Anwendungen des Statistical Parametric Mapping (SPM) in der klinischen Ganganalyse - Dr. Ursula Trinler, BG Klinik Ludwigshafen ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Anwendungen des Statistical Parametric Mapping (SPM) in der klinischen Ganganalyse Dr. Ursula Trinler, BG Klinik Ludwigshafen, ursula.trinler@bgu-ludwigshafen.de
Was ist SPM? Was kann ich mit SPM machen? Wie kann ich die Ergebnisse interpretieren? Wie kann man SPM durchführen? 03.04.2019 Ursula Trinler, Statistical Parametric Mapping 2
Definition aus Scholarpedia (http://www.scholarpedia.org/article/Statistical_parametric_mapping) Statistical parametric mapping is the application of Random Field Theory to make inferences about the topological features of statistical processes that are continuous functions of space or time. Statistical Parametric Maps (SPM) are images or fields with values that are, under the null hypothesis, distributed according to a known probability density function, usually the Student's t or F-distributions. SPMs are interpreted as continuous statistical processes by referring to the probabilistic behaviour of random fields. 'Unlikely' topological features of the SPM, like peaks or clusters, are interpreted as regionally specific effects, attributable to the experimental manipulation. A General Linear Model is used to explain continuous (image) data in exactly the same way as in conventional analyses of discrete data. Random Field Theory (RFT) is used to resolve the multiple-comparison problem when making inferences over the volume analysed. RFT provides a method for adjusting p-values for the search volume and plays the same role for SPMs as the Bonferroni correction for discrete statistical tests. 03.04.2019 Ursula Trinler, Statistical Parametric Mapping 4
Definition aus Scholarpedia (http://www.scholarpedia.org/article/Statistical_parametric_mapping) Statistical parametric mapping is the application of Random Field Theory to make inferences about the topological features of statistical processes that are continuous functions of space or time. SPM verwendet Random Field Theory (mathematische Vorgehensweise), um Statistical Parametric Maps (SPM) are images or fields with values that are, under the null hypothesis, statistische Rückschlüsse auf fortlaufende Daten in Raum oder Zeit zu ziehen. distributed according to a known probability density function, usually the Student's t or F-distributions. SPM definiert Cluster innerhalb der Daten, welche nach einer bestimmten SPMs are interpreted as continuous statistical(tprocesses Wahrscheinlichkeitsfunktion by referring oder F) verteilt sind. to the probabilistic behaviour of random fields. Dabei wird ein „General Linear Model“ verwendet, um, wie bei herkömmlichen Analysen 'Unlikely' topological featuresvon ofdiskreten the SPM,Daten, fortlaufende like peaks Daten or clusters, statistisch are darlegen interpreted zu as regionally specific effects, können (z.B. SPM{t}). attributable to the experimental manipulation. A General Linear Model is used to explain continuous (image) data in exactly Random the same Field Theory wirdway as in conventional verwendet analyses um hierbei den p-Wertofan discrete data. Mehrfachvergleiche anzupassen (wie eine Bonferroni Korrektur). Random Field Theory (RFT) is used to resolve the multiple-comparison problem when making inferences over the volume analysed. RFT provides a method for adjusting p-values for the search volume and plays the same role for SPMs as the Bonferroni correction for discrete statistical tests. 03.04.2019 Ursula Trinler, Statistical Parametric Mapping 5
Analyse von biomechanischen Daten Beobachtung über einen bestimmten Zeitraum Lokale Maxima- oder Minima einer Kurve Example ‘directed’ null hypothesis: Lokale skalare Größe Controls and Patients exhibit identical maximum knee flexion at 30% stance. („0D biomechanische Informationen“) t-Test oder ANOVA Example ‘non-directed’ null hypothesis: Ganze Kurvenverläufe Controls and Patients zeitliche Komponente Exhibit identical knee kinematics during („1D biomechanische Informationen“) stance phase. SPM verwendet Grundlagen klassischer Statistik (t-Test, ANOVA…) Adler & Tayler 2007, Friston et al. 2007, Pataky 2012, Pataky et al. 2013 03.04.2019 Ursula Trinler, Statistical Parametric Mapping 6
