Cambio climático: Universidad ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
As for the future, it is not a Cambio climático: question of foreseing it causas y consecuencias. ” Pour ce qui est de l’avenir, il ne s’agit pas de le prévoir, mais de le rendre possible. “ – Antoine de Saint Exupéry, Citadelle, 1948 J. Fidel González Rouco Facultad CC. Químicas 20.10.2021 fidelgr@fis.ucm.es Departamento de Física de la Tierra y Astrofísica IGEO-UCM Universidad Complutense de Madrid UCM
As for the future, it is not a Cambio climático: question of foreseing it causas y consecuencias. ” Pour ce qui est de l’avenir, il ne s’agit pas de le prévoir, mais de le rendre possible. “ – Antoine de Saint Exupéry, Citadelle, 1948 1. ¿Cómo sabemos que el cambio climático actual está producido por las actividades humanas? 2. ¿Cómo estimamos el cambio climático futuro? 3. ¿Estamos en una situación de emergencia? 4. ¿Qué posibilidades tenemos para controlar el cambio climático en el futuro? 5. ¿Es importante para los ODS?
Observed changes in the climate system: atmosphere & ocean -Hartmann et al., IPCC, 2013: Ch2- Updated Earth has been in radiative imbalance with more engergy entering than leaving the system since ~ 1970s. It is virtually certain that temperatures have increased more than 1K since the late 19th century. 3
Observed changes in the climate system: atmosphere & ocean Warming is unequivocal, both in the atmosphere and ocean… but not only 4
N Radiative forcing factors O I Natural and anthropogenic energy drivers T I AL S I ED N R Natural forcings: volcanic, solar, orbital FI VE Anthropogenic forcings: greenhouse gases, aerosols, land use land cover changes TO D T TE TO D T TE P EC E P BJ C EC E AC BJ C (IPCC 2021, Fig TS9) AC U 6
What causes present climate change? We need to use tools that allow for evaluating the efects of external forcing changes: los modelos climáticos • Climate models are computer codes that resolve the equations of the dynamics of the various climate system components (atmosphere, ocean, cryosphere, biosphere…) and their interactions. • The ‘dynamics’ solves the Navier Stokes equations in an spatial grid. The ‘physics’ consists on parameterizing the sub-grid scale proceses that are not explicitely solved in the grid resolution. Syukuro Manabe. Nobel Fisica 2021 7
What causes system changes?: model evaluation & detection/attribution Human influence on the climate system is clear ...from increasing GHGs, radiative forcing, warming and understanding of changes (IPCC 2013, Fig. TS.9) Climate models improve continuously CMIP5+6 models reproduce observed continental-scale surface T patterns and trends over many decades including the more rapid warming since the mid-20th century and post volcanic cooling (very high conf.) Natural forcings only -Flato et al., IPCC, 2013: Ch9- - Bindoff et al., IPCC, 2013: Ch10- Klaus Hasselmann. Nobel Fisica 2021 Natural & Anthr. forcing 8
Future climate change Scenario projections -Ciais et al., IPCC, 2013: Ch6- - Collins et al., IPCC, 2013: Ch12- Representative Concentration Pathways are used as boundary conditions for climate change simulations. 9
Future uture climate change emissions cause future additional warming with total warming dominated by past and future CO emissions Scenario projections -IPCC, 2021- a) uture annual emissions of C (le ) and of a subset of ey non-C drivers (right) across ve illustrative scenarios Carbon dioxide (GtCO₂/yr) elected contributors to non-C GHGs Methane (MtCH /yr) 140 800 SSP3-7.0 SSP5-8.5 600 SSP5-8.5 120 400 SSP2-4.5 200 SSP1-2.6 100 0 SSP1-1.9 2015 2050 2100 SSP3-7.0 80 Nitrous oxide (MtN₂O/yr) SSP3-7.0 20 60 SSP5-8.5 10 SSP2-4.5 SSP1-2.6 SSP1-1.9 40 0 2015 2050 2100 20 ne air pollutant and contributor to aerosols SSP2-4.5 Sulfur dioxide (MtSO₂/yr) 0 120 SSP1-2.6 80 SSP3-7.0 SSP1-1.9 -20 40 SSP2-4.5 2015 2050 2100 SSP5-8.5 SSP1-1.9 0 SSP1-2.6 2015 2050 2100 b) Contribution to global surface temperature increase from di erent emissions with a dominant role of C 10 emissions
Future climate change Scenario projections Temperature increase by the end of the 21st century will likely exceed 1.5 ºC relative to preindustrial for all RCPs ... likely ∆T> 2ºC for RCP6.0 and RCP8.5 ... more likely than not ∆T> 2ºC for RCP4.5 11
Future climate change Scenario projections Continued emissions of GHGs will cause further warming and changes in all components of the climate system. Limiting climate change will requiere substantial and sustained reduction of GHGs. (IPCC 2013, SPM.7 TS.15) 12
Policy relevant implications: commitment, stabilization & irreversibility Climate change commitment: future change to which the climate system is committed by virtue of past and current forcings. It brings the concept of inertia C o n s t a n t composition c o m m i t m e n t represents future warming associated with current CO2 concentrations Zero emissions commitment: Warming from past CO2 emissions. -Matthews & Weaver: Nature CC, 3, 143, 2010- 13
Policy relevant implications: commitment, stabilization & irreversibility 14
