DETECTING ALPs WITH SuperCDMS - a low background experiment - 13TH TERASCALE DETECTOR WORKSHOP HAMBURG, 8. 4. 2021 - Indico

Page created by Michelle Wise
 
CONTINUE READING
DETECTING ALPs WITH SuperCDMS - a low background experiment - 13TH TERASCALE DETECTOR WORKSHOP HAMBURG, 8. 4. 2021 - Indico
13TH TERASCALE DETECTOR WORKSHOP
 HAMBURG, 8. 4. 2021

 BELINA VON KROSIGK (belina.von.krosigk@uni-hamburg.de)

DETECTING ALPs WITH SuperCDMS
- a low background experiment -
DETECTING ALPs WITH SuperCDMS - a low background experiment - 13TH TERASCALE DETECTOR WORKSHOP HAMBURG, 8. 4. 2021 - Indico
~ 85 %
OF ALL MATTER IS DARK!

 NASA/STScl; Magellan/U.Arizona/D.Clowe et al.
DETECTING ALPs WITH SuperCDMS - a low background experiment - 13TH TERASCALE DETECTOR WORKSHOP HAMBURG, 8. 4. 2021 - Indico
DARK MATTER HALO 3

 Dark Matter
 Earth Halo

 Milky Way

Artist’s impression of a spiral galaxy embedded in a dark matter
 BELINAhalo
 VON (Credit:
 KROSIGK ESO / L. Calçada)
DETECTING ALPs WITH SuperCDMS - a low background experiment - 13TH TERASCALE DETECTOR WORKSHOP HAMBURG, 8. 4. 2021 - Indico
DARK MATTER HALO 4

 Dark Matter
 Halo

 Milky Way

Artist’s impression of a spiral galaxy embedded in a dark matter
 BELINAhalo
 VON (Credit:
 KROSIGK ESO / L. Calçada)
DETECTING ALPs WITH SuperCDMS - a low background experiment - 13TH TERASCALE DETECTOR WORKSHOP HAMBURG, 8. 4. 2021 - Indico
DIRECT DARK MATTER DETECTION 5

 DM
 ab
 so r i n g
 rp Electron tte
 tio
 n u s sc a Any direct interaction with
 c le
 M - nu the atoms of the material.
 D

 Orbit
 Nucleus DM
 -el
 e ctr
 o ns
 Farinaldo S. Queiroz ca
 tte
 arXiv:1605.08788 ring
 (modi ed)

 BELINA VON KROSIGK
fi
DETECTING ALPs WITH SuperCDMS - a low background experiment - 13TH TERASCALE DETECTOR WORKSHOP HAMBURG, 8. 4. 2021 - Indico
THE DARK SECTOR 6

 Image: Torben Ferber

 LDM: Light Dark Matter
 ALP: Axion-Like-Particle
 BELINA VON KROSIGK
DETECTING ALPs WITH SuperCDMS - a low background experiment - 13TH TERASCALE DETECTOR WORKSHOP HAMBURG, 8. 4. 2021 - Indico
THE SuperCDMS
 EXPERIMENT
DETECTING ALPs WITH SuperCDMS - a low background experiment - 13TH TERASCALE DETECTOR WORKSHOP HAMBURG, 8. 4. 2021 - Indico
THE SuperCDMS SET-UP 8

▸ Starting with 4 towers

▸ Space for more towers!
 < 15 mK

 10 cm
 ~ 1 kg

▸ 6 detectors per tower

▸ Detectors made from
 Si and Ge
 BELINA VON KROSIGK
DETECTING ALPs WITH SuperCDMS - a low background experiment - 13TH TERASCALE DETECTOR WORKSHOP HAMBURG, 8. 4. 2021 - Indico
SILICON AND GERMANIUM DETECTORS 9

 Incoming, interacting particles generate
 phonons (i.e. heat / lattice vibrations) and electron-hole pairs (via ionization)

 Phonon channels Phonon channels

 interleaved with
 charge channels

 BELINA VON KROSIGK
DETECTING ALPs WITH SuperCDMS - a low background experiment - 13TH TERASCALE DETECTOR WORKSHOP HAMBURG, 8. 4. 2021 - Indico
SILICON AND GERMANIUM DETECTORS 10

