diameter of star cluster ↘ more slowly than their luminosity ➙ extinction and reddening of light due to small solid particles (dust Absorption of grains) mixed with gas. 0.7mag/1000pc 1000 Photometric distance 1000 4000 18
1.2. Historical review of the ISM: Early 1900s ✤ It was Trumpler’s work that produced the most dramatic quantitative proof of the effect of interstellar matter on the light from stars in clusters. He directly demonstrated the effect on the apparent diameters of open clusters. He studied many open cluster and determined their distance. He noticed that the apparent diameter for the more distant clusters appeared consistently smaller than expected if they were all the same typical diameter. In fact, the trend was so strong that he could not explain it except to infer that his original data had been in error. The brightness of the stars in the more distant clusters had been dimmed ✤ Trumpler was able to show that the absorption amounted to about 0.7 by passage through space magnitudes per kpc. (interstellar matter). 19
1.2. Historical review of the ISM: Early 1900s ✤ At the end of the 1930s: ✤ ISM viewed as homogenous and diffuse, pervading space with a nearly constant density. High-resolution spectroscopy of stationary lines ➙ complex structure: many narrower line components with different radial velocities. ⇒ ISM is clumpy and structured into clouds. ✤ Discovery of the 1st molecules : CH (1937), CN (1940) CH CN 20
1.2. Historical review of the ISM: 1940s ✤ Strömgren sphere: Bengt Strömgren ➙ bright diffuse nebulae with strong line emission = regions of photo-ionized gas surrounding hot stars. These idealized “Strömgren spheres” are at the heart of our modern theory of ionized nebulae. ✤ 3 types of ionized nebulae: Introduction to the Interstellar Medium Regions) for the specific objects. Long-established practice and tradition, however, mean that we are i. H II regions (= “classical” diffuse nebulae ) : characterized by intense line generally stuck with the confusion. Beware. At least three basic kinds of ionized nebulae are recognized in the ISM. Note that these are generally emission ; gas heated and ionized by UV photons isolated objects, and not to be(h& discuss later. confused≥ 13.6eV) with the ionized phasesfrom of the generalthe ISM that we will atmospheres of embedded O,B stars. H Regions are the classical Fdiffuse nebulae) described by Herschel and others that show strong II emission-line spectra. These are regions of interstellar gas heated and ionized by UV (h 13.6eV) photons from the atmospheres of embedded O and B stars. Nomenclature : spectroscopically, H II refers to ionized hydrogen (H+), which can be present in a number of unrelated objets. The term “H II regions” specifically refers to the bright diffuse nebulae described here. H+ is not confined to discrete regions, but is observed in the entire ISM; in fact, ~ 90% of H+ in the MW is outside classical H II regions : it is the WIM (warm ionized medium). (So it is not because there is some H+ that it is an H II region.) 21
1.2. Historical review of the ISM: 1940s ✤ 3 types of ionized nebulae (ctd): ii. planetary nebulae (PN) : UV photo-ionized ejected stellar envelopes surrounding hot remnant stellar core (white dwarf) ‣ Note : H II regions and PN = similar manifestation of 2 different processes (stellar birth vs stellar death) iii. SuperNova Remnants (SNRs): regions ionized by the passage of a blast wave from SN explosion; differ from the previous 2 by the source of ionizing photons and the additional heating mechanism. 22
Supernova Remnants (SNRs). These are regions ionized by the passage of a blast supernova explosion through the ISM (either Type I or Type II supernovae). They d 1.2. Historical review of the ISM: regions and PNe in the source of ionizing photons and the additional mechanical hea hydrodynamical shockwave. Two basic types of SNRs are recognized: Young SNRs (e.g., Crab Nebula) are photoionized by UV synchrotron radiation emi relativistic electrons accelerated by the central pulsar. These are often called JPlerion Introduction crab-like)toafter the Interstellar the prototypeMedium Crab Nebula in Taurus (remnant of SN1054). 1940s Supernova Remnants (SNRs). These are regions ionized by the passage of a blas supernova explosion through the ISM (either Type I or Type II supernovae). They regions and PNe in the source of ionizing photons and the additional mechanical he hydrodynamical shockwave. Two basic types of SNRs are recognized: Young SNRs (e.g., Crab Nebula) are photoionized by UV synchrotron radiation em relativistic electrons accelerated by the central pulsar. These are often called JPlerio crab-like) after the prototype Crab Nebula in Taurus (remnant of SN1054). ✤ 3 types of ionized nebulae (SNRs, ctd): ✤ young SNRs (e.g. Crab Nebula) : photo-ionized Figure I-4: Crab Nebula, young SNR (AD1054). [Credit: VLT Kueyen+FORS2 by synchrotron radiation emitted by relativistic e− Old SNRs (e.g., Cygnus Loop), which are photoionized by X-rays emitted from den regions collisionally heated to 105 6K by the passage of the supernova blast wave thr accelerated by the central pulsar ISM. Most of the gas in the remnants