Design of glass capsules for CO2 submarine storage - Desarc ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
DESARC - MARESANUS DEcreasing Seawater Acidification Removing Carbon Design of glass capsules for CO2 submarine storage M. Cremonesi, C. Fu, N. Cefis, M. Colombo, A. Corigliano, U. Perego Dipartimento di Ingegneria Civile e Ambientale Politecnico di Milano massimiliano.cremonesi@polimi.it
The Submarine Carbon Storage (SCS) The SCS method consists in five phases: 1. The emitter setup the CO2 capture system. 2. Production of glass capsules. 3. CO2 collected from emitter and from capsules production. 4. Capsules filling and launching. 5. Filled capsules are transported and released. Picture from “Evaluation of a new technology for carbon dioxide submarine storage in glass capsules”- Caserini et. al. (2017). La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
The Capsule From a structural point of view, fundamental questions • Shape • Dimensions (height, length and thickness) • Materials (Glass?) Picture from “Evaluation of a new technology for carbon dioxide submarine storage in glass capsules”- Caserini et. al. (2017). La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
The filling and launching process In the filling and launching process what era the most critical aspects from a structural point of view (e.g. for the safety of the capsules)? Capsules are very thin containers subjected to very high internal and external pressure • filling phase: difference between internal and external pressure can be very large • after the deposition on the seabed: maximum external pressure Static analysis In the falling phase, the capsules can impact with the seabed (sand, rocks,…) or with other capsules leading to possible breakage. Dynamic analysis La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
The Material BOROSILICATE GLASS for its chemical resistance in salty environment. Material properties Density ρ = 2.20 kg/m3 Elastic modulus E = 64000 MPa Poisson’s ratio ν = 0.2 Design tensile stress (the Galileo method) (CNR-DT 210/2013) Practically no tensile strength Emphirical compressive design stress Vey high compressive strength La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Thin capsule container Structural analysis Capsule with uniform thickness Mariotte formula to estimate the thickness = = 3.41 = 3.5 2 ; Analytical model: Thin shell FEM model: 58696 4-node structure solved with the force bilinear axisymmetric method quadrilateral elements (CAX4) 23 elements along the thickness • Pext = 20 MPa: external water pressure at 2000m below the sea level; U2=U3=UR1=0 • Pint = 10 MPa: internal liquefied CO2 pressure; • Pnet=Pext - Pint La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Thin capsule container stress comparison La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Thin capsule container Principal stresses Lower stresses of about 50% Smaller thickness can in the spherical region be adopted s Safety check x _ , = 0.86 ≤ ; = 2.03 | _ , | = 438.78 ≤ ; = 440 OK! La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Thin capsule container Variable thickness capsule model Capsule with variable thickness 55854 4-node bilinear axisymmetric quadrilateral elements (CAX4) t =2 mm Smoothing radius = 120 mm Entirely compressed capsule U2=U3=UR1=0 t =3.5 mm _ , | = 437.90 ≤ ; = 440 More effective than the constant thickness capsule using less material! La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Thin spherical container Comparison of containers storage capacity Best value of L? Thin spherical container has higher storage capacity than the capsule of variable thickness. In the following only spherical capsules will be considered. La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Filling phase CO2 10 MPa H2O 10 MPa La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Effect of the plug Stresses in the filling phase Plug made of borosilicate glass Rubber obstructer Ceramic material Change of the geometry: disturbances to the membrane response with additional stresses which vanish after the wavelength. Thickness enlargement is required in the region close to the plug to increase the The internal CO2 pressure is equilibrated by the bearing capacity. artificially-imposed external water pressure La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Effect of the plug Stresses in the filling phase _ , = 57.68 ≥ ; = 2.03 | _ , | = 460.20 ≥ ; = 440 The safety checks are not fulfilled: high stresses are generated on the internal upper edge making the preliminary shape unacceptable. Topological optimization: minimum strain energy is imposed in the upper region by reducing the whole model volume to 85%. La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Optimized shape FEM stress analyses _ , = 0.16 ≤ ; = 2.03 | _ , | = 434.70 ≤ ; = 440 The safety check is fulfilled La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
3D modeling Shell elements For a 3D modelling, it is not convenient to model the container as continuum solid body due to the small thickness, which would require high number of finite elements, hence high computational cost. 3D shell elements are adopted: midsurface is the shell reference surface on which engineering quantities are computed. The midsurface is defined as the revolution of shell midline. Three regions are defined based on the thickness: 1. 10 mm thickened flat region; 2. Variably thickened region; 3. 2 mm thickened spherical region with R149 mm. La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Capsule at seabed (2000m) Pressure at the storage site: 2000 m below the sea level Pext = 20 MPa External water pressure Pint = 10 MPa Internal CO2 pressure Minimum principal stresses External surface SPOS Internal surface SNEG | _, | = 403.16 ≤ ; = 440 La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Falling phase Hydrostatic analysis = = 143.49 Buoyancy force = + = 136.95 Gravity force > Additional mass is required to ensure the container falling. 