GVD - Neutrino Telescope in Lake Baikal - DESY Indico
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Winter expedition at Lake Baikal GVD - Neutrino Telescope in Lake Baikal Present and Nearest Future Lukáš Fajt IEAP CTU in Prague For the Baikal-GVD Collaboration EPS-HEP 2021 29. 07. 2021 L. Fajt Baikal-GVD 29.07.2021 1 / 18
Neutrino Astronomy Neutrinos: are stable are not effected by electric and magnetic fields do not scatter on gas, dust and CMB escape easily from dense environments can track sources of HE cosmic rays and/or γs arXiv:1111.0507 L. Fajt Baikal-GVD 29.07.2021 2 / 18
Neutrino Telescope Baikal-GVD Neutrino telescope Baikal-GVD (Gigaton Volume Detector) is a cubic-kilometre scale underwater 3D array of photon-sensitive PMTs whose main purpose is the study of astrophysical neutrinos 10 organizations,5 countries, 70 members 3.6 km from shore Lake depth 1366 m Absorption length: 22 m Scattering length: 30-50 m Ice coverage for 2 months Moderately low background (15-80 kHz) 2016: First cluster 2021: eight clusters, 2304 OMs L. Fajt Baikal-GVD 29.07.2021 3 / 18
Optical Module (OM) = Basic Detection Unit L. Fajt Baikal-GVD 29.07.2021 4 / 18
Cluster = Basic Construction Unit Cluster: 8 independent strings 60 m radius Completely independent Separate electro-optical shore cable DAQ located in the water (30 m depth) Trigger conditions: I 4.5 and 1.5 p.e. on adjacent OMs in 100 ns window String: 36 OMs, 15 m spacing, depths from 750 to 1275 m Readout is organised in 3 sections, 12 OMs each Acoustic and LED calibration devices Anchored at the lake bottom Buoys on the top (30 m depth) L. Fajt Baikal-GVD 29.07.2021 5 / 18
Detector Calibrations Positioning: Up to 50 m deviations of top OMs Average velocity 0.5 cm/s Measurements every 1-6 minutes Positioning precision < 20 cm Time Calibration: Precise timing crucial for high angular reconstruction precision 3 types of calibration devices: Built-in LEDs, LED beacons, lasers Time calibration precision < 2 ns Intercluster calibration with WR + laser L. Fajt Baikal-GVD 29.07.2021 6 / 18
Automatic Data Processing https://pos.sissa.it/395/1040/pdf 40 Gb/cluster/day send and stored at the shore centre 300 Mbit/s radio link over the lake to Baikalsk Data send to JINR servers over the internet Data stored on EOS Since 2021, completely automatic data processing (100s of cores) + alert production system Raw waveforms stored → possible reprocessing Pulse extractions White Rabbit synchronization of independent cluster data flows Single cluster track and two independent cascade reconstructions OM coordinates monitoring DQM L. Fajt Baikal-GVD 29.07.2021 7 / 18
Muon Tracks Reconstruction MC Simulations: Data Sample: Muon Reconstruction: Simple neutrino generator for CC interactions of νµ and νµ with Single cluster analysis Hit finding (noise rejection) Bartol flux model (10 GeV - April 1 and June 30, 2019 Preliminary muon track direction 100 TeV) estimation Low-noise period Atmospheric muon bundles: Track fit Q = χ2 (t) + w · f (q, r ) I CORSIKA 5.7 (240 GeV - 2 PeV) ∼ 320 days of single-cluster I MUM for muon propagation equivalent Neutrino selection I 643 days of single-cluster livetime I BDT 9.8 million reconstructed events I Cut-based selection Realistic per-channel noise https://pos.sissa.it/395/1177/pdf https://pos.sissa.it/395/1080/pdf L. Fajt Baikal-GVD 29.07.2021 8 / 18