 Incoming, interacting particles generate
 phonons (i.e. heat / lattice vibrations) and electron-hole pairs (via ionization)

 Phonon channels Phonon channels

 interleaved with
 charge channels

 Ef cient nuclear recoil (NR) to
 electron recoil (ER) discrimination

 BELINA VON KROSIGK
fi
SILICON AND GERMANIUM DETECTORS 11

 Incoming, interacting particles generate
 phonons (i.e. heat / lattice vibrations) and electron-hole pairs (via ionization)

 Phonon channels Phonon channels

 interleaved with
 charge channels

 Ef cient nuclear recoil (NR) to
 electron recoil (ER) discrimination

 BELINA VON KROSIGK
fi
SILICON AND GERMANIUM DETECTORS 12

 Incoming, interacting particles generate
 phonons (i.e. heat / lattice vibrations) and electron-hole pairs (via ionization)

 Phonon channels Phonon channels

 interleaved with
 charge channels

 Ef cient nuclear recoil (NR) to Strongly reduced energy threshold
 electron recoil (ER) discrimination

 BELINA VON KROSIGK
fi
PHONON AMPLIFICATION OF IONIZATION SIGNAL 13

 Vbias
 Condensed layer of
 ~ 100 V
 phonon sensors
 (top and bottom surface)

 Transition Edge Sensors (TES)

 normal

 transition

 superconducting
 BELINA VON KROSIGK
PHONON AMPLIFICATION OF IONIZATION SIGNAL 14

 Vbias
 Condensed layer of
 ~ 100 V
 phonon sensors
 (top and bottom surface)

 grouped in
 12 Phonon channels:

 BELINA VON KROSIGK
NUCLEAR vs. ELECTRON RECOIL EVENT CLASS 15

Figure: Stefano Davini Figure: Rouven Essig

 Nuclear Recoil Electron Recoil

 Mostly primary phonons Mostly e-/h+ pairs

 ▸ Elastic WIMP-nucleon scattering ▸ Light DM-electron scattering

 ▸ … ▸ Absorption of ALPs or Dark Photons

 ▸ Bragg scattering of ALPs

 ▸ … Kurinsky, BvK, et al. Phys. Rev. Lett. 121 (2018) 051301
 Germond, Fascione, BvK, et al. Phys. Rev. D 101 (2020) 052008
 BELINA VON KROSIGK Wilson, Chang, BvK, et al. Phys. Rev. D 102 (2020) 091101(R)
ABSORPTION OF RELIC ALPS
AXIOELECTRIC ABSORPTION OF RELIC ALPS 17

 a

 gaee

 ▸ Analogous to photoelectric absorption

 ▸ Electron emitted with energy = ALP mass
 belina.von.krosigk@desy.de
AXIOELECTRIC ABSORPTION OF RELIC ALPS 18

 CDMSlite Run 2
 (SuperCDMS Soudan, Ge HV detector)

 belina.von.krosigk@desy.de
AXIOELECTRIC ABSORPTION OF RELIC ALPS 19

 CDMSlite Run 2
 (SuperCDMS Soudan, Ge HV detector)

 Ge activation
 peaks

 belina.von.krosigk@desy.de
AXIOELECTRIC ABSORPTION OF RELIC ALPS 20

 CDMSlite Run 2
 (SuperCDMS Soudan, Ge HV detector)

 Rate
 Ge activation ALP peak
 peaks ma = 15 keV/c2 ~ g
 DM aee
 2 m
 a p.e. (E=m ac 2)

 gaee arbitrary
 (O(10-11)) DM: Local halo DM density
 p.e.: Photoelectric absorption coeff.

 belina.von.krosigk@desy.de
 
 
AXIOELECTRIC ABSORPTION OF RELIC ALPS 21

 CDMSlite Run 2
 (SuperCDMS Soudan, Ge HV detector)

 Rate
 Ge activation ALP peak
 peaks ma = 15 keV/c2 ~ g
 DM aee
 2 m
 a p.e. (E=m ac 2)

 gaee arbitrary
 (O(10-11)) DM: Local halo DM density
 p.e.: Photoelectric absorption coeff.

