DETECTING ALPs WITH SuperCDMS - a low background experiment - 13TH TERASCALE DETECTOR WORKSHOP HAMBURG, 8. 4. 2021 - Indico
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
13TH TERASCALE DETECTOR WORKSHOP HAMBURG, 8. 4. 2021 BELINA VON KROSIGK (belina.von.krosigk@uni-hamburg.de) DETECTING ALPs WITH SuperCDMS - a low background experiment -
DARK MATTER HALO 3 Dark Matter Earth Halo Milky Way Artist’s impression of a spiral galaxy embedded in a dark matter BELINAhalo VON (Credit: KROSIGK ESO / L. Calçada)
DARK MATTER HALO 4 Dark Matter Halo Milky Way Artist’s impression of a spiral galaxy embedded in a dark matter BELINAhalo VON (Credit: KROSIGK ESO / L. Calçada)
DIRECT DARK MATTER DETECTION 5 DM ab so r i n g rp Electron tte tio n u s sc a Any direct interaction with c le M - nu the atoms of the material. D Orbit Nucleus DM -el e ctr o ns Farinaldo S. Queiroz ca tte arXiv:1605.08788 ring (modi ed) BELINA VON KROSIGK fi
THE DARK SECTOR 6 Image: Torben Ferber LDM: Light Dark Matter ALP: Axion-Like-Particle BELINA VON KROSIGK
THE SuperCDMS SET-UP 8 ▸ Starting with 4 towers ▸ Space for more towers! < 15 mK 10 cm ~ 1 kg ▸ 6 detectors per tower ▸ Detectors made from Si and Ge BELINA VON KROSIGK
SILICON AND GERMANIUM DETECTORS 9 Incoming, interacting particles generate phonons (i.e. heat / lattice vibrations) and electron-hole pairs (via ionization) Phonon channels Phonon channels interleaved with charge channels BELINA VON KROSIGK
SILICON AND GERMANIUM DETECTORS 10 Incoming, interacting particles generate phonons (i.e. heat / lattice vibrations) and electron-hole pairs (via ionization) Phonon channels Phonon channels interleaved with charge channels Ef cient nuclear recoil (NR) to electron recoil (ER) discrimination BELINA VON KROSIGK fi
SILICON AND GERMANIUM DETECTORS 11 Incoming, interacting particles generate phonons (i.e. heat / lattice vibrations) and electron-hole pairs (via ionization) Phonon channels Phonon channels interleaved with charge channels Ef cient nuclear recoil (NR) to electron recoil (ER) discrimination BELINA VON KROSIGK fi
SILICON AND GERMANIUM DETECTORS 12 Incoming, interacting particles generate phonons (i.e. heat / lattice vibrations) and electron-hole pairs (via ionization) Phonon channels Phonon channels interleaved with charge channels Ef cient nuclear recoil (NR) to Strongly reduced energy threshold electron recoil (ER) discrimination BELINA VON KROSIGK fi
PHONON AMPLIFICATION OF IONIZATION SIGNAL 13 Vbias Condensed layer of ~ 100 V phonon sensors (top and bottom surface) Transition Edge Sensors (TES) normal transition superconducting BELINA VON KROSIGK
PHONON AMPLIFICATION OF IONIZATION SIGNAL 14 Vbias Condensed layer of ~ 100 V phonon sensors (top and bottom surface) grouped in 12 Phonon channels: BELINA VON KROSIGK
NUCLEAR vs. ELECTRON RECOIL EVENT CLASS 15 Figure: Stefano Davini Figure: Rouven Essig Nuclear Recoil Electron Recoil Mostly primary phonons Mostly e-/h+ pairs ▸ Elastic WIMP-nucleon scattering ▸ Light DM-electron scattering ▸ … ▸ Absorption of ALPs or Dark Photons ▸ Bragg scattering of ALPs ▸ … Kurinsky, BvK, et al. Phys. Rev. Lett. 121 (2018) 051301 Germond, Fascione, BvK, et al. Phys. Rev. D 101 (2020) 052008 BELINA VON KROSIGK Wilson, Chang, BvK, et al. Phys. Rev. D 102 (2020) 091101(R)
