High Performance Computing for Non-linear MHD Simulations for Fusion Plasmas - Shimpei Futatani (Universitat de Politècnica de Catalunya) - PRACE ...

Page created by Jeffrey Castro
 
CONTINUE READING
High Performance Computing for Non-linear MHD Simulations for Fusion Plasmas - Shimpei Futatani (Universitat de Politècnica de Catalunya) - PRACE ...
High Performance Computing for Non-linear MHD
        Simulations for Fusion Plasmas
                        Shimpei Futatani
           (Universitat de Politècnica de Catalunya)

                     Acknowledgements:
                JOREK Team and Y. Suzuki (NIFS)

                                                           Page 1
               S. Futatani, PRACEdays19, May 13-17, 2019
High Performance Computing for Non-linear MHD Simulations for Fusion Plasmas - Shimpei Futatani (Universitat de Politècnica de Catalunya) - PRACE ...
What makes stars shine?

                              “The starry night”, V. Willen van Gogh

                                                                       Page 2
            S. Futatani, PRACEdays19, May 13-17, 2019
High Performance Computing for Non-linear MHD Simulations for Fusion Plasmas - Shimpei Futatani (Universitat de Politècnica de Catalunya) - PRACE ...
What makes stars shine?

                                    “The starry night”, V. Willen van Gogh

Can we use the energy of shining stars as an alternative
energy source?
                                                                             Page 3
                  S. Futatani, PRACEdays19, May 13-17, 2019
High Performance Computing for Non-linear MHD Simulations for Fusion Plasmas - Shimpei Futatani (Universitat de Politècnica de Catalunya) - PRACE ...
What makes stars shine? – Nuclear fusion

                                                                        Nuclear Fission
                                                                        U235

                       Nuclear Fusion              He
                                                         ++
             +
            T
              +
            D                                        n
                                      E = Dmc2

                                                          [nasa.gouv]
                                                                                     Page 4
             S. Futatani, PRACEdays19, May 13-17, 2019
High Performance Computing for Non-linear MHD Simulations for Fusion Plasmas - Shimpei Futatani (Universitat de Politècnica de Catalunya) - PRACE ...
Outline
Introduction
-   Plasma / Fusion reactor / ITER Project

Physics background - Tokamak
-   What is ELM?
-   JOREK - Nonlinear MHD code
     -   www.jorek.eu
     -   The JOREK team and themes
     -   Numerical details and physics model
     -   Mechanism of pellet triggered ELM
-   JOREK modelling of pellet triggered ELM

Physics background – Stellarator
-   MIPS code
-   MIPS simulation result

Conclusions and Perspectives

                                                                         Page 5
                             S. Futatani, PRACEdays19, May 13-17, 2019
High Performance Computing for Non-linear MHD Simulations for Fusion Plasmas - Shimpei Futatani (Universitat de Politècnica de Catalunya) - PRACE ...
What is plasma?
For achivement the fusion à Plasma state is needed
- Plasma is the 4th state of matter, obtained at high temperature (>105 degrees)
- Plasma is an ionized gas which consists of ions and electrons.

                                                                    [www.nasa.gov]

                                                                                     Page 6
                        S. Futatani, PRACEdays19, May 13-17, 2019
High Performance Computing for Non-linear MHD Simulations for Fusion Plasmas - Shimpei Futatani (Universitat de Politècnica de Catalunya) - PRACE ...
Galaxy fusion reactor in the universe
Key parameters for the fusion = high-temperature and high-density
     è How can we confine the high-temperature plasma?

 - In stars: plasma particles are confined mainly by gravity.

                    [www.setterfird.org]     [wikipedia.org]

                                                                    Page 7
                     S. Futatani, PRACEdays19, May 13-17, 2019
High Performance Computing for Non-linear MHD Simulations for Fusion Plasmas - Shimpei Futatani (Universitat de Politècnica de Catalunya) - PRACE ...
Fusion reactor on Earth
 Key parameters for the fusion = high-temperature and high-density
      è How can we confine the high-temperature plasma?