Muon Neutrino Sample - Cut Based Selection Neutrino selection cuts: Results: Zenith angle > 120◦ Data: 44 neutrino candidate events were found At least 8 hits on at least 2 strings Atmospheric neutrino MC simulation: 43.6 ± 6.6 Fit quality Q/ndf < 32 (stat.) events Visible track length L > 42 m Atmospheric muon background is < 1 event Average distance to OMs < 18 m Median energy of the neutrino events ∼ 500 GeV Charge of all hits > 18 p.e. L. Fajt Baikal-GVD 29.07.2021 9 / 18
Muon Neutrino Candidates L. Fajt Baikal-GVD 29.07.2021 10 / 18
High-energy Cascades Cascade Reconstruction: Noise suppression with Extended Causality criterion (Purity = 99.6%, Efficiency = 82.7%) I |ti − tj | < dij /v + δt with all hits with higher charge I Hit on the neighbouring OMs in the corresponding time window(0, dij /v + 50) ns I Q > 1.5p.e. At least 6 hits on at least 3 strings Initial position and time estimation → − ( R ,T ))2 exp 1 PNhit (Timeas −Ti Series of χ2 fits of position and time: χ2 = Nhit −4 i=0 σt2 , σt = 4 ns 96 independent Likelihood P minimizations with different Pinitial values: L = Lhit + Lnonhit = − i log Pi (Qi |Esh , θsh , φsh ) − j log Pj (0|Esh , θsh , φsh ), where Pi (Qi |Esh , θsh , φsh ) = Poisson(Qi |Qexp ) L. Fajt Baikal-GVD 29.07.2021 11 / 18
∼ 1 PeV Cascade Neutrino Candidate GVD 2019 112 937 TeV (1200 TeV) 53 hits used for reconstruction 94 meters from central string Zenith angle 61 degree L. Fajt Baikal-GVD 29.07.2021 12 / 18
Up-going Neutrino Candidates GVD 2019 114 79 TeV (91 TeV) 49 hits used for the reconstruction 47 meters from central string Zenith angle 109 degree GVD 2020 196 - Preliminary 97 TeV 41 hits used for the reconstruction 61 meters from central string Zenith angle 115 degree L. Fajt Baikal-GVD 29.07.2021 13 / 18
Multi-messenger studies https://pos.sissa.it/395/002/pdf & https://pos.sissa.it/395/946/pdf IceCube Alerts Follow-Up: Baikal Alerts: Since September 2020 Since September 2020 22 alerts processed a few hour delay No coincidences found Within collaboration Follow-up of multi-wavelength signals: Antares Alerts Follow-Up: AT2019dsg TDE Since December 2018 Magnetar SGR 1935+2154 (2 cascades in 5 48 alerts processed degrees) 3 interesting coincidence candidates found and GW170817 - no events (JETP Letters, v.108, studied issue 12) Radio-loud blazars L. Fajt Baikal-GVD 29.07.2021 14 / 18
Future L. Fajt Baikal-GVD 29.07.2021 14 / 18
Detector Construction Status 2021: 8 clusters, 3 laser stations, experimental string Effective volume 2021: 0.40 km3 (cascade mode) L. Fajt Baikal-GVD 29.07.2021 15 / 18
Future I MC Simulations Improvements in the noise rate generation Run-by-Run simulations with specific noise and threshold conditions (DONE, being tested) Multicluster simulations of 5 clusters for 2019 (DONE, being tested) General Significant improvements in pulse extraction: Pulse fitting, Double Pulse identification, pulse separation Alerts: Shorten the time from a few hours to a few tens of minutes https://pos.sissa.it/395/1113/pdf L. Fajt Baikal-GVD 29.07.2021 16 / 18
Future II Track Channel Cascade Channel Multicluster Reconstruction Suppression of background cascades with BDT Scan-Fit Implementation - higher reconstruction Vetoing with other clusters - search for muon efficiencies track in other clusters Optimization of cuts for HE tracks Search for High-energy starting events Likelihood reconstruction - production of Double cascade reconstruction - new algorithm likelihood tables being tested on MC data https://pos.sissa.it/395/1063/pdf https://pos.sissa.it/395/1114/pdf L. Fajt Baikal-GVD 29.07.2021 17 / 18
MC Double Cascades - prove of concept https://pos.sissa.it/395/1167/pdf L. Fajt Baikal-GVD 29.07.2021 18 / 18
Thank you for your attention. L. Fajt Baikal-GVD 29.07.2021 18 / 18
You can also read