CBA - Clinical Bioinformatics ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
CBA HoliRD REPORT: Familial Melanoma Marina Esteban Medina María Peña-Chilet Carlos Loucera Joaquín Dopazo Clinical Bioinformatics Area - FPS Sevilla, January 27, 2020 Collaborators: Dra.Susana Puig’s group - U726 CIBERER Research team “Melanoma: imaging, genetics and immunology" at the IDIBAPS - Hospital Clínic, Barcelona
CBA Objectives and methodology: The Holistic Rare Disease project (HoliRD) aims to build Diseases Maps for as many Rare Diseases as possible and to model them to systematize research in drug repurposing. In order to achieve this purpose several databases such as ORPHANET, OMIM, HPO, PubMed, KEGG, STRING, as well as the literature is used to collect all the up-to-date knowledge of the diseases under study and defining a Disease Map that contains the functional relationships among the known disease genes, as well as the functional consequences of their activity. Then, a mechanistic model that accounts for the activity of such map is used. The HiPathia algorithm, which has successfully proven to predict cell activities related to cancer hallmarks (Hidalgo et al., Oncotarget 2017; 8:5160-5178; Hidalgo et al., Biol Direct. 2018;13:16) as well as the effect of protein inhibitions on cell survival (Cubuk et al., Cancer Res. 2018; 78:6059-6072) is used to simulate the activity of the disease map. Finally, machine learning algorithms are used to find other proteins, already target of drugs with another indication, which display a potential causal effect on the activity of the previously defined disease map. The drugs that target these proteins are potential candidates for repurposing. Schematic representation of the method used. Examples of the use of this approach can be found in Esteban-Medina et al., BMC Bioinformatics. 2019, 20(1):370.
CBA Report This report describes the results of the different steps of the HoliRD approach applied to Familial Melanoma. Identification of genes highly related to the rare disease (RD) under study in Orphanet A total of 12 genes annotated as Familial melanoma (FM) were found in the Orphanet database. FM highly related genes Disease ID Entrez ID Gene Symbol ORPHA:618 65057 ACD ORPHA:618 54386 TERF2IP ORPHA:618 1029 CDKN2A ORPHA:618 1030 CDKN2B ORPHA:618 7015 TERT ORPHA:618 1032 CDKN2D ORPHA:618 25913 POT1 ORPHA:618 8314 BAP1 ORPHA:618 1019 CDK4 ORPHA:618 4157 MC1R ORPHA:618 4286 MITF ORPHA:618 4255 MGMT
CBA Identification of highly related HPO to the RD under study: A total of 4 HPO codes associated to Familial melanoma were found. FM highly related HPOs HPO term ID HPO term name CATEGORY HP:0002894 Neoplasm of the pancreas Neoplasm HP:0100013 Neoplasm of the breast Neoplasm HP:0006753 Neoplasm of the stomach Neoplasm HP:0002861 Melanoma Neoplasm Identification of genes that shared at least RD-HPO codes Genes with >= 1 FM-HPO code Gene Symbol Entrez Gene Symbol Entrez AKT1 207 RAF1 5894 BRAF 673 RELA 5970 BRCA2 675 SDHB 6390 CDKN2A 1029 SDHC 6391 CLCNKB 1188 SDHD 6392 DDB2 1643 SLC12A3 6559 DKC1 1736 STK11 6794 ERCC2 2068 TERC 7012 ERCC3 2071 TERT 7015 ERCC4 2072 TP53 7157 ERCC5 2073 WT1 7490 ERCC6 2074 XPA 7507 EWSR1 2130 SEC23B 10483 GNAS 2778 TINF2 26277 KRAS 3845 RTEL1 51750 SMAD4 4089 RNF43 54894 MC1R 4157 WRAP53 55135 OCA2 4948 NOP10 55505 PARN 5073 NHP2 55651 PIK3CA 5290 C11orf95 65998 POLH 5429 USB1 79650 PTEN 5728 CTC1 80169 PTPN11 5781 KLLN 100144748
CBA Genes with >= 2 FM-HPO codes Gene Symbol entrez PTEN 5728 In order to maintain the specificity and not over expand the Disease Map of action only genes with >=2 FM-HPO codes were selected. Location of the selected disease related genes in KEGG pathways to define the Disease Map of action. After locating the RD associated genes within KEGG pathways, a total of 116 circuits belonging to 10 KEGG pathways were found as part of the disease map. KEGG pathway KEGG-pathway code FoxO signaling pathway hsa04068 Sphingolipid signaling pathway hsa04071 Cell cycle hsa04110 p53 signaling pathway hsa04115 mTOR signaling pathway hsa04150 PI3K-Akt signaling pathway hsa04151 TGF-beta signaling pathway: hsa04350 Focal adhesion: hsa04510 Tight junction hsa04530 Melanogenesis hsa04916 HiPathia is a signal propagation algorithm that considers pathways as collections of circuits defined as sub-pathways or sequences of proteins connecting signal receptor proteins to effector proteins. HiPathia uses expression values genes as proxies of the level of activation of the corresponding protein in the circuit. Taking into account the inferred protein activity and the interactions between the proteins (activation or inhibition) defined in the pathway, the level of activity of a circuit is estimated using a signal propagation algorithm. Ultimately, effector proteins are annotated with a cellular function.