2200 kg/m3 Sand: low cost and large availability material 930 kg/m3 1035 Kg/m3 Minimum mass of stored material for which balances : 2200 kg/m3 6.43 10 = − = 13.21 1.35 10 1.41 10 1.35 10 La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Falling phase impact analyses Impact stresses analyses: evaluation of principal stresses caused by the impact of the container with seabed at 2000 m below the sea level. Pext Impact cases: • impact with rock soil; • impact with sand soil; Pint • impact against another capsule; • impact against four stored capsules. The pressurized container drops with the terminal velocity. 2 − = = 121.44 / La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Falling phase impact with seabed: rigid flat soil First contact point: Minimum principal stresses Peak value 390 Mpa < 440 Mpa The safety check is fulfilled La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Falling phase impact with seabed: deformable flat soil Elasto- plastic sand soil with the Dracker-Prager failure criteria slave surface master surface clamped surface First contact point: Minimum principal stresses La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Falling phase impact against a capsule Impact of a capsule on a stored capsule on rigid seabed First contact point: Minimum principal stresses Peak value 380 Mpa < 440 Mpa The safety check is fulfilled La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Falling phase impact against a four stored capsule terminal velocity First contact point: minimum principal stresses La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Design of SCS Glass container Conclusion 1. Borosilicate glass is used for its high compressive strength and chemical resistance in salty environment. 2. Thin spherical container is more appropriate than the capsule container in terms of the storage capacity. 3. The final shape is obtained through a topological optimization. 4. Different loading cases during the filling phase has been analysed. 5. In the falling phase, additional sand is required to guarantee the capsule falling. 6. At the storage depth, the capsule is totally compressed. 7. Impact analysis with different soils have been studied. La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
What next? • Detailed studied of the material properties of borosilicate glass. • Experimental tests on the borosilicate glass. • Possible improvements of the capsule design (surface treatments). • Simulation of the complete falling phase in a fluid-structure interaction framework. La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
DESARC - MARESANUS DEcreasing Seawater Acidification Removing Carbon Design of glass capsules for CO2 submarine storage A. Corigliano, U. Perego, M. Cremonesi, N. Cefis, M. Colombo, C. Fu Dipartimento di Ingegneria Civile e Ambientale Politecnico di Milano massimiliano.cremonesi@polimi.it
Optimized shape Material usage comparison After the optimization process, a stiffer and Model Volume [m3] Material surplus [%] less material demanding shape is obtained. Perfect spherical container 5.58 10 - Slightly volume increment is observed in Preliminary shaped container 7.84 10 +40.54 the optimized container when compared to Optimized container 6.43 10 +15.30 the perfect spherical container. Even with the introduction of the plug and the thickness enlargement, the spherical container remains the most appropriate shape from the material consumption’s point of view. Values in mm La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Optimized shape FEM stress analyses Overpressures cases: to consider 1. | _ , | = 130. 20 ≤ ; = 440 a reduced balancing effect, two overpressure cases are analyzed: 1. ΔP = 3 MPa Pext = 10 MPa Pint = 7 MPa 2. ΔP = 1 MPa Pext = 10 MPa Pint = 9 MPa 2. | _ , | = 49. 80 ≤ ; = 440 A. Corigliano, U. Perego, M. Cremonesi, N. Cefis, M. Colombo, C. Fu Dipartimento di Ingegneria Civile e Ambientale
Falling phase Terminal velocity Hydrodynamic analysis = Minimum = − = = 1.15 sand mass to = + 1− be added = + = 1.20 kg = 12.04 kg The terminal velocity can be evaluate by imposing zero resultants: = 1.42 kg Dynamic equilibrium = 14.66 1 + = = Drag force 1 2 + = 2 = 0.47 Drag coefficient 2 − = = 121.44 / = 0.07 Cross section area La rimozione di CO2 dall’atmosfera e il progetto Desarc-Maresanus. 4-5 febbraio, 2020
Dynamic analysis 3D impact with seabed: rigid wavily shaped soil Rocky soil: it is modelled as rigid element for its low deformability. slave surface master surface clamped soil First contact point: Minimum principal stresses
Dynamic analysis 3D impact with seabed: rigid wavily shaped soil Overturned container impact No significant principal stresses variation are observed in the impact
Dynamic analysis 3D impact with seabed: deformable shaped soil Elasto- plastic sandy soil with the Dracker-Prager failure criteria slave surface master surface First contact point: Minimum principal stresses
Dynamic analysis 3D impact with seabed: deformable flat soil Elasto- plastic sandy soil with the Dracker-Prager failure criteria Parameter Symbol Value and unit Density 1900 kg/m3 = − tan − =0 Elastic modulus 50 Poisson ratio 0.3 Soil strength Ss 0.3 angle of friction in the Drucker- Prager model; material cohesion. tan = =56.41° per = 37° = angle of friction in the Mohr-Coulomb plane = =0 per =0
Dynamic analysis 3D impact analysis Maximum values of minimum principal stresses in the studied impact cases Impact case σmin_prin SNEG [MPa] σmin_prin SPOS [MPa] Rigid flat soil -360.17 -390.39 Rigid wavily -357.63 -394.08 shaped soil Deformable flat -368.64 -379.64 soil Deformable -367.10 -381.38 wavily shaped soil Container on -366.07 -381.45 container Container on four -365.73 -383.2 containers The impact with rigid wavily shaped soil represents the most severe case. Nevertheless, the safety check is satisfied since: | _, | = 394.08 ≤ ; = 440 In the impact with rigid soil, damped vibration response can be observed: the stresses vanish rapidly and the initial stress state is recovered. A. Corigliano, U. Perego, M. Cremonesi, N. Cefis, M. Colombo, C. Fu Dipartimento di Ingegneria Civile e Ambientale
You can also read