In-memory computing with emerging memory devices - Daniele Ielmini Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano ...

 
CONTINUE READING
In-memory computing with emerging memory devices - Daniele Ielmini Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano ...
In-memory computing with emerging memory devices
Daniele Ielmini

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano
daniele.ielmini@polimi.it
In-memory computing with emerging memory devices - Daniele Ielmini Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano ...
From von Neumann to in-memory computing
                                                                                     2

                                                               In-memory computing
           Von Neumann architecture                            • Resistive memory
           • Volatile memory (DRAM)                            • Compute in situ
           • Data movement                                     • High parallelism
           • Memory bottleneck

                     M A Zidan, et al. Nat. Electron. (2018)

                               Daniele Ielmini
In-memory computing with emerging memory devices - Daniele Ielmini Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano ...
Three types of in-memory computing
                                                                                                                 3

                                                In-memory computing

    Artificial                                                                        Brain-inspired
    neural                                   Algebra
                                                                                      neural
    networks                                 accelerators                             networks

-   Deep neural networks                 -    Linear system solver                -    Unsupervised learning
-   Convolutional neural networks        -    Matrix inversion                    -    Reinforcement learning
-   LSTM                                 -    Regression                          -    Associative memories
-   Supervised training                  -    Eigenvector calculation             -    Spatiotemporal networks
-   Backpropagation                      -    Differential equations              -    Reservoir computing

                     Adapted from D. Ielmini and S. Ambrogio, Nanotechnology 31, 092001 (2019)

                                                   Daniele Ielmini
In-memory computing with emerging memory devices - Daniele Ielmini Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano ...
Memory devices for in-memory computing
                                                                                                                               4

                            PCM                            Flash                    Analog DRAM          FEFET
 RRAM                                                                                         SW
                                                            G                                                G
                                                                                              VL
    Top Electrode (TE)        TE                                        S                                                  S
                                                      D                                              D
    Dielectric layer          Active chalcogenide                                               S
                                                                                D
    Conductive filament       volume

    Bottom Electrode (BE)     BE
                                                                ID                       ID                       ID

 STT-MRAM                   FERAM                          SOT-MRAM                 ECRAM           Memtransistor
                                                           TE                        G
                                                                                                             ID        S
                                                                                                         D

        Free layer             TE                                                               S
                                                                            S
                                                       D                        D
    Tunnel layer               Ferroelectric layer

    Pinned layer                                                                                                   G
                               BE

                                                                 Ipol                    ID

                             D. Ielmini and G. Pedretti, Adv. Intell. Syst. 1, 2000040 (2020)

                                                     Daniele Ielmini
In-memory computing with emerging memory devices - Daniele Ielmini Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano ...
Analogue resistive memory
                                                                                                               5

                                                       IC
                                               set
    Current [µA]

                                          Ti                                           G
                                     HfO2
                    reset           Carbon

                            Voltage [V]

                   • Analogue conductance controlled by a compliance current IC
                   • Good linearity below 0.5 V
                                                                       Z. Sun, et al., PNAS 116, 4123 (2019)

                                                     Daniele Ielmini
In-memory computing with emerging memory devices - Daniele Ielmini Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano ...
Matrix-vector multiplication
                                                                                                             6

                                                                     • Multiplying a matrix A and a vector x
                                                                       in a CPU requires individual
                                                                       products aij*xj, and summation à
                                                                       multiply/accumulate (MAC) process
                                                                     • In a crossbar, the operation is
                                                                       carried out physically by Kirchhoff’s
                                                                       and Ohm’s law, in just one step

                                                                                 !" = $ &%" '%
                                                                                             %

D. Ielmini and H.-S. P. Wong, Nature Electronics 1, 333 (2018)             Kirchhoff’s law       Ohm’s law

                                                   Daniele Ielmini
In-memory computing with emerging memory devices - Daniele Ielmini Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano ...
1 – Forward propagation
                                                                                   7

                                                   In-memory MVM

                                            S. Agarwal, et al., IJCNN 929 (2016)

                          Daniele Ielmini
In-memory computing with emerging memory devices - Daniele Ielmini Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano ...
2 – Error evaluation
                                                                             8

                                         Error
                                                 Supervised training =
                                                 pattern is submitted with
                                                 the corresponding label
                                                 à we know the correct
                                                 answer

                       Daniele Ielmini
In-memory computing with emerging memory devices - Daniele Ielmini Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano ...
3 – Weight update
                                                                                            9

                                                         In-memory outer-product

                                             Error

                    Δ"#$ = &'# ($
                                                     S. Agarwal, et al., IJCNN 929 (2016)

                           Daniele Ielmini
In-memory computing with emerging memory devices - Daniele Ielmini Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano ...
Device non-linearity
                                                                                     10

                                                                        G

• In general, physical devices are not linear in time and voltage   D
                                                                                 S

• Record linearity for Li-based ECRAM (IBM, IEDM 2018)
                                                                            ID

                                      Daniele Ielmini
In-memory convolutional neural networks (CNNs)
                                                                                             11

                              P. Yao, et al.,            3D RRAM array
                              Nature 577,       P. Lin, et al., Nat Electron 3, 225 (2020)
                              641 (2020)

                       Daniele Ielmini
Inverting MVM
                                                                                                           12

                           G
                                                                                                       -
                                                                                                       +
                   V   +       I = G·V
                       -                                                                               -
                                                                                                       +