 The lower the threshold the
 greater the mass reach!

 belina.von.krosigk@desy.de
 
 
AXIOELECTRIC ABSORPTION OF RELIC ALPS 22

 CDMSlite Run 2
 (SuperCDMS Soudan, Ge HV detector)

▸ The most simplest limit from Poisson statistics (signal-only hypothesis)

▸ Lots of room for improvement (incl.belina.von.krosigk@desy.de
 discovery potential) given a robust background model
SuperCDMS LIMITS - PAST AND FUTURE 23

 Results from
 SuperCDMS Soudan

 Rate
 ~ g
 DM aee
 2 m
 a p.e. (E=m ac 2)

 DM: Local halo DM density
 p.e.: Photoelectric absorption coef cient

 SuperCDMS, accepted by PRD
 [arXiv:hep-ph/1911.11905]
 belina.von.krosigk@desy.de
 
 fi
SuperCDMS LIMITS - PAST AND FUTURE 24

 Results from
 SuperCDMS Soudan

 lower threshold
 Rate
 ~ g
 DM aee
 2 m
 a p.e. (E=m ac 2)

 DM: Local halo DM density
 p.e.: Photoelectric absorption coef cient

 more exposure,
 lower backgrounds

 SuperCDMS, accepted by PRD
 [arXiv:hep-ph/1911.11905]
 belina.von.krosigk@desy.de
 
 fi
ENHANCING THE SENSITIVITY
more exposure,
PAST AND FUTURE OF (Super)CDMS lower backgrounds
 26

 CDMS @ SUF
 SUF: Stanford Underground Facility
 1998 - 2002
 30 kg・day Ge

 CDMS II @ Soudan
 2003 - 2009
 400 kg・day Ge

 SuperCDMS @ Soudan
 2009 - 2015
 6.8 kg・yr Ge

 SuperCDMS @ SNOLAB
 2023 - 2027, 2027 - 20xx
 100 kg・yr Ge, 14.4 kg・yr Si

 BELINA VON KROSIGK
more exposure,
PAST AND FUTURE OF (Super)CDMS lower backgrounds
 27

 Figure: Aldo Ianni - TAUP 2017

 BELINA VON KROSIGK
more exposure,
SuperCDMS AT SNOLAB lower backgrounds
 28

 ▸ ~ 2km deep underground in an active mine

 ▸ 0.27 muons per m2/day

 ▸ Cleanroom class 2000

 ▸ Home to ~ 10 low background experiments

 SuperCDMS

 Coffee

 BELINA VON KROSIGK
SuperCDMS LIMITS - PAST AND FUTURE 29

 Results from
 SuperCDMS Soudan

 lower threshold
 Rate
 ~ g
 DM aee
 2 m
 a p.e. (E=m ac 2)

 DM: Local halo DM density
 p.e.: Photoelectric absorption coef cient

 more exposure,
 lower backgrounds

 SuperCDMS, accepted by PRD
 [arXiv:hep-ph/1911.11905]
 belina.von.krosigk@desy.de
 
 fi
CUSTOM DETECTOR CONTROL AND READOUT CARDS (DCRC) 30

 Phonon Pulse

 Amplitude
 Time

 ▸ L1 triggers on phonon signal

Prototype ▸ Sampling:
DCRC L1 Trigger
 ▸ 625 kHz (phonon)

 ▸ 2.5 MHz (ionization)
 BELINA VON KROSIGK
PRINCIPLES OF TRIGGERING AT SuperCDMS 31

 ▸ Continuous trace, HVeV detector

 ▸ Of ine Trigger:

 ▸ Filtering with “Optimal Filter” Alexander Zaytsev, UHH

 ▸ Threshold triggering
 ⟹

 ▸ Same principle for Online Trigger
 on FPGA (Level 1)
 Kurinsky, Zaytsev, Meyer zu Theenhausen, Wilson, et al. arXiv:2012.12430
 (submitted for publication)
 BELINA VON KROSIGK
fl
L1 TRIGGER ARCHITECTURE 32

