"Horizon: Sky is the limit": Perspective of Laser Wakefield Acceleration
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
“Horizon: Sky is the limit”: Perspective of Laser Wakefield Acceleration Tangled Web of Quantum Sensors: Par$cle Accelerators, Lasers, Electromagne$c Cavi$es and Atomic Beams Fermi Nat. Lab April 30, 2021 Toshiki Tajima University of California at Irvine Collabora0on: S. Cha6opadhyay, B. Barish, G. Mourou, V. Shiltsev, T. Ebisuzaki, K. Abazajian, S. Barwick, X. M. Zhang, D. Strickland, P. Taborek, K. Nakajima, F. Zimmermann, X. Yan, Y.M. Shin, J. Wheeler, W. J. Sha, S. Nicks, D. Roa, F. Tamanoi, G. Szabo, H. B. Yu, H. Sobel, T. Tait, J. Feng, A. Sahai, S. Corde, N. Canac, G. Huxtable, E. Barraza
Table of contents 1. Fermi stochas0c accelera0on à Collec0ve (laser wakefield) accelera0on 2. Ac0ve Galac0c Nuclei and γ and GW emission: Astrophysical wakefields CERN Courier (Feb, 2021) 3. Nanometric wakefield accelerator = “TeV on a Chip” 4. Nanotube wakefield endoscopic cancer therapy
Plasma / nanomaterial accelerator driven by laser pulse Collec0ve force ~N2 (nonlinear ç linear force ~N) Coherent and smooth structure (not stochas0c) Plasma (nanomaEer) accelerator driven by laser (coherent photons) compac0fica0on by 103 – 104 (now even by 106 ) >> conven0onal accelerators enabled by laser technology (laser compression (Mourou et al.1985))
Laser Wakefield (LWFA): Wake phase velocity >> water movement speed Tsunami phase velocity becomes ~0, maintains coherent and smooth structure causes wavebreak and turbulence vs Strong beam (of laser / par0cles) drives plasma waves to satura0on amplitude: E = mωvph /e No wave breaks and wake peaks at v≈c Wave breaks at v<c ← relativity regularizes (relativistic coherence) Relativistic coherence enhances beyond the Tajima-Dawson field E = mωpc /e (~ GeV/cm)
Laser-driven Bow and Wake Wakefield accelera0on Wake Wave (Bulanov, Esirkepov) Bow Wave Ponderomo0ve accelera0on
The late Prof. Abdus Salam At ICTP Summer School (1981), Prof. Salam summoned me and discussed about laser wakefield accelera0on. Salam: ‘Scientists like me began feeling that we had less means to test our theory. However, with your laser acceleration, I am encouraged’. (1981) He organized the Oxford Workshop on laser wakefield accelerator in 1982. Effort: many scien0sts over many years to realize his vision / dream High field science: spawned (NB: Prof. C. Rubbia et al. discovered his bosons at CERN, 1983)
Enabling technology: laser revoluOon G. Mourou invented Chirped Pulse Amplifica0on (1985) Laser intensity exponen0ated since, to match the required intensity for Tajima-Dawson’s LWFA (1979)
Theory of wakefield toward extreme energy # n & ΔE ≈ 2m0c 2 a02γ 2ph= 2m0c 2 a02 %% cr (( , (when 1D theory applies) 107 $ ne ' 106 In order to avoid wavebreak, Electron energy (MeV) 1 TeV 105 a0 < γph1/2 , 104 103 1 GeV ←theore0cal where 102 γph = [ncr(ω) / ne ]1/2 ←experimental 1 ncr =1021/cc (1eV photon) 10 0 1029 (10keV photon) 10 17 18 19 20 10 10 10 10 -3 Plasma density (cm ) ne = 1016 (gas) 1023 /cc(solid) ⎛ ncr ⎞ 2 2 1 ⎛ ncr ⎞ Ld = λ a ⎜ ⎟ , p 0 Lp = λ p a0 ⎜ ⎟ , π ⎝ ne ⎠ 3π ⎝ ne ⎠ dephasing length pump deple0on length
Jet of M87 Galaxy A) B) T. Tajima and K. Shibata, Plasma Astrophysics (Perseus Publishing, Cambridge Masachuse6s 4/29/21 JISCRISS 1997). 2019 11
Hubble Space Telescope image of jets and disk Ground-based op0cal/radio image HST image of a gas and dust disk 70th Birthday
Fermi’s ‘StochasOc AcceleraOon’ (large synchrotron radia0on loss) ê Coherent wakefield acceleraOon (no limita0on of the energy) Nature’s LWFA : Blazar jets extreme high energy cosmic rays (~1021 eV) episodic γ-ray bursts observed consistent with LWFA theory Ebisuzaki-Tajima (2014)
Γ=10~30 Wake at bow of Alfven Pulse Bow Wake Accelera0on 4/29/21 ICRR Jan. 12, 2018 14
NS-NS merger→BH + Disk 1 second Alfven wave after gamma/CRs neutrinos neutrinos disk Black hole disk ↓disk ~0.1 ↓⊙ ↓BH =3−4 ↓⊙ neutrinos erg/s~neutrinos ↓ν ~10↑52 ↓ Central EngineAlfven of wave GRB/Hypernova 15
GravitaOonal wave and Gamma bursts Abbo6 et al. ApJ (2017)
Nature’s wakefield accelerator in cosmos 70th Birthday
Fermi mechanism incoherent requires bending→synchrotron loss Synchrotron radia0on Synchrotron radia0on Synchrotron radia0on By Department of Synchrotron radia0on Energy. Office of Public 18 E. Fermi, 4/29/21 ApJ 119 (1954) 1. Affairs
Ultrahigh Energy Cosmic Rays (UHECR) Fermi mechanism runs out of steam beyond 1019 eV due to synchrotron radia/on Wakefield acceleraOon comes in rescue prompt, intense, linear accelera/on small synchrotron radiaOon radiaOon damping effects?
