Anwendungen des Statistical Parametric Mapping (SPM) in der klinischen Ganganalyse - Dr. Ursula Trinler, BG Klinik Ludwigshafen ...

Page created by Joann Cooper
 
CONTINUE READING
Anwendungen des Statistical Parametric Mapping (SPM) in der klinischen Ganganalyse - Dr. Ursula Trinler, BG Klinik Ludwigshafen ...
Anwendungen des Statistical Parametric Mapping
     (SPM) in der klinischen Ganganalyse

            Dr. Ursula Trinler, BG Klinik Ludwigshafen, ursula.trinler@bgu-ludwigshafen.de
Anwendungen des Statistical Parametric Mapping (SPM) in der klinischen Ganganalyse - Dr. Ursula Trinler, BG Klinik Ludwigshafen ...
Was ist SPM?

                                    Was kann ich mit SPM machen?

                       Wie kann ich die Ergebnisse interpretieren?

                                  Wie kann man SPM durchführen?

03.04.2019   Ursula Trinler, Statistical Parametric Mapping             2
Anwendungen des Statistical Parametric Mapping (SPM) in der klinischen Ganganalyse - Dr. Ursula Trinler, BG Klinik Ludwigshafen ...
Gluteus medius
 Kraft [N]

03.04.2019   Ursula Trinler, Statistical Parametric Mapping        3
Anwendungen des Statistical Parametric Mapping (SPM) in der klinischen Ganganalyse - Dr. Ursula Trinler, BG Klinik Ludwigshafen ...
Definition aus Scholarpedia (http://www.scholarpedia.org/article/Statistical_parametric_mapping)

   Statistical parametric mapping is the application of Random Field Theory to make inferences about the
           topological features of statistical processes that are continuous functions of space or time.

      Statistical Parametric Maps (SPM) are images or fields with values that are, under the null hypothesis,
      distributed according to a known probability density function, usually the Student's t or F-distributions.

SPMs are interpreted as continuous statistical processes by referring to the probabilistic behaviour of random
                                                   fields.

 'Unlikely' topological features of the SPM, like peaks or clusters, are interpreted as regionally specific effects,
  attributable to the experimental manipulation. A General Linear Model is used to explain continuous (image)
                    data in exactly the same way as in conventional analyses of discrete data.

Random Field Theory (RFT) is used to resolve the multiple-comparison problem when making inferences over
  the volume analysed. RFT provides a method for adjusting p-values for the search volume and plays the
               same role for SPMs as the Bonferroni correction for discrete statistical tests.

03.04.2019                 Ursula Trinler, Statistical Parametric Mapping                                               4
Anwendungen des Statistical Parametric Mapping (SPM) in der klinischen Ganganalyse - Dr. Ursula Trinler, BG Klinik Ludwigshafen ...
Definition aus Scholarpedia (http://www.scholarpedia.org/article/Statistical_parametric_mapping)

   Statistical parametric mapping is the application of Random Field Theory to make inferences about the
           topological features of statistical processes that are continuous functions of space or time.
                 SPM verwendet Random Field Theory (mathematische Vorgehensweise), um
    Statistical Parametric Maps (SPM) are images or fields with values that are, under the null hypothesis,
                    statistische Rückschlüsse auf fortlaufende Daten in Raum oder Zeit zu ziehen.
     distributed according to a known probability density function, usually the Student's t or F-distributions.
                 SPM definiert Cluster innerhalb der Daten, welche nach einer bestimmten
SPMs are interpreted     as continuous statistical(tprocesses
                    Wahrscheinlichkeitsfunktion                  by referring
                                                     oder F) verteilt sind. to the probabilistic behaviour of random
                                                          fields.
                 Dabei wird ein „General Linear Model“ verwendet, um, wie bei herkömmlichen
                    Analysen
'Unlikely' topological featuresvon
                                 ofdiskreten
                                    the SPM,Daten,    fortlaufende
                                               like peaks           Daten
                                                            or clusters,   statistisch
                                                                         are           darlegen
                                                                             interpreted        zu
                                                                                          as regionally specific effects,
                    können   (z.B. SPM{t}).
 attributable to the experimental manipulation. A General Linear Model is used to explain continuous (image)
                 data   in exactly
                    Random          the same
                              Field Theory  wirdway  as in conventional
                                                  verwendet               analyses
                                                              um hierbei den   p-Wertofan
                                                                                        discrete data.
                Mehrfachvergleiche anzupassen (wie eine Bonferroni Korrektur).
Random Field Theory (RFT) is used to resolve the multiple-comparison problem when making inferences over
  the volume analysed. RFT provides a method for adjusting p-values for the search volume and plays the
               same role for SPMs as the Bonferroni correction for discrete statistical tests.