 Filtering with “Optimal Filter”

 Downsample Linear Finite- Threshold L1 Trigger Buffer
 Filter Combination Impulse- Logic Peak Search
 Decision
 Response
 4p
 Filters ThL 1
 DF-P1
 39kHz
 625kHz
 ThL 2
 4p LC 1 FIR 1 PS 1
 DF-P2 39kHz
 ThL 3
 Synchronizer

 625kHz
 To
 4p
 LC 2 FIR 2 ThL 4 PS 2 Trigger Trigger L2/DAQ
ADC 625kHz DF-P3 39kHz

 ThL 5 Logic FIFO
 LC 3 FIR 3 PS 3
 4c
 2c
 2.5MHz DF-C1 39kHz
 LC 4 FIR 4 ThL 6 PS 4
 4c
 2c ThL 7
 2.5MHz
 DF-C2 39kHz

 ThL 8

 Timestamp Amplitude Thresholds Decisions
 BELINA VON KROSIGK
L1 TRIGGER: R&D TO FURTHER REDUCE NOISE 33

 NxM Correlated
 Optimal Filter

 12x12 FIRs
 Downsample Total Linear Threshold L1 Trigger
 + Linear Peak Search Buffer
 Filter Combination Logic Decision
 Combinations

 4p
 FIR 1-12 LC 1
 ThL 1
 DF-P1
 39kHz
 FIR 1-12 LC 2
 625kHz
 FIR 1-12 LC 3 ThL 2
 4p FIR 1-12 LC 4 PS 1
 DF-P2 39kHz
 ThL 3
 Synchronizer

 625kHz FIR 1-12 LC 5
 To
 4p
 FIR 1-12 LC 6
 ThL 4 PS 2 Trigger Trigger L2/DAQ
ADC 625kHz DF-P3 39kHz FIR 1-12 LC 7 LC Tot
 ThL 5 Logic FIFO
 FIR 1-12 LC 8 PS 3
 4c
 2c FIR 1-12 LC 9
 2.5MHz DF-C1 39kHz
 FIR 1-12 LC 10 ThL 6 PS 4
 FIR 1-12 LC 11
 4c
 2c ThL 7
 2.5MHz
 DF-C2 39kHz FIR 1-12 LC 12

 ThL 8

 Filter out noise by using all phonon channels individually
 BELINA VON KROSIGK
CONCLUSION 34

▸ Understanding the nature of Dark Matter
 is one of the biggest challenges in
 science today

▸ The SuperCDMS experiment offers a
 unique chance to probe uncharted
 territory in the (very near) future

▸ Never hesitate to pioneer! Reach beyond
 existing sensitivities can only be
 achieved by new ideas and concepts

 BELINA VON KROSIGK
ADDITIONAL MATERIAL
BRAGG SCATTERING OF
 SOLAR ALPS
PRIMAKOFF-LIKE EFFECT ON SOLAR ALPS 37

 ga ga
 a

 Primakoff-like2

 Cross section ~ ga 2 ⟹ Observed rate ~ ga 4

 belina.von.krosigk@desy.de
PRIMAKOFF-LIKE EFFECT ON SOLAR ALPS 38

 G: reciprocal lattice vector
 u: unit vector pointing to the sun

 Ge or Si
 Crystal
 electric eld lattice

 Process in periodic lattice is coherent when Bragg condition (2 d sin θ = nλ) satis ed:

 belina.von.krosigk@desy.de
 fi
 fi
STRONG SIGNAL RATE MODULATIONS 39

 ▸ No background expected with
 same or similar modulation pattern!

 ▸ Still, hard to compete with
 helioscopes and HB stars…
 belina.von.krosigk@desy.de
CDMS II LIMITS - 2009 40

 ▸ Dominating uncertainty at CDMS
 Soudan: crystal orientation.
 @ 95%CL

 ▸ SuperCDMS SNOLAB will have:

 ▸ more accurate knowledge of crystal
 orientation

 ▸ ~ 100 x more exposure

 CDMS, PRL103:141802,2009
 [arXiv:hep-ph/arXiv:0902.4693]

 belina.von.krosigk@desy.de
You can also read