 - On Earth: plasmas can be confined in Magnetic field lines
      = Magnetic Confinement

• Charged particles spiral around
  magnetic field lines.

• Toroidal (Donut shaped)
  system avoids plasma hitting
  the end of the container
      è Tokamak

                                                                     Page 8
                      S. Futatani, PRACEdays19, May 13-17, 2019
High Performance Computing for Non-linear MHD Simulations for Fusion Plasmas - Shimpei Futatani (Universitat de Politècnica de Catalunya) - PRACE ...
Fusion plasma reactors in the world
 Tokamaks (not listed all here) in the world

JET (EU) and MAST (UK)
                                                               ASDEX Upgrade (Germany)
                                                    ITER
                                                    (international project)

                                                                               JT60U (Japan)
                                                                                         Page 9
                         S. Futatani, PRACEdays19, May 13-17, 2019
High Performance Computing for Non-linear MHD Simulations for Fusion Plasmas - Shimpei Futatani (Universitat de Politècnica de Catalunya) - PRACE ...
What is ITER? [www.iter.org]

ITER is a major international collaboration in fusion energy research involving
China, the EU (plus Switzerland), India, Japan, the Russian Federation, South
Korea and the United States

                                                                    [www.iter.org]

                   ITER
                                                  ITER site (January 2017)
                                                                                 Page 10
                        S. Futatani, PRACEdays19, May 13-17, 2019
Overview of the ITER Tokamak Pit

   Drone view of the tokamak pit and bioshield construction
                                                         [Figure from Pinches, ITER Organization]
                                                                                                    Page 11
                S. Futatani, PRACEdays19, May 13-17, 2019
A big challenge for control of fusion plasma

Eruption of high temperature plasma
       = solar flares (for sun)
       = ELMs (for Magnetically confined plasma)
            è Big challenge for the control of the plasma
                                                              Page 12
                  S. Futatani, PRACEdays19, May 13-17, 2019
Edge Localized Modes (ELMs)
• Fusion plasma has a strong pressure gradient at the plasma boundary.

• Edge pressure gradient is limited by an MHD instability (ballooning mode)
    •   A crash of the edge profile occurs
    •   Release of hot plasmas onto a plasma facing components
    •   ELM removes up to 10% of the plasma energy in ~200 microseconds                          ELM
    •   Periodic and bursty behaviors

                                                        [Figure from Pitts, ITER Organization]
                                                                                                 Page 13
                          S. Futatani, PRACEdays19, May 13-17, 2019
Edge Localized Modes (ELMs)
• Fusion plasma has a strong pressure gradient at the plasma boundary.

• Edge pressure gradient is limited by an MHD instability (ballooning mode)
    •   A crash of the edge profile occurs
    •   Release of hot plasmas onto a plasma facing components
    •   ELM removes up to 10% of the plasma energy in ~200 microseconds   ELM
    •   Periodic and bursty behaviors

                       Fast camera image of ELM (MAST) [A. Kirk et al.]
                                                                              Page 14
                           S. Futatani, PRACEdays19, May 13-17, 2019
Edge Localized Modes (ELMs)

                                                            [Linke 2007]

ELMs lead to a large erosion of and a limited lifetime of the plasma facing
components. èRequires physics understanding of ELMs and ELM control
   • Techniques to control ELM:
      • stabilisation by external magnetic perturbations
      • triggered by pellet injection (pellet : deuterium solid ice cube)
      • Etc…
                                                                            Page 15
                        S. Futatani, PRACEdays19, May 13-17, 2019
Demonstration of ELM pacing by pellets without fueling

  Divertor                               [Baylor APS 2010]

- Pellets can control the ELM frequency
- Heat flux of the pellet triggered ELMs on the fusion reactor wall becomes small.

 Theoretical and Numerical Modelling studies are needed.

