In-memory computing with emerging memory devices - Daniele Ielmini Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
In-memory computing with emerging memory devices Daniele Ielmini Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano daniele.ielmini@polimi.it
From von Neumann to in-memory computing 2 In-memory computing Von Neumann architecture • Resistive memory • Volatile memory (DRAM) • Compute in situ • Data movement • High parallelism • Memory bottleneck M A Zidan, et al. Nat. Electron. (2018) Daniele Ielmini
Three types of in-memory computing 3 In-memory computing Artificial Brain-inspired neural Algebra neural networks accelerators networks - Deep neural networks - Linear system solver - Unsupervised learning - Convolutional neural networks - Matrix inversion - Reinforcement learning - LSTM - Regression - Associative memories - Supervised training - Eigenvector calculation - Spatiotemporal networks - Backpropagation - Differential equations - Reservoir computing Adapted from D. Ielmini and S. Ambrogio, Nanotechnology 31, 092001 (2019) Daniele Ielmini
Memory devices for in-memory computing 4 PCM Flash Analog DRAM FEFET RRAM SW G G VL Top Electrode (TE) TE S S D D Dielectric layer Active chalcogenide S D Conductive filament volume Bottom Electrode (BE) BE ID ID ID STT-MRAM FERAM SOT-MRAM ECRAM Memtransistor TE G ID S D Free layer TE S S D D Tunnel layer Ferroelectric layer Pinned layer G BE Ipol ID D. Ielmini and G. Pedretti, Adv. Intell. Syst. 1, 2000040 (2020) Daniele Ielmini
Analogue resistive memory 5 IC set Current [µA] Ti G HfO2 reset Carbon Voltage [V] • Analogue conductance controlled by a compliance current IC • Good linearity below 0.5 V Z. Sun, et al., PNAS 116, 4123 (2019) Daniele Ielmini
Matrix-vector multiplication 6 • Multiplying a matrix A and a vector x in a CPU requires individual products aij*xj, and summation à multiply/accumulate (MAC) process • In a crossbar, the operation is carried out physically by Kirchhoff’s and Ohm’s law, in just one step !" = $ &%" '% % D. Ielmini and H.-S. P. Wong, Nature Electronics 1, 333 (2018) Kirchhoff’s law Ohm’s law Daniele Ielmini
2 – Error evaluation 8 Error Supervised training = pattern is submitted with the corresponding label à we know the correct answer Daniele Ielmini
3 – Weight update 9 In-memory outer-product Error Δ"#$ = &'# ($ S. Agarwal, et al., IJCNN 929 (2016) Daniele Ielmini
Device non-linearity 10 G • In general, physical devices are not linear in time and voltage D S • Record linearity for Li-based ECRAM (IBM, IEDM 2018) ID Daniele Ielmini
In-memory convolutional neural networks (CNNs) 11 P. Yao, et al., 3D RRAM array Nature 577, P. Lin, et al., Nat Electron 3, 225 (2020) 641 (2020) Daniele Ielmini
Inverting MVM 12 G - + V + I = G·V - - + - + Georg Ohm G I1 V3 I2 V2 I - V= -G-1·I + I3 V1 Harold Black V = -A-1·I Matrix-vector division is equivalent to solving Ax = b, with x = A-1b Z. Sun, et al., PNAS 116, 4123 (2019) Daniele Ielmini
O(1) complexity of inverse MVM 13 b c Digital CG O(polyN) QC IMC Quantum O(logN) In-memory O(1) N Z. Sun, et al., IEEE Trans. Electron Devices 67, 2945 (2020) Daniele Ielmini
In-memory PageRank 14 2 Page No. Company 3 1 Amazon 6 2 Baidu 3 Facebook 7 4 4 Google 5 LinkedIn 1 8 6 PayPal 7 Quora 8 Twitter 5 9 9 YouTube Z. Sun, et al., PNAS 116, 4123 (2019) Throughput [TOPS] Energy efficiency [TOPS/W] In-memory 0.183 362 TPU 92 2.3 150X Daniele Ielmini
Solving a Schrödinger equation 15 V (eV) 0 -1 -2 !Ψ = $Ψ, -3 ℏ' * ' !=− +- -4 2) * ' + x (nm) -2 -1 0 1 2 matrix A matrix B matrix C Z. Sun, et al., PNAS 116, 4123 (2019) Daniele Ielmini
Volatile RRAM 16 5 Ag 50 4 C 40 W 3 30 I [ A] V [V] !" 2 tret 20 1 10 0 0 -2 0 2 4 6 8 -4 W. Wang, et al., Nat. Commun., 10, 81 (2019) Z. Wang et al., Time [s] 10 Nat. Mater. 16 101 (2017) • Volatile behavior due to Ag diffusion and filament disconnection in the µs-ms timescale Daniele Ielmini
Analogy with biological synapses 17 L-Glutamate (neurotransmitter) Neurotransmitter Receptor Individual ionic channels Ca2+ EPSC 160 pA 100 ms Na+/Ca2+ 4 pA 17 100 ms EPSC Ca2+ R. A. J. Lester and C. E. Jahr, J. Neurosci., 12, 635 (1992) Electrical stimulus Ag Ag HfOx e- Individual RRAM device C SiO2 Ag e- tret 1 A N = 5 W 100 ms N = 10 e- HfOx N = 20 !" 2 A N devices N = 50 C 100 ms W. Wang, et al., Adv. Intell. Syst. 2000224 (2020) Daniele Ielmini
Direction selectivity in the human retina 18 Photoreceptor A B 18 … … N Bipolar cell IA IEPSC=IA-IB SAC - Excitation … Inhibition … N IB DS ganglion cell ° A-B 120 ° 90 60 ° 100 % 97 % 150° 30 ° EPSC Peak [µA] A-B B-A ° ° 2 A 2 A 180 0 0 1 2 3 4 2.5 µA 100 ms 2.5 µA 100 ms 1 2 3 4 -150 ° -30 ° ! EPSC Peak [ A] -120 ° -60 ° ° -90 W. Wang, et al., Adv. Intell. Syst. 2000224 (2020) Daniele Ielmini
Conclusions 19 • In-memory computing by crosspoint operations: • MVM (dot product) à DNN inference • Outer product à DNN training • MVM + feedback (inverse MVM) à linear algebra • Device physics for brain-inspired neuromorphic computing (short- term RRAM) Daniele Ielmini
You can also read