CBA In order to enable a better visualization of the RD Map the HiPathia viewer has been used. The circuits that define the RD Map are marked in RED (please ignore the color legend). The pathways that contain these circuits are highlighted in the right window with a red arrow. The only purpose of this report is to represent the components (genes and interaction) and functions of the circuits that compose the RD Map. Click to access the RD Map Report HiPathia uses KEGG pathway for the graphical representation of the circuits. The original pathways can also be visualized in the KEGG repository https://www.genome.jp/kegg/pathway.html Select prefix: hsa (Organism) Enter keywords: e.g. FoxOsignalingpathway (any HiPathia pathway) Prediction of relevance of gene targets from approved drugs extracted from DRUGBANK database (release 5.1.4) The HoliRD approach takes the mechanistic model of the disease map as the proxy for the molecular basis of the disease outcome. Then, a Multi-Output Random Forest (MORF) regressor, a machine learning algorithm that predicts the circuit activities across the whole disease map, is trained on GTEx gene expression data to find proteins (which are targets for drugs with indications for other diseases) that correctly predict the behavior of the disease map. The drugs targeting the best predictor proteins are candidate for drug repurposing. The relevance score accounts for the accuracy of the prediction contributed by each individual protein. Relevance are absolute values and do not account for the direction of the prediction, that is, if the interaction is an activation or an inhibition.
CBA From a total of 683 targets for approved drugs (AT) in the DRUGBANK database (release 5.1.4) the machine learning algorithm selected the 44 most relevant ones (top AT). Relevance Relevance Entrez ID Gene Symbol Entrez ID Gene Symbol score score 10381 TUBB3 0,17939599 3566 IL4R 0,005357486 706 TSPO 0,099480519 3561 IL2RG 0,004669664 7132 TNFRSF1A 0,074298119 11255 HRH3 0,00461867 7040 TGFB1 0,050957856 3043 HBB 0,004487982 7035 TFPI 0,044539596 3039 HBA1 0,004433632 6510 SLC1A5 0,04226144 2335 FN1 0,004299058 57468 SLC12A5 0,038896597 2280 FKBP1A 0,004166661 6261 RYR1 0,023152031 2212 FCGR2A 0,004046426 9475 ROCK2 0,020820834 2207 FCER1G 0,004043206 5914 RARA 0,020263022 1956 EGFR 0,004022999 2185 PTK2B 0,017201092 1441 CSF3R 0,003668921 5696 PSMB8 0,013509705 1137 CHRNA4 0,003402125 5156 PDGFRA 0,012475012 1019 CDK4 0,003345413 4790 NFKB1 0,009126229 595 CCND1 0,003254775 5595 MAPK3 0,008776378 775 CACNA1C 0,003219639 3791 KDR 0,008633871 774 CACNA1B 0,003172455 3785 KCNQ2 0,008427748 716 C1S 0,003139547 3764 KCNJ8 0,008412134 657 BMPR1A 0,002958771 3746 KCNC1 0,008032614 558 AXL 0,002695054 3688 ITGB1 0,007646944 8639 AOC3 0,00262768 3685 ITGAV 0,007352583 302 ANXA2 0,002541003 3683 ITGAL 0,005611779 87 ACTN1 0,00248294