                                                                                     Page 16
                           S. Futatani, PRACEdays19, May 13-17, 2019
Non-linear MHD code JOREK
• JOREK has been developed with the specific aim to simulate ELMs, developed by Dr. G.
  Huijsmans (CEA/Univ. Eindhoven).
        • G.T.A. Huysmans, Plasma Phys. Control. Fusion 47, B165 (2005)
        • G.T.A. Huysmans and O. Czarny, Nuclear Fusion 47, 659 (2007)
        • O. Czarny and G. Huysmans, J. Comp. Phys. 16, 7423 (2008)
        • See [https://www.jorek.eu/]

                                                                                         Page 17
                            S. Futatani, PRACEdays19, May 13-17, 2019
Non-linear MHD code JOREK
• European Enabling Research Project (PI: M. Hoelzl)
• JOREK collaborations (>30 members, >10 international institutions):
    •   JOREK main development and application
          • Involved institutes: CEA, IPP Garching, ITER, CCFE, Eindoven, UPC etc.
    •   Pellet triggering of ELMs / Shattered pellets for disruption
          • S. Futatani , D. Hu etc.
    •   ELM mitigation/suppression by external fields
          • F. Orain, M. Becoulet, K. Wittawat, M. Hoelzl, etc
    •   Full orbit particle tracer
          • D. Van vugt, A. Dvornova, C. Somariva, etc.
    •   Disruptions (MGI, REs, etc)
          • E. Nardon, C. Sommariva, V. Bandaru, M. Hoelzl, D. Meshcheriakov, F. Wieschollek, etc
    •   Simulation of ELMs
          • G. Huijsmans, S. Pamela, M. Becoulet, F. Orain, M. Hoelzl, A. Cathey etc.
    •   Solvers (PaStiX, HIPS, Interface MURGE)
          • P. Ramet, P. Henon, X. Lacoste, Univ. Bordeaux/INRIA
    •   Full MHD model/numerical methods
          • B. N’Konga, G. Huijsmans, H. Guillard, S. Pamela
    •   Resistive Wall/Free boundary version (VDEs, RWMs, vertical kicks, ...)
          • M. Hoelzl, J. Artola-Such, etc
    •   Numerical methods
          • B. N’Konga, E. Sonnendruecker, H. Guillard, E. Franck etc
                                                                                                    Page 18
                                 S. Futatani, PRACEdays19, May 13-17, 2019
Non-linear MHD code JOREK
• Numerical features:
   • Discretisation: Xpoint geometry
        • Cubic finite elements flux-aligned poloidal grid
        • Fourier series in toroidal angle

      • Time stepping:
          • fully implicit Crank-Nicholson
          • Solver sparse matrices (PastiX library)
          • GMRES iterative solver with physical preconditioner
                                                                                [Provided by
                                                                                M. Hoelzl]
      • Parallelisation using MPI/OPENMP
          • ~30000 poloidal elements
          • Typically 1880-3800 cores

  •    MareNostrum IV (BSC), Marconi-Fusion (CINECA),
       CURIE (France), hydra (Germany), etc
           Acknowledgement to PRACE project.
                                                                           [Provided by
                                                                           S. Pamela]

                                                                                      Page 19
                               S. Futatani, PRACEdays19, May 13-17, 2019
Non-linear MHD code JOREK
  •   Reduced MHD model (JOREK also has the full MHD model).
  •   Braginskii parallel conductivity
  •   Spitzer resistivity
  •   Mach-1 boundary condition, free flow on divertor target
• Magnetic field and the velocity

• Mass density                                                             Coupled with the
                                                                           pellet ablation model

• Poloidal momentum (vorticity)

• Parallel momentum

 • Temperature

 • Poloidal flux
                                                                                           Page 20
                               S. Futatani, PRACEdays19, May 13-17, 2019
Pellet model and implementation in JOREK
•   Realistic pellet ablation model (NGS model [Gal, NF(2008)]) is implemented
    in JOREK :
    • Pellet moves at fixed speed and direction
    • Pellet is modelled as an adiabatic localized time-varying density source

                                                    rp: pellet radius [m]
                                                    ne: plasma electron density [m-3]
           Sp: Density source                       Te: plasma electron temperature [eV]

     JOREK solves a very complex, multi-physics which requires HPC
                             Interactions

      Non-linear MHD physics                                  Pellet ablation physics

                                                                                        Page 21
                          S. Futatani, PRACEdays19, May 13-17, 2019
Mechanism of pellet triggered ELM