                                                                                                       -
                                                                                                       +
    Georg Ohm

                                G                                    I1                           V3
                                                                          I2                 V2
                   I           -         V=   -G-1·I
                               +                                               I3       V1

    Harold Black                                                               V = -A-1·I

         Matrix-vector division is equivalent to solving Ax = b, with x = A-1b
                                         Z. Sun, et al., PNAS 116, 4123 (2019)

                                                   Daniele Ielmini
O(1) complexity of inverse MVM
                                                                                  13

          b                               c                            Digital
                                                 CG                    O(polyN)
                                                 QC
                                                 IMC                   Quantum
                                                                       O(logN)

                                                                       In-memory
                                                                       O(1)

                   N
                                         Z. Sun, et al., IEEE Trans. Electron
                                              Devices 67, 2945 (2020)

                       Daniele Ielmini
In-memory PageRank
                                                                                                                    14

                    2       Page No. Company
    3
                              1     Amazon
                        6     2     Baidu
                              3     Facebook
7           4
                              4     Google
                              5     LinkedIn
1                       8     6     PayPal
                              7     Quora
                              8     Twitter
        5
                9             9     YouTube

Z. Sun, et al., PNAS 116, 4123 (2019)                              Throughput [TOPS]   Energy efficiency [TOPS/W]
                                               In-memory                 0.183                    362
                                               TPU                        92                      2.3
                                                                                                        150X
                                                 Daniele Ielmini
Solving a Schrödinger equation
                                                                                                           15

                            V (eV)
                    0
                   -1
                   -2                    !Ψ = $Ψ,
                   -3                          ℏ' * '
                                         !=−            +-
                   -4                          2) * ' +
                                                x (nm)
       -2   -1          0            1      2

                 matrix A                            matrix B            matrix C
                                                                   Z. Sun, et al., PNAS 116, 4123 (2019)

                                                 Daniele Ielmini
Volatile RRAM
                                                                                                                                                16

        5                                    Ag             50

        4                                C                  40
                                         W
        3                                                   30

                                                                 I [ A]
V [V]

                                !"
        2            tret                                   20

        1                                                   10

        0                                                   0

        -2      0    2      4        6   8
                                                       -4            W. Wang, et al., Nat. Commun., 10, 81 (2019)   Z. Wang et al.,
                         Time [s]                 10
                                                                                                                    Nat. Mater. 16 101 (2017)

            • Volatile behavior due to Ag diffusion and filament disconnection in the µs-ms timescale

                                                                             Daniele Ielmini
Analogy with biological synapses
                                                                                                                                       17

                                                             L-Glutamate (neurotransmitter)
                  Neurotransmitter
                                      Receptor                    Individual ionic channels
                                               Ca2+                                              EPSC
                                                                                                                 160 pA
                                                                                                        100 ms

     Na+/Ca2+                                                                         4 pA                                        17
                                                                             100 ms
           EPSC
                                          Ca2+

                                  R. A. J. Lester and C. E. Jahr, J. Neurosci., 12, 635 (1992)

                                                      Electrical stimulus
    Ag                                    Ag
    HfOx                     e-                              Individual RRAM device
             C
    SiO2              Ag             e-               tret                                               1   A
                                                                                                                          N   =   5
             W                                                                                     100 ms                 N   =   10

                                  e- HfOx
                                                                                                                          N   =   20
    !"                                                                       2   A               N devices                N   =   50

                                          C                         100 ms

                                      W. Wang, et al., Adv. Intell. Syst. 2000224 (2020)

                                                      Daniele Ielmini
Direction selectivity in the human retina
                                                                                                                                                                                 18

                                Photoreceptor
                                                             A             B
                                                                                                                                                                 18

                                                                                                   …

                                                                                                           …
                                                                                                                          N
                                       Bipolar cell                                                                               IA            IEPSC=IA-IB
                              SAC                                                                                                           -
      Excitation

                                                                                                   …
                      Inhibition

                                                                                                           …
                                                                                                                          N
                                                                                                                                  IB
                   DS ganglion cell
                                                                                                                                        °
                                                                                       A-B                              120
                                                                                                                              °    90
                                                                                                                                                  60
                                                                                                                                                       °
                                                                                           100 %
                                                                                      97 %
                                                                                                               150°                                            30 °
                                                                                                                                                                EPSC Peak [µA]
A-B                                   B-A                                                                         °                                               °
                              2 A                                    2 A                                   180                                  0
                                                                                                                                       0 1 2 3 4
        2.5 µA       100 ms                     2.5 µA      100 ms

                                                                                1       2      3       4
                                                                                                               -150 °                                          -30 °
                                                                                                                                                                                 !
                                                                                    EPSC Peak [ A]                    -120
                                                                                                                              °
                                                                                                                                                  -60
                                                                                                                                                           °
                                                                                                                                        °
                                                                                                                                  -90

                                            W. Wang, et al., Adv. Intell. Syst. 2000224 (2020)

                                                           Daniele Ielmini
Conclusions
                                                                     19

• In-memory computing by crosspoint operations:
    • MVM (dot product) à DNN inference
    • Outer product à DNN training
    • MVM + feedback (inverse MVM) à linear algebra
• Device physics for brain-inspired neuromorphic computing (short-
  term RRAM)

                             Daniele Ielmini
You can also read