CBA Relevance plot depicting the 44 most relevant gene targets (top AT). Drugs from DRUGBANK db (release 5.1.4) that target top AT. And the list of drugs that target the 44 most relevant genes follows: You can click on the hyperlink of the Drug ID to see more detailed information about the drug in DrugBank DB. Relevance Drug ID Drug Name Drug Effect Target Associated condition score incorporation DB06773 Human calcitonin into and ACTN1 0,1794 destabilization Benign Prostatic DB01162 Terazosin inducer TGFB1 0,09948 Hyperplasia (BPH) Foreskin DB10772 keratinocyte agonist TGFB1 0,09948 (neonatal) Chemotherapy Induced DB00019 Pegfilgrastim agonist CSF3R 0,0743 Neutropenia Hematopoietic DB00099 Filgrastim stimulator CSF3R Subsyndrome of Acute 0,0743 Radiation Syndrome
CBA DB13144 Lenograstim agonist CSF3R 0,0743 DB13200 Lipegfilgrastim agonist CSF3R Neutropenia, Febrile 0,0743 DB00996 Gabapentin inhibitor CACNA1B Partial-Onset Seizures 0,05096 DB01202 Levetiracetam inhibitor CACNA1B Epilepsies 0,05096 High Risk DB00041 Aldesleukin agonist IL2RG 0,04454 Neuroblastoma DB00586 Diclofenac other KCNQ2 Actinic Keratosis (AK) 0,04226 Soft Tissue Sarcoma DB11626 Tasonermin agonist TNFRSF1A 0,0389 (STS) DB11639 Dibotermin alfa ligand BMPR1A 0,02315 Fluocinolone DB00591 inducer ANXA2 Atopic Dermatitis (AD) 0,02082 acetonide DB08814 Triflusal antagonist NFKB1 0,02026 Antithymocyte DB00098 immunoglobulin ITGAV Acute cellular rejection 0,0172 (rabbit) DB00451 Levothyroxine ITGAV Hypothyroidism 0,0172 DB01275 Hydralazine inhibitor AOC3 Heart Failure 0,01351 Antithymocyte DB00098 immunoglobulin ITGB1 Acute cellular rejection 0,01248 (rabbit) DB00893 Iron Dextran activator HBB 0,00913 Pentaerythritol DB06154 agonist HBB 0,00913 tetranitrate DB09112 Nitrous acid oxidizer HBB 0,00913 Sodium ferric DB09517 binding HBB Anemias 0,00913 gluconate complex Ferric DB13995 pyrophosphate binder HBB 0,00913 citrate DB00184 Nicotine agonist CHRNA4 Dental Cavity 0,00878
CBA DB01273 Varenicline partial agonist CHRNA4 0,00878 DB00358 Mefloquine antagonist HBA1 Plasmodium Infections 0,00863 DB00893 Iron Dextran activator HBA1 0,00863 Pentaerythritol DB06154 agonist HBA1 0,00863 tetranitrate DB09112 Nitrous acid oxidizer HBA1 0,00863 DB09146 Iron saccharate component of HBA1 Hyperphosphataemia 0,00863 Ferric DB13995 pyrophosphate binder HBA1 0,00863 citrate DB00962 Zaleplon other TSPO 0,00843 DB01544 Flunitrazepam agonist TSPO 0,00843 DB01587 Ketazolam agonist TSPO 0,00843 Human C1-esterase DB06404 inhibitor C1S 0,00841 inhibitor DB09228 Conestat alfa inhibitor C1S 0,00841 Moderate, active DB11817 Baricitinib inhibitor PTK2B 0,00803 Rheumatoid arthritis Advanced Renal Cell DB00398 Sorafenib antagonist KDR 0,00765 Carcinoma Advanced Renal Cell DB01268 Sunitinib inhibitor KDR 0,00765 Carcinoma DB05578 Ramucirumab antagonist KDR Advanced Gastric Cancer 0,00765 Advanced Renal Cell DB06589 Pazopanib inhibitor KDR 0,00765 Carcinoma antagonist,inhi Leukemia Acute Myeloid DB06595 Midostaurin KDR 0,00765 bitor Leukemia (AML) Severe Aplastic Anemia DB06626 Axitinib inhibitor KDR 0,00765 (SAA) Advanced Renal Cell DB08875 Cabozantinib antagonist KDR 0,00765 Carcinoma