has been plowed up by the shock, and we see t where the gas has reached temperatures of ~104 K (where line emission is most effic see later). ✤ old SNRs (e.g., Cygnus Loop) : photo-ionized by Figure I-4: Crab Nebula, young SNR (AD1054). [Credit: VLT Kueyen+FORS X-rays emitted by cooling of dense regions heated Old SNRs (e.g., Cygnus Loop), which are photoionized by X-rays emitted from de 5 6 regions collisionally heated to 10 K by the passage of the supernova blast wave th to 105−6 K by collisions due to the passage of a shock ISM. Most of the gas in the remnants has been plowed up by the shock, and we see where the gas has reached temperatures of ~10 K (where line emission is most effi 4 see later). wave from the SN in the ambient ISM. Figure I-5: The Cygnus Loop, an old SNR. This image shows emission from the shockwaves impinging on the ambient ISM (sharp filaments). [Credit/Copyright: Jerry Lodriguss, www.astropix.com] ✤ Strömgren’s work led to the recognition that the spectra of photo-ionized regions I-5 contained a number of important diagnostics of the physical state of the gas (density, temperature, abundances, etc), which is now a major research field. Figure I-5: The Cygnus Loop, an old SNR. This image shows emission from the shockwaves impinging on the ambient ISM (sharp filaments). [Credit/Copyright: Jerry Lodriguss, www.astropix.com] I-5 23
1.2. Historical review of the ISM: 1950s-1970s ✤ Line emission from cold (10K) neutral hydrogen atoms at 21-cm via hyperfine atomic transitions in the ground state predicted in 1945 by van de Hulst, and first detected in 1951 by Ewen and Purcell at Harvard (followed 6 weeks later by the Dutch astronomers Muller and Oort) Cold H I clouds = majority of the total mass of the ISM. ✤ This discovery initiated the era of radio-wavelength studies of the ISM, and was the beginning of using the ISM to trace out Galactic structure. ✤ cm: OH @ 18cm (Weinreb et al. 1963), NH3 @ 1.25cm (Cheung et al. 1968), H2O @ 1 cm (22 GHz) (Cheung et al. 1969) ✤ mm: CO @ 2.7 mm (Wilson, Jefferts & Penzias 1970) ✤ UV (space): H2 in 1970 ✤ >130 molecules detected: http://www.astro.uni-koeln.de/cdms/molecules 24
1.3. Matter cycle 25
1.3. Matter cycle Diffuse 26
Example for warming-up... On donne la luminance L d’une étoile de rayon R. On souhaite calculer la puissance totale reçue par une planète de rayon Rp et tournant à distance d de son étoile. Data: L = 107 W/m2/sr d = 1.496 108 km R = 6.96 108 m Sd = 2 cm2 Rp = 6378 km t = 1 minute 1) Quelle surface A de l’étoile est visible à chaque instant depuis un objet orbitant autour d’elle? 2) Calculer l’angle solide Ω sous lequel est vu la planète depuis n’importe quel point de la surface de l’étoile. NB: Pour calculer l'angle solide sous lequel on voit un objet à partir d'un point donné, on projete l'objet sur une sphère de rayon R centrée en ce point. L'espace complet est vu sous un angle solide de 4π stéradians. Ω = A/r2 27
Example for warming-up... 1) Quelle surface A de l’étoile est visible à chaque instant depuis un objet orbitant autour d’elle? La surface totale de l’étoile est 4πR2. Seule la moitié de l’étoile est visible à chaque instant, donc A= 2πR2. L’objet orbitant autour de l’étoile est evidemment sufisemment loin pour être considéré comme un point. AN: A=3.04 1018 m2 28
2) Calculer l’angle solide Ω sous lequel est vu la planète depuis n’importe quel point de la surface de l’étoile. L’objet orbitant autour de l’étoile est evidemment sufisemment loin pour être considéré comme un point: disque non courbé. Par définition d’un angle solide, Ω=π Rp2/d2, car la planète est vue comme un disque depuis l’étoile, AN : Ω=5.77 10-9 sr Pour calculer l'angle solide sous lequel on voit un objet à partir d'un point donné, on projete l'objet sur une sphère de rayon R centrée en ce point. L'espace complet est vu sous un angle solide de 4! sr. 29
Example for warming-up... Données: L = 107 W/m2/sr R = 6.96 108 m Rp = 6378 km d = 1.496 108 km Sd = 2 cm2 t = 1 minute 3) Calculer le flux Φ (en Watts) émis par la surface A de l’étoile dans l’angle solide Ω. Φ représente la puissance lumineuse totale reçue par la planète. 4) Calculer l’éclairement moyen E (en W/m2) reçu sur la planète, hors atmosphère (considérer dans ce cas la planète comme un disque).. 5) En déduire le flux Φd reçu par le détecteur et l’énergie Qd (en Joules) absorbée pendant le temps t. 30
3) Calculer le flux Φ (en Watts) émis par la surface A de l’étoile dans l’angle solide Ω. Φ représente la puissance lumineuse totale reçue par la planète. Analyse dimensionnelle!!! La luminance L donne le flux par unité d’aire et par unité d’angle solide. Donc Φ=LxAxΩ AN: Φ=1.75 1017 W 4) Calculer l’éclairement E (en W/m2) moyen reçu sur la planète, hors atmosphère (considérer dans ce cas la planète comme un disque). A la verticale de l’étoile, l’éclairement reçu sur la planète est E=Φ/π Rp2 E=LxAxΩ/π Rp2 = 107x 2πR2x(π Rp2/d2)/π Rp2 AN: E= 107x 2πR2/d2=1367 W/m2. 5) En déduire le flux Φd reçu par le détecteur et l’énergie Qd (en Joules) absorbée pendant le temps t. Le flux reçu par le détecteur vaut Φd =ExSd et il correspond à une énergie Qd=Φd xt AN: Φd=0.27 W et Qd=16.2 J. 31
You can also read