Policy relevant implications: commitment, stabilization & irreversibility 15
Policy relevant implications: commitment, stabilization & irreversibility Cumulative emissions of CO2 largely determine global mean surface warming by the late 21st (IPCC 2013, SPM.10) century and beyond. Limiting climate change will requiere substantial and substained emission reductions. This represents a substantial multi century climate change commitment created by past, present and future emissions.. - Collins et al., IPCC, 2013: Ch12- 16
Policy relevant implications: commitment, stabilization & irreversibility -IPCC, 2021- 17
Summary for Policymakers Policy relevant implications: commitment, stabilization & irreversibility Cumulative emissions of CO2 and future non-CO2 radiative forcing determine Cummulative the emisions probability of CO2 of limiting and other warming GHGs determine the possibility of to 1.5°C reducing global temperature increase to 1.5 ºC a) Observed global temperature change and modeled responses to stylized anthropogenic emission and forcing pathways Global warming relative to 1850-1900 (°C) 2.0 1.5 Observed monthly global (IPCC SR15 2018, SPM 1) mean surface temperature Estimated anthropogenic 1.0 warming to date and likely range Likely range of modeled responses to stylized pathways Global CO2 emissions reach net zero in 2055 while net non-CO2 radiative forcing is reduced after 2030 (grey in b, c & d) 0.5 2017 Faster CO2 reductions (blue in b & c) result in a higher probability of limiting warming to 1.5°C No reduction of net non-CO2 radiative forcing (purple in d) results in a lower probability of limiting warming to 1.5°C 0 1960 1980 2000 2020 2040 2060 2080 2100 -b) Rogelj et al., 2018. SR1.5- Stylized net global CO2 emission pathways Billion tonnes CO2 per year (GtCO2/yr) c) Cumulative net CO2 emissions Billion tonnes CO2 (GtCO2) d) Non-CO2 radiative forcing pathways Watts per square metre (W/m2) 18
Policy relevant implications: commitment, stabilization & irreversibility Global emissions pathway characteristics General characteristics of the evolution of anthropogenic net emissions of CO2, and total emissions of methane, black carbon, and nitrous oxide in model pathways that limit global warming to 1.5°C with no or Cummulative emisions limited overshoot. of CO2 Net emissions and other are defined GHGs determine as anthropogenic the by emissions reduced possibility anthropogenicof reducing global temperature increase to 1.5 ºC removals. Reductions in net emissions can be achieved through different portfolios of mitigation measures illustrated in Figure SPM.3b. Non-CO2 emissions relative to 2010 Global total net CO2 emissions Emissions of non-CO2 forcers are also reduced or limited in pathways limiting global warming Billion tonnes of CO2/yr to 1.5°C with no or limited overshoot, but 50 they do not reach zero globally. Methane emissions 40 In pathways limiting global warming to 1.5°C 1 with no or limited overshoot as well as in pathways with a higher overshoot, CO2 emissions 30 are reduced to net zero globally around 2050. 0 2020 2040 2060 2080 2100 20 Black carbon emissions (IPCC SR15 2018, SPM 1) 1 10 Four illustrative model pathways 0 0 2020 2040 2060 2080 2100 P1 P2 Nitrous oxide emissions -10 P3 1 -20 P4 0 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2020 2040 2060 2080 2100 Timing of net zero CO2 Pathways limiting global warming to 1.5°C with no or limited overshoot Line widths depict the 5-95th Pathways with higher overshoot percentile and the 25-75th Pathways limiting global warming below 2°C percentile of scenarios (Not shown above) - Rogelj et al., 2018. SR1.5- 19 Figure SPM.3a | Global emissions pathway characteristics. The main panel shows global net anthropogenic CO2 emissions in pathways limiting global warming
1.5 ºC vs. 2ºC, what difference does it make? Differences between scenarios are highly non linear. Implications of a + 0.5 ºC are severe… .... and ugly surprises are more likely above 1.5 ºC - Rogelj et al., 2018. SR1.5- 20
As for the future, it is not a question of foreseing it, but of making it possible Antoine de Saint Exupéry, Citadelle, 1948 a) El cambio climático actual lo producen las actividades humanas. b) Podemos estimar la magnitud del cambio futuro y sus incertidumbres. La mayor contribución a las incertidumbres son las emisiones futuras. c) Es posible limitar el calentamiento global. Para ello se necesitan transformaciones sin precedentes en la tecnología, modelo energético… d) Las estrategias de adaptación y mitigación son necesarias para desarrollar los ODS 2030. Framing and Context Chapte e) El papel de las universidades: educación, investigación, debate educado/ Cross-Chapter Box 4 (continued) informado/resposable… à estimación de emisiones à grupos de colaboración à justicia climática Grupos de Sostenibi lidad - Allen et al., 2018. SR1.5- Cross-Chapter Box 4, Figure 1 | Climate action is number 13 of the UN Sustainable Development Goals. 21
You can also read