ABSORPTION OF RELIC ALPS
AXIOELECTRIC ABSORPTION OF RELIC ALPS 17 a gaee ▸ Analogous to photoelectric absorption ▸ Electron emitted with energy = ALP mass belina.von.krosigk@desy.de
AXIOELECTRIC ABSORPTION OF RELIC ALPS 18 CDMSlite Run 2 (SuperCDMS Soudan, Ge HV detector) belina.von.krosigk@desy.de
AXIOELECTRIC ABSORPTION OF RELIC ALPS 19 CDMSlite Run 2 (SuperCDMS Soudan, Ge HV detector) Ge activation peaks belina.von.krosigk@desy.de
AXIOELECTRIC ABSORPTION OF RELIC ALPS 20 CDMSlite Run 2 (SuperCDMS Soudan, Ge HV detector) Rate Ge activation ALP peak peaks ma = 15 keV/c2 ~ g DM aee 2 m a p.e. (E=m ac 2) gaee arbitrary (O(10-11)) DM: Local halo DM density p.e.: Photoelectric absorption coeff. belina.von.krosigk@desy.de
AXIOELECTRIC ABSORPTION OF RELIC ALPS 21 CDMSlite Run 2 (SuperCDMS Soudan, Ge HV detector) Rate Ge activation ALP peak peaks ma = 15 keV/c2 ~ g DM aee 2 m a p.e. (E=m ac 2) gaee arbitrary (O(10-11)) DM: Local halo DM density p.e.: Photoelectric absorption coeff. The lower the threshold the greater the mass reach! belina.von.krosigk@desy.de
AXIOELECTRIC ABSORPTION OF RELIC ALPS 22 CDMSlite Run 2 (SuperCDMS Soudan, Ge HV detector) ▸ The most simplest limit from Poisson statistics (signal-only hypothesis) ▸ Lots of room for improvement (incl.belina.von.krosigk@desy.de discovery potential) given a robust background model
SuperCDMS LIMITS - PAST AND FUTURE 23 Results from SuperCDMS Soudan Rate ~ g DM aee 2 m a p.e. (E=m ac 2) DM: Local halo DM density p.e.: Photoelectric absorption coef cient SuperCDMS, accepted by PRD [arXiv:hep-ph/1911.11905] belina.von.krosigk@desy.de fi
SuperCDMS LIMITS - PAST AND FUTURE 24 Results from SuperCDMS Soudan lower threshold Rate ~ g DM aee 2 m a p.e. (E=m ac 2) DM: Local halo DM density p.e.: Photoelectric absorption coef cient more exposure, lower backgrounds SuperCDMS, accepted by PRD [arXiv:hep-ph/1911.11905] belina.von.krosigk@desy.de fi
ENHANCING THE SENSITIVITY
more exposure, PAST AND FUTURE OF (Super)CDMS lower backgrounds 26 CDMS @ SUF SUF: Stanford Underground Facility 1998 - 2002 30 kg・day Ge CDMS II @ Soudan 2003 - 2009 400 kg・day Ge SuperCDMS @ Soudan 2009 - 2015 6.8 kg・yr Ge SuperCDMS @ SNOLAB 2023 - 2027, 2027 - 20xx 100 kg・yr Ge, 14.4 kg・yr Si BELINA VON KROSIGK
more exposure, PAST AND FUTURE OF (Super)CDMS lower backgrounds 27 Figure: Aldo Ianni - TAUP 2017 BELINA VON KROSIGK
more exposure, SuperCDMS AT SNOLAB lower backgrounds 28 ▸ ~ 2km deep underground in an active mine ▸ 0.27 muons per m2/day ▸ Cleanroom class 2000 ▸ Home to ~ 10 low background experiments SuperCDMS Coffee BELINA VON KROSIGK
SuperCDMS LIMITS - PAST AND FUTURE 29 Results from SuperCDMS Soudan lower threshold Rate ~ g DM aee 2 m a p.e. (E=m ac 2) DM: Local halo DM density p.e.: Photoelectric absorption coef cient more exposure, lower backgrounds SuperCDMS, accepted by PRD [arXiv:hep-ph/1911.11905] belina.von.krosigk@desy.de fi