03.04.2019                Ursula Trinler, Statistical Parametric Mapping                                                5
Anwendungen des Statistical Parametric Mapping (SPM) in der klinischen Ganganalyse - Dr. Ursula Trinler, BG Klinik Ludwigshafen ...
Analyse von biomechanischen Daten
               Beobachtung über einen bestimmten Zeitraum

                  Lokale Maxima- oder Minima einer Kurve                    Example ‘directed’ null hypothesis:
                            Lokale skalare Größe                            Controls and Patients exhibit identical
                                                                            maximum knee flexion at 30% stance.
                    („0D biomechanische Informationen“)
                             t-Test oder ANOVA

                                                             Example ‘non-directed’ null hypothesis:
                        Ganze Kurvenverläufe
                                                             Controls and Patients
                         zeitliche Komponente                Exhibit identical knee kinematics during
                 („1D biomechanische Informationen“)         stance phase.
                                  SPM
      verwendet Grundlagen klassischer Statistik (t-Test, ANOVA…)
Adler & Tayler 2007, Friston et al. 2007, Pataky 2012, Pataky et al. 2013
03.04.2019                 Ursula Trinler, Statistical Parametric Mapping                                             6
Anwendungen des Statistical Parametric Mapping (SPM) in der klinischen Ganganalyse - Dr. Ursula Trinler, BG Klinik Ludwigshafen ...
n-dimensionale Methode (1D, 2D, n-D Daten) um Analysen an glatten/geglätteten
    („smooth“) Datensätzen durchzuführen

   Begrenzte („bounded“) Daten in Raum oder Zeit (z.B. definierte Standphase im Gang)

             OBACHT: z.B. Stand vs. Schwungphase

   Vorteil: Vermeidet Datenreduktion; Diskrete Daten müssen nicht definiert werden und Bias
    wird so vermieden

   Vorteil: Einfachere Visualisierung, Ergebnisse können direkt in den experimentellen Daten
    angezeigt werden, so dass die räumlich-zeitliche Komponente direkt sichtbar wird. (Pataky
      2010, Appendix D)

03.04.2019                Ursula Trinler, Statistical Parametric Mapping                        7
Anwendungen des Statistical Parametric Mapping (SPM) in der klinischen Ganganalyse - Dr. Ursula Trinler, BG Klinik Ludwigshafen ...
Adler & Tayloer 2007, Friston et al. 2007, Pataky 2012

03.04.2019   Ursula Trinler, Statistical Parametric Mapping                                                            8
Anwendungen des Statistical Parametric Mapping (SPM) in der klinischen Ganganalyse - Dr. Ursula Trinler, BG Klinik Ludwigshafen ...
Fragen?

03.04.2019   Ursula Trinler, Statistical Parametric Mapping   9
Anwendungen des Statistical Parametric Mapping (SPM) in der klinischen Ganganalyse - Dr. Ursula Trinler, BG Klinik Ludwigshafen ...
SPM two-tailed paired t-Test
                        Robinson et al. 2014, Sports Exerc. 46(7)

    Impact of Knee Modeling Approach on Indicators and Classification of Anterior Cruciate Ligament Injury Risk

                        Ursula Trinler, Statistical Parametric Mapping
03.04.2019                                                                                                        10
SPM two-tailed paired t-Test
                                   Trinler et al. 2019, J Biomech 86

                                Muscle force estimation in clinical gait analysis using AnyBody and OpenSim
             Muscle force [N]

03.04.2019                         Ursula Trinler, Statistical Parametric Mapping                             11
SPM repeated measures ANOVA mit post hoc Analyse
                         Nüesch et al. 2019, G&P 69