CBA Metastatic DB08896 Regorafenib inhibitor KDR Gastrointestinal Stromal 0,00765 Tumor Advanced Renal Cell DB09078 Lenvatinib inhibitor KDR 0,00765 Carcinoma Decreased Pulmonary DB09079 Nintedanib inhibitor KDR 0,00765 Function DB06637 Dalfampridine antagonist KCNC1 0,00735 DB00270 Isradipine inhibitor CACNA1C 0,00561 DB00308 Ibutilide activator CACNA1C Atrial Fibrillation (AF) 0,00561 DB00343 Diltiazem blocker CACNA1C Anal Fissures 0,00561 DB00381 Amlodipine inhibitor CACNA1C Anginal Pain 0,00561 DB00393 Nimodipine inhibitor CACNA1C 0,00561 DB00401 Nisoldipine inhibitor CACNA1C 0,00561 DB00568 Cinnarizine inhibitor CACNA1C 0,00561 Chronic Stable Angina DB00622 Nicardipine inhibitor CACNA1C 0,00561 Pectoris DB00661 Verapamil inhibitor CACNA1C Atrial Fibrillation (AF) 0,00561 DB00825 Levomenthol antagonist CACNA1C Coughing 0,00561 DB01023 Felodipine inhibitor CACNA1C 0,00561 DB01054 Nitrendipine inhibitor CACNA1C 0,00561 Chronic Stable Angina DB01115 Nifedipine inhibitor CACNA1C 0,00561 Pectoris DB01373 Calcium ligand CACNA1C 0,00561 DB06712 Nilvadipine inhibitor CACNA1C 0,00561 Irritable Bowel DB09089 Trimebutine inhibitor CACNA1C 0,00561 Syndrome (IBS) DB09236 Lacidipine antagonist CACNA1C 0,00561 DB09238 Manidipine blocker CACNA1C 0,00561 DB12278 Propiverine antagonist CACNA1C Micturition urgency 0,00561
CBA DB00922 Levosimendan inducer KCNJ8 0,00536 DB01154 Thiamylal inhibitor KCNJ8 0,00536 DB01251 Gliquidone inhibitor KCNJ8 0,00536 Graft Versus Host DB00864 Tacrolimus inhibitor FKBP1A 0,00467 Disease (GVHD) DB00877 Sirolimus other FKBP1A Chordomas 0,00467 Metastatic Colorectal DB00002 Cetuximab antagonist EGFR 0,00462 Cancers DB00317 Gefitinib antagonist EGFR 0,00462 Locally Advanced DB00530 Erlotinib antagonist EGFR Non-Small Cell Lung 0,00462 Cancer Metastatic Breast DB01259 Lapatinib antagonist EGFR 0,00462 Cancer (MBC) DB01269 Panitumumab suppressor EGFR 0,00462 Metastatic Non-Small DB08916 Afatinib inhibitor EGFR 0,00462 Cell Lung Cancer DB09330 Osimertinib inhibitor EGFR 0,00462 DB09559 Necitumumab antagonist EGFR 0,00462 Foreskin DB10772 keratinocyte agonist EGFR 0,00462 (neonatal) DB11828 Neratinib inhibitor EGFR 0,00462 DB11963 Dacomitinib inhibitor EGFR 0,00462 DB12267 Brigatinib inhibitor EGFR 0,00462 DB08888 Ocriplasmin cleavage FN1 0,00449 Locally Advanced Breast DB04845 Ixabepilone inhibitor TUBB3 0,00443 Cancer (LABC) DB09073 Palbociclib inhibitor CDK4 Advanced Breast Cancer 0,0043 antagonist,inhi DB11730 Ribociclib CDK4 Advanced Breast Cancer 0,0043 bitor
CBA DB12001 Abemaciclib inhibitor CDK4 Advanced Breast Cancer 0,0043 DB13146 Fluciclovine (18F) binder SLC1A5 0,00417 DB00459 Acitretin agonist RARA Keratinization disorders 0,00405 Chronic Eczema of the DB00523 Alitretinoin agonist RARA 0,00405 hand Psoriasis Vulgaris DB00799 Tazarotene agonist RARA 0,00405 (Plaque Psoriasis) DB12141 Gilteritinib inhibitor AXL 0,00404 DB05381 Histamine agonist HRH3 0,00402 DB06698 Betahistine antagonist HRH3 0,00402 antagonist,inve Excessive Daytime DB11642 Pitolisant