                                                          Page 22
              S. Futatani, PRACEdays19, May 13-17, 2019
Plasma dynamics after the pellet injection

                                           1.1mm pellet   1.7mm pellet

                                                                         Page 23
              S. Futatani, PRACEdays19, May 13-17, 2019
Heat flux on the divertor target
                                                 Heat flux profile on the divertor target ELM
                                                 [Wenninger et al. (2010)].
                                                 (a) spontaneous ELM                (b) pellet triggered
                                                 ELM
 Spontaneous ELM

                                                                                     Pellet density
 Pellet triggered                                                                    source creates
 ELM (1.7mm)                                                                         another
                                                                                     channel to the
                                                                                     divertor target.
                                                                                     è Distribution
                                                                                     of the heat flux
                                                                                     in a wide area.
                                                                                                   Page 24
                    S. Futatani, PRACEdays19, May 13-17, 2019
Simulations of stellarator plasma
• Stellarator is an alternative type of fusion reactor. It exploits
  strangely-shaped magnets that is hard to build but potentially
  easier to operate.
• The global MHD dynamics of the Large Helical Device (LHD)
  in Japan has been analyzed with the MIPS-code.

                                                                Page 25
                    S. Futatani, PRACEdays19, May 13-17, 2019
Fusion plasma reactors in the world
Stellarators (not listed all here) in the world

                                                        Wendelstein 7-X (Germany)

NCSX (US)
                             TJ-II (Spain)
                                                                     LHD (Japan)
                                                                                    Page 26
                        S. Futatani, PRACEdays19, May 13-17, 2019
MIPS code
•   MIPS code solves the full MHD equations starting from the initial equilibrium.

                             [Y. Todo et al., PFR (2010), K. Ichiguchi et al., NF (2015)]

• Those equations are solved in the rectangular grids of the cylindrical coordinates
  (R, f, Z).
• Any plasma geometry can be implemented by implementation of magnetic field.
• Good scaling of parallelization up to 4096 cpu cores.
                                                                                            Page 27
                          S. Futatani, PRACEdays19, May 13-17, 2019
Pellet cloud profile
•   Realistic pellet ablation model (NGS model [Gal, NF(2008)]) is implemented in MIPS.
•   The pellet cloud profile shows the m/n=1/1 shape.

                                                The density (pressure) source is
                                                localized in the toroidal and the
                                                poloidal direction

                                                                              Pellet injection

                                                                                         Page 28
                           S. Futatani, PRACEdays19, May 13-17, 2019
Pellet cloud profile
                               •   Realistic pellet ablation model (NGS model
                                   [Gal, NF(2008)]) is implemented in MIPS.
                               •   The pellet cloud profile shows the m/n=1/1
                                   shape.

                                                                        Page 29
            S. Futatani, PRACEdays19, May 13-17, 2019
MHD excitation by pellet
•   The three-dimensionally localized pressure perturbation excites the MHD modes.
     • Magnetic energies evolve.
     • m/n=2/1 (solid lines), m/n=2/2 (dashed lines), m/n=2/3 (dotted lines)

• The plasma is stable in the absence of the pellet.
• After the full pellet ablation, the energies suddenly go relax state (t=400-
  500µs).
                                                                               Page 30
                            S. Futatani, PRACEdays19, May 13-17, 2019
Conclusions and perspectives

                                                                JOREK simulation
                                                                by G. Huijsmans
                                                                (CEA/ITER)

Conclusions
• JOREK has been performed to study the non-linear MHD physics.
• JOREK allows us to compute the ELM physics and calculate the heat flux onto the
  plasma facing components.
• Qualitative agreements with the experiment results of JET are observed via
  simulation.
• MIPS has been performed to study the pellet effect in stellarator plasma.
• The excitation of MHD modes caused by pellet injection is observed.
Future works
• JOREK pellet simulation will be performed including more physics effects to allow for
  a more quantitative comparison.
• Improvement of physics model in MIPS will be carried out.
                                                                                   Page 31
                          S. Futatani, PRACEdays19, May 13-17, 2019
You can also read