    The effect of different running shoes on treadmill running mechanics and muscle activity assessed using SPM

               Cloudsurfer (cyan)                                         Cloudsurfer (cyan)   Cloud (red)
               Cloud (red)                                                own shoe (black)     own shoe (black)
               own shoe (black)

03.04.2019               Ursula Trinler, Statistical Parametric Mapping                                           12
SPM 2-way repeated measures ANOVA mit post hoc Analyse
                          Trinler et al. 2018, ESMAC 2018

         Influence of ankle’s degree of freedom on muscle force estimation in different simulation environments

03.04.2019                Ursula Trinler, Statistical Parametric Mapping                                          13
Beispiel SPM Hotelling's T² mit post hoc analysis
             Donnelly et al. 2017, Clin Biomech 41:87-91.

             Vector-field statistics for the analysis of time varying clinical gait data

03.04.2019   Ursula Trinler, Statistical Parametric Mapping                                14
Hompepage SPM1D

                                             http://www.spm1d.org/
03.04.2019   Ursula Trinler, Statistical Parametric Mapping          15
SPM und MATLAB

         1. Daten in Matlab laden
                  Daten müssen in bestimmter Reihenfolge geordnet werden
                  Können z.B. in einem Excel oder Matlab File gespeichert sein

                       dataset = spm1d.data.uv1d.t2.SimulatedTwoLocalMax();
                       [YA,YB] = deal(dataset.YA, dataset.YB);

         2. SPM durchführen
                  Test auswählen
                      spm       = spm1d.stats.ttest2(YA, YB);
                      spmi      = spm.inference(0.05, 'two_tailed',true, 'interp',true);
                      disp(spmi)
         3. Graphen und Statistik plotten

                      close all
                      spmi.plot();
                      spmi.plot_threshold_label();
                      spmi.plot_p_values();

03.04.2019                Ursula Trinler, Statistical Parametric Mapping               16
Tutorials, weitere Informationen

                                        Homepage SPM1D. Todd Pataky
                                           http://www.spm1d.org/

                       SMP Tutorial durch Jos Venrenterghem
             https://www.youtube.com/watch?v=4WoDuBkUF9U&list=PL
                  a8HCd4pvpVZtc2zPwSelRWjEjcbYZfv4&index=1

                  Random Field Theory, Matthew Brett et al. (2003)
             https://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/pdfs/Ch14.
                                           pdf

03.04.2019   Ursula Trinler, Statistical Parametric Mapping                17
Vielen Dank
Literatur

         Adler, R.J., Taylor, J.E., 2007. Random Fields and Geometry. Springer.

         Donnelly CJ, Alexander C, Pataky TC, Stannage K, Reid S, Robinson MA (2017). Vector-field statistics for the analysis of time varying clinical
         gait data. Clin Biomech 41:87-91.

         Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD 2007. Statistical parametric mapping: the analysis of functional brain images.
         Amsterdam: Elsevier/Academic Press.

         Nüesch C, Roos E, Egloff C, Pagenstert G, Mündermann A. (2019). The effect of different running shoes on treadmill running mechanics an
         muscle activity assessed using statistical parametric mapping (SPM). G&P 69:1-7

         Pataky TC. 2010. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J Biomech. 43(10):1976–1982.

         Pataky, T.C., Robinson, M.A., Vanrenterghem, J., 2013. Vector field statistical analysis of kinematic and force trajectories. J. Biomech. 46 (14),
         2394–2401.

         Robionson MA, Donnelly CJ, Tsao J, Venrenterghem J. (2014). Impact of Knee Modeling Approach on Indicators and Classification of Anterior
         Cruciate Ligament Injury Risk. Med Sci Sports Exerc. 46(7):1269-76

         Trinler U, Alexander N, Baker R, Schwameder H (2018) O 106 – Influence of ankle’s degree of freedom on muscle force estimation in different
         simulation environments. G&P,65:S.1

         Trinler U, Schwameder H, Baker R, Alexander N. (2019) Muscle force estimation in clinical gait analysis using AnyBody and OpenSim. J
         Biomech 86:55–63.

03.04.2019                       Ursula Trinler, Statistical Parametric Mapping                                                                               19
You can also read