HRH3 0,00402 rse agonist Sleepiness DB13931 Netarsudil inhibitor ROCK2 0,00367 Refractory Multiple DB08889 Carfilzomib inhibitor PSMB8 0,0034 Myeloma Moderate to Severe DB12159 Dupilumab antagonist IL4R 0,00335 Asthma DB00887 Bumetanide inhibitor SLC12A5 0,00325 Benzylpenicilloyl DB00895 agonist FCER1G Penicillin Allergy 0,00322 Polylysine DB00095 Efalizumab antibody ITGAL 0,00317 Antithymocyte DB00098 immunoglobulin ITGAL Acute cellular rejection 0,00317 (rabbit) DB11611 Lifitegrast antagonist ITGAL 0,00317 DB01219 Dantrolene antagonist RYR1 Malignant Hyperthermia 0,00314 DB09085 Tetracaine modulator RYR1 0,00314 Advanced Renal Cell DB01268 Sunitinib inhibitor PDGFRA 0,00296 Carcinoma DB06043 Olaratumab antagonist PDGFRA 0,00296
CBA Advanced Renal Cell DB06589 Pazopanib inhibitor PDGFRA 0,00296 Carcinoma antagonist,inhi Leukemia Acute Myeloid DB06595 Midostaurin PDGFRA 0,00296 bitor Leukemia (AML) Metastatic DB08896 Regorafenib inhibitor PDGFRA Gastrointestinal Stromal 0,00296 Tumor Foreskin DB10772 keratinocyte agonist PDGFRA 0,00296 (neonatal) DB01169 Arsenic trioxide inducer MAPK3 0,0027 DB01169 Arsenic trioxide antagonist CCND1 0,00263 DB11718 Encorafenib inhibitor CCND1 Metastatic Melanoma 0,00263 DB06779 Dalteparin inhibitor TFPI Cardiovascular Events 0,00254 DB14562 Andexanet alfa inhibitor TFPI 0,00254 Immune Globulin B-Cell Chronic DB00028 antagonist FCGR2A 0,00248 Human Lymphocytic Leukemia Location of top AT in HiPathia circuits and selection of those circuits shared with the Disease Map. A total of 11 /116 circuits from RD Map containing top AT are shown. Disease Map circuits with top AT HiPathia pathway: Effector gene FoxO signaling pathway: CDKN2B FoxO signaling pathway: CDKN2D Cell cycle: TFDP1 E2F4 Cell cycle: CDC6 ORC3 ORC5 ORC4 ORC2 ORC1 ORC6 p53 signaling pathway: CDK4 CCND1 PI3K-Akt signaling pathway: CCND1 CDK2 TGF-beta signaling pathway: CDKN2B Tight junction: TJP1 YBX3 CDK4 Melanogenesis: TYR* Melanogenesis: TYRP1 Melanogenesis: DCT
CBA Matrix correlation of the expression of top AT with the activity of the circuits that compose the RD Map. In order to understand the nature of the interaction (activation or inhibition) between the most relevant targets and the circuits of the disease map a correlation plot was derived. The plot represents the correlation between the expression level of the most relevant targets and the activity levels of the circuits in the disease map inferred by HiPathia across the GTEx data set. Additionally, the KO of the disease genes has been simulated and these circuits in the disease map affected have been marked in blue on the left side of the plot. Also, the top of the figure represents the effect (pharmacological action) of the drugs. Hint: a drug with an inhibitory effect in a given target will potentially produce an inhibitory effect in circuits positively correlated (and, it is likely that activation in circuits negatively correlated with the target.) Click to access and download the Correlation Matrix
You can also read