M82: Nearest Starburst Galaxy M82 X-1: 1000-10000 Ms BH M82 X-1 Composite of X-ray, IR, and op0cal emissions Just aser the collision with M81 NASA / CXC / JHU / D. Strickland; op0cal: NASA / ESA / STScI / AURA/ Hubble Heritage Team; IR: NASA / JPL-Caltech /Univ. of AZ / C. Engelbracht; 4/29/21 inset – NASA / CXC / Tsinghua University / H. 20Feng et al.
Arrival Direction Map (cosmic rays>5×10↑19 eV) TA M82 M82 M82 M82 Northern hot spot photon high energy low energy Magne0c bending of charged par0cles Auger First Iden0fica0on of CR sources? First sign of anisotropy in charged par0cles 4/29/21 JISCRISS 2019 21
Cen A • Distance:3.4Mpc • Radio Galaxy OpOcal – Nearest – Brightest radio source • Ellip0cal Galaxy • Black hole at the center w/ rela0vis0c jets
An0-correla0on between the luminosity and the power index from Blazars AnO-correlaOon of p Luminosity L and Power index p in 0me L ↑ ßp=2 Wakefield theory anOcipated (Ebisuzaki 2014) p Power index p vs. Luminosity L for several Blazars (more in Abazajian et al. arXiv 2017) L
Single-cycled laser and “TeV on a chip” 70th Birthday
Next Generation X-ray Lasers (on Thin Film Compression (TFC)) Wheeler J, Mourou G, Tajima T. 2016
Motivation: 1. Invention of Thin Film Compression (TFC, 2013) opened up Laser Wakefield Acceleration (LWFA, 1979) in X-ray regime, ETD = m pe c / e; 2 2 Δε = 2mc a0 (ncr / n) compactifying further by 103 over the gas plasma LWFA 2. X-ray frequency exceeds the nanomaterial’s plasma frequency ωpe ! carbon-nanotubes higher than 10TV/m wakefield (2014) à Explore X-ray wakefield accelerator in nanotube = “TeV on a Chip”
Why Nanotubes • High density Higher acceleration gradient (~ TeV / cm) • Provides external structure to guide laser and electron beam • No slowdown of electrons by collisions • Intact for time of ionization (fs) • More coherent electrons and betatron radiation 27 (b)Lazarowich RJ, Taborek P, Yoo BY, Myung NV. 2007
X-ray LWFA in a tube vs. uniform solid in nanotube in uniform solid A few-cycled 1keV X-ray pulse (a0 ~ O(1)), causing 10TeV/m wakefield in the tube more strongly confined in the tube cf: uniform solid X. Zhang (2016)
Beam emittance reduction X-ray laser driven wakefield emittance reduction (much smaller transverse dimension) (a) The space distribution (x, y) and (b) the transverse phase space (y, py/px)
Petawa6 Par0cle Accelerators Fermi’s PeV Accelerator Now TeV on a chipà PeV over 10màcheck superstring theory?
Nanotube cancer therapy 70th Birthday
CAN Laser: Need to Phase 32 J/1mJ/fiber~ 3x104 Phased Fibers! Electron/positron beam Mourou, Brockesby, Tajima, Transport fibers Limpert (2013) ~70cm Length of a fiber ~2m Total fiber length~ 5 104km
High density wakefields for medicine • Micron accelerator (in body?) by op0cal laser • Nanomaterials target: density ~ 1021 cm-3 CriOcal density wakefield acceleraOon (< MeV) : e.g. skin cancer Nicks et al. (2019)
Beatwave wakefield acceleraOon of electron acceleraOon in low intensity laser ß Tajima-Dawson (1979) Very low intensity laser with nanotubes à no vacuum necessary S. Nicks, et al. (2020)
Conclusions • 1994-LWFA Demonstrated (Nakajima et al): ultrafast pulses, coherent collec0ve (robust) intense (GeV/cm) accelerators. • But B years ago, Mother Nature sent message she did • Wakefields: Nature’s favored accelera0on for gamma ray bursts, UHECR from Blazars; NS collisions • TFC àSingle-cycled laser à single-cycled X-ray • Wakefield in nanostructure (TeV/cm): TeV on a chip accessible* • Toward PeV (~10-100m) • Applica0ons: 0ny (μm size) LWFA radiotherapy of cancer * Fermilab conf book: “Beam Accelera0on in Crystals and Nanostructures” (WSP, 2020)
BEAM ACCELERATION Shiltsev • Tajima Chattopadhyay • Mourou Recent advancements in generation of intense X-ray laser ultrashort pulses open opportunities for particle acceleration in solid-state plasmas. IN CRYSTALS AND Wakefield acceleration in crystals or carbon nanotubes shows promise of unmatched ultra-high accelerating gradients and possibility to shape the future of high energy physics colliders. This book summarizes the discussions of the “Workshop on Beam Acceleration in Crystals and Nanostructures” (Fermilab, June 24–25 , 2019), presents next steps in NANOSTRUCTURES theory and modeling and outlines major physics and technology challenges toward proof-of-principle Edited by demonstration experiments. Swapan Chattopadhyay • Gérard Mourou Vladimir D. Shiltsev • Toshiki Tajima CRYSTALS AND NANOSTRUCTURES BEAM ACCELERATION IN “Accelerator Unprecedented and huge Curious baby Embraced by Mother Mountain Where’s her beau0ful white coat?” (Toshiki, Geneva, Feb. 13, 2020) Thank you! ISBN 978-981-121-712-8 www.worldscientific.com 11742 hc
You can also read