CUSTOM DETECTOR CONTROL AND READOUT CARDS (DCRC) 30 Phonon Pulse Amplitude Time ▸ L1 triggers on phonon signal Prototype ▸ Sampling: DCRC L1 Trigger ▸ 625 kHz (phonon) ▸ 2.5 MHz (ionization) BELINA VON KROSIGK
PRINCIPLES OF TRIGGERING AT SuperCDMS 31 ▸ Continuous trace, HVeV detector ▸ Of ine Trigger: ▸ Filtering with “Optimal Filter” Alexander Zaytsev, UHH ▸ Threshold triggering ⟹ ▸ Same principle for Online Trigger on FPGA (Level 1) Kurinsky, Zaytsev, Meyer zu Theenhausen, Wilson, et al. arXiv:2012.12430 (submitted for publication) BELINA VON KROSIGK fl
L1 TRIGGER ARCHITECTURE 32 Filtering with “Optimal Filter” Downsample Linear Finite- Threshold L1 Trigger Buffer Filter Combination Impulse- Logic Peak Search Decision Response 4p Filters ThL 1 DF-P1 39kHz 625kHz ThL 2 4p LC 1 FIR 1 PS 1 DF-P2 39kHz ThL 3 Synchronizer 625kHz To 4p LC 2 FIR 2 ThL 4 PS 2 Trigger Trigger L2/DAQ ADC 625kHz DF-P3 39kHz ThL 5 Logic FIFO LC 3 FIR 3 PS 3 4c 2c 2.5MHz DF-C1 39kHz LC 4 FIR 4 ThL 6 PS 4 4c 2c ThL 7 2.5MHz DF-C2 39kHz ThL 8 Timestamp Amplitude Thresholds Decisions BELINA VON KROSIGK
L1 TRIGGER: R&D TO FURTHER REDUCE NOISE 33 NxM Correlated Optimal Filter 12x12 FIRs Downsample Total Linear Threshold L1 Trigger + Linear Peak Search Buffer Filter Combination Logic Decision Combinations 4p FIR 1-12 LC 1 ThL 1 DF-P1 39kHz FIR 1-12 LC 2 625kHz FIR 1-12 LC 3 ThL 2 4p FIR 1-12 LC 4 PS 1 DF-P2 39kHz ThL 3 Synchronizer 625kHz FIR 1-12 LC 5 To 4p FIR 1-12 LC 6 ThL 4 PS 2 Trigger Trigger L2/DAQ ADC 625kHz DF-P3 39kHz FIR 1-12 LC 7 LC Tot ThL 5 Logic FIFO FIR 1-12 LC 8 PS 3 4c 2c FIR 1-12 LC 9 2.5MHz DF-C1 39kHz FIR 1-12 LC 10 ThL 6 PS 4 FIR 1-12 LC 11 4c 2c ThL 7 2.5MHz DF-C2 39kHz FIR 1-12 LC 12 ThL 8 Filter out noise by using all phonon channels individually BELINA VON KROSIGK
CONCLUSION 34 ▸ Understanding the nature of Dark Matter is one of the biggest challenges in science today ▸ The SuperCDMS experiment offers a unique chance to probe uncharted territory in the (very near) future ▸ Never hesitate to pioneer! Reach beyond existing sensitivities can only be achieved by new ideas and concepts BELINA VON KROSIGK
ADDITIONAL MATERIAL
BRAGG SCATTERING OF SOLAR ALPS
PRIMAKOFF-LIKE EFFECT ON SOLAR ALPS 37 ga ga a Primakoff-like2 Cross section ~ ga 2 ⟹ Observed rate ~ ga 4 belina.von.krosigk@desy.de
PRIMAKOFF-LIKE EFFECT ON SOLAR ALPS 38 G: reciprocal lattice vector u: unit vector pointing to the sun Ge or Si Crystal electric eld lattice Process in periodic lattice is coherent when Bragg condition (2 d sin θ = nλ) satis ed: belina.von.krosigk@desy.de fi fi
STRONG SIGNAL RATE MODULATIONS 39 ▸ No background expected with same or similar modulation pattern! ▸ Still, hard to compete with helioscopes and HB stars… belina.von.krosigk@desy.de
CDMS II LIMITS - 2009 40 ▸ Dominating uncertainty at CDMS Soudan: crystal orientation. @ 95%CL ▸ SuperCDMS SNOLAB will have: ▸ more accurate knowledge of crystal orientation ▸ ~ 100 x more exposure CDMS, PRL103:141802,2009 [arXiv:hep-ph/arXiv:0902.4693] belina.von.krosigk@desy.de
You can also read