n-dimensionale Methode (1D, 2D, n-D Daten) um Analysen an glatten/geglätteten („smooth“) Datensätzen durchzuführen Begrenzte („bounded“) Daten in Raum oder Zeit (z.B. definierte Standphase im Gang) OBACHT: z.B. Stand vs. Schwungphase Vorteil: Vermeidet Datenreduktion; Diskrete Daten müssen nicht definiert werden und Bias wird so vermieden Vorteil: Einfachere Visualisierung, Ergebnisse können direkt in den experimentellen Daten angezeigt werden, so dass die räumlich-zeitliche Komponente direkt sichtbar wird. (Pataky 2010, Appendix D) 03.04.2019 Ursula Trinler, Statistical Parametric Mapping 7
Adler & Tayloer 2007, Friston et al. 2007, Pataky 2012 03.04.2019 Ursula Trinler, Statistical Parametric Mapping 8
SPM two-tailed paired t-Test Robinson et al. 2014, Sports Exerc. 46(7) Impact of Knee Modeling Approach on Indicators and Classification of Anterior Cruciate Ligament Injury Risk Ursula Trinler, Statistical Parametric Mapping 03.04.2019 10
SPM two-tailed paired t-Test Trinler et al. 2019, J Biomech 86 Muscle force estimation in clinical gait analysis using AnyBody and OpenSim Muscle force [N] 03.04.2019 Ursula Trinler, Statistical Parametric Mapping 11
SPM repeated measures ANOVA mit post hoc Analyse Nüesch et al. 2019, G&P 69 The effect of different running shoes on treadmill running mechanics and muscle activity assessed using SPM Cloudsurfer (cyan) Cloudsurfer (cyan) Cloud (red) Cloud (red) own shoe (black) own shoe (black) own shoe (black) 03.04.2019 Ursula Trinler, Statistical Parametric Mapping 12
SPM 2-way repeated measures ANOVA mit post hoc Analyse Trinler et al. 2018, ESMAC 2018 Influence of ankle’s degree of freedom on muscle force estimation in different simulation environments 03.04.2019 Ursula Trinler, Statistical Parametric Mapping 13
Beispiel SPM Hotelling's T² mit post hoc analysis Donnelly et al. 2017, Clin Biomech 41:87-91. Vector-field statistics for the analysis of time varying clinical gait data 03.04.2019 Ursula Trinler, Statistical Parametric Mapping 14
Hompepage SPM1D http://www.spm1d.org/ 03.04.2019 Ursula Trinler, Statistical Parametric Mapping 15
SPM und MATLAB 1. Daten in Matlab laden Daten müssen in bestimmter Reihenfolge geordnet werden Können z.B. in einem Excel oder Matlab File gespeichert sein dataset = spm1d.data.uv1d.t2.SimulatedTwoLocalMax(); [YA,YB] = deal(dataset.YA, dataset.YB); 2. SPM durchführen Test auswählen spm = spm1d.stats.ttest2(YA, YB); spmi = spm.inference(0.05, 'two_tailed',true, 'interp',true); disp(spmi) 3. Graphen und Statistik plotten close all spmi.plot(); spmi.plot_threshold_label(); spmi.plot_p_values(); 03.04.2019 Ursula Trinler, Statistical Parametric Mapping 16
Tutorials, weitere Informationen Homepage SPM1D. Todd Pataky http://www.spm1d.org/ SMP Tutorial durch Jos Venrenterghem https://www.youtube.com/watch?v=4WoDuBkUF9U&list=PL a8HCd4pvpVZtc2zPwSelRWjEjcbYZfv4&index=1 Random Field Theory, Matthew Brett et al. (2003) https://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/pdfs/Ch14. pdf 03.04.2019 Ursula Trinler, Statistical Parametric Mapping 17
Vielen Dank
Literatur Adler, R.J., Taylor, J.E., 2007. Random Fields and Geometry. Springer. Donnelly CJ, Alexander C, Pataky TC, Stannage K, Reid S, Robinson MA (2017). Vector-field statistics for the analysis of time varying clinical gait data. Clin Biomech 41:87-91. Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD 2007. Statistical parametric mapping: the analysis of functional brain images. Amsterdam: Elsevier/Academic Press. Nüesch C, Roos E, Egloff C, Pagenstert G, Mündermann A. (2019). The effect of different running shoes on treadmill running mechanics an muscle activity assessed using statistical parametric mapping (SPM). G&P 69:1-7 Pataky TC. 2010. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J Biomech. 43(10):1976–1982. Pataky, T.C., Robinson, M.A., Vanrenterghem, J., 2013. Vector field statistical analysis of kinematic and force trajectories. J. Biomech. 46 (14), 2394–2401. Robionson MA, Donnelly CJ, Tsao J, Venrenterghem J. (2014). Impact of Knee Modeling Approach on Indicators and Classification of Anterior Cruciate Ligament Injury Risk. Med Sci Sports Exerc. 46(7):1269-76 Trinler U, Alexander N, Baker R, Schwameder H (2018) O 106 – Influence of ankle’s degree of freedom on muscle force estimation in different simulation environments. G&P,65:S.1 Trinler U, Schwameder H, Baker R, Alexander N. (2019) Muscle force estimation in clinical gait analysis using AnyBody and OpenSim. J Biomech 86:55–63. 03.04.2019 Ursula Trinler, Statistical Parametric Mapping 19
You can also read