2014: Renewable chemicals review - Serpbio

Page created by Lauren Jordan
 
CONTINUE READING
2014: Renewable chemicals review - Serpbio
1

2014: Renewable chemicals review
Posted by Doris de Guzman ⋅ December 31, 2014

The green blogger is, unfortunately suffering from the flu, but I have been working on this for
the past few days and wanted to post this before the year ends.

All in all, it has been a hectic but personally a productive year for the green blogger although
this has somewhat impacted the number of contents for the blog as I work on Tecnon
OrbiChem’s Bio-Materials newsletter, which is now my first priority. I do hope you would
check it out as this contains all the information I know about renewable chemicals with the
addition of information on several petrochemicals markets.

As I start on the January 2015 issue of the Bio-Materials newsletter, let us look back and see
the big news and events within the renewable chemicals market worldwide.

COMMERCIAL PRODUCTION
2014 is the year of commercial production for cellulosic ethanol and further commercial
production and marketing milestones for bio-succinic acid. Myriant, Succinity and Reverdia
are all now in commercial bio-succinic acid production while BioAmber expects its own to
start in the first half of 2015.

In the cellulosic ethanol space, the big players – POET-DSM, Abengoa Bioenergy, and
GranBio have all started their first facilities within weeks of each other. DuPont Industrial
Biosciences, meanwhile, noted the delay on the completion of its Iowa cellulosic ethanol
facility from this year to the first half of 2015.

However, it has been a difficult year for public companies such as Gevo, Amyris and
Solazyme when the companies were unable to hit their production targets. Gevo was finally
producing bio-isobutanol but only in the second half of the year after re-configuring their
isobutanol/ethanol production to avoid contamination (the bane of working with bugs in
fermentation processes). By the end of 2014, Gevo expects to achieve production levels of
50,000-100,000 gal/month of bio-isobutanol and ultimately to its full capacity rate of 2-3
mgpy running at one fermenter, while running at a rate of 18 mgpy of ethanol in the other
three fermenters. The company’s focus is to improve batch size while avoiding infections.

In 2015, Gevo expects to make a decision on how much bio-isobutanol will be produced in
Luverne, Minn., and whether the company should switch one or more of its ethanol
fermenters over to isobutanol. The decision will be based upon the technical capability of the
equipment and the potential profit margins of both ethanol and isobutanol.

Amyris seems to be doing much better than Gevo as the company now expects revenue
growth in 2015 while Solazyme hit a snag later this year as the company’s stock value was cut
in half in November after reporting challenges in ramping up its 100 ktpa algal oil/derivatives
production at its Moema, Brazil, facility, which also started this year. During the company’s
third quarter earnings conference call, Solazyme announced that it is shifting its production
focus to lower-volume, higher-value specialty niche products as it faces volatility in crude oil
and vegetable oil markets.
2014: Renewable chemicals review - Serpbio
2

Speaking of the effects of crude oil price cash to renewable chemicals, the blog will analyze
more of this later on…

Meanwhile, there are several companies who are planning to start commercial production or
already in the middle of constructing commercial-scale facilities:

      Rivertop Renewables to start construction of its first commercial plant
      Verdezyne to build diacids plant in Malaysia
      Green Biologics plans to begin production of biobased n-butanol and acetone in 2016
      Corbion plans to build its first PLA facility
      SK Chemicals is building a facility to produce glycerol- based PDO licensed from
       METEX’s technology
      Segetis planning a commercial plant in Minnesota
      Elevance constructing its second biorefinery in Natchez and planning a third in
       Malaysia
      Novamont is building a bio-BDO facility in Italy using Genomatica’s process

This is not a complete list but it is proof that the renewable chemicals industry is forging
ahead with its promise of commercialization despite challenges especially when the investor
landscape is not as robust as it once was. The good news it seems is that with the cooling
investor interests in pure-play biofuel companies, renewable chemicals – with its higher-
margin, lower volume requirements, is now getting more attractive.

RESTRUCTURING
There are several casualties and buy-outs this year as well. In the US, bioplastic producer
Cereplast filed for bankruptcy in February and Kior in November, while in the UK, TMO
Renewables filed an insolvency in January.

Some of the recent buy-outs and acquisitions:

      Renewable Energy Group (REG) acquires LS9
      Givaudan acquires Soliance
      Trellis Earth Products buys Cereplast
      Stora Enso acquires Virdia
      Lesaffre acquires Butalco
      Cardia Bioplastics merges with Stellar Films
      Evolva buys Allylix

INVESTMENTS
There had been too many announcements of companies getting grants, investment money or
loans and I can’t list them individually. One thing that is noticeable is that there is still an
increasing number of large multi-national companies investing in technology companies in
the renewable chemicals space.

According to this year’s Industrial Biotech report from investment firm, Jefferies, companies
such as BASF, DuPont, DSM, Lanxess, Mitsui, M&G, etc., expect to validate by 2016-2017 a
wide range of process economics for biobased chemicals production that they have invested
in. The reasons behind these investments range from new market spaces or feedstock
differentiation to straightforward defense.
2014: Renewable chemicals review - Serpbio
3

Governments around the world are also seem to be now becoming more receptive towards
investing in biorefineries and recognizing the potential contribution of renewable chemicals in
the economy. One example, here in the US, is the new Farm Bill that enables production of
renewable chemicals and biobased products to be eligible for loan guarantees. There are also
several government programs in the EU that help advance commercialisation of bioplastics
and biobased chemicals under the Seventh Framework Programme, e.g. Bio-QED, Bio-TIC,
Agrocos, Bugworkers, etc. Malaysia’s Biotech Corp. and Bio-XCell has been busy this year
trying to attract companies to build their facilities in the region using palm for feedstock,
while bioeconomic development representatives from Canada and Scotland were also in full
force in several major industrial biotech events worldwide.

FEEDSTOCK
The major buzz in the renewable chemicals space (as is in the chemicals market in general), is
the plunge of crude petroleum oil price where crude futures recently settled at five-year lows
with WTI now at around $53/bbl and Brent at around $56/bbl.

The question is, will this new low crude oil price continues to linger in 2015, and if so, how
will this affect renewable chemicals investments and developments especially for drop-in
chemicals and for bioplastics? It will be difficult to compete with cheaper and plentiful petro-
based chemicals. In North America, ethane is king and it will be challenging for renewable
chemicals to compete in the ethylene-based chemical space. Although the blog does know
two companies who are looking to invests in bio-based ethylene oxide and ethylene glycols
 in the US. Cheap crude oil also translates to cheaper naphtha, which translates to cheaper
C3s, C4s and aromatics. Developers of bio-based C4s and aromatics, however, are counting
on long-term shortage projection for these types of chemicals as more and more naphtha
crackers in Europe and Asia are closing down because it is not as competitive as shale gas-
based chemicals in North America.

In 2014, the renewable chemicals space in the US also benefitted from cheaper natural gas (as
energy source) and cheaper corn costs. Sugar production worldwide has also increased in
2014, and therefore global sugar prices have not been too costly for renewable chemicals and
bioplastics producers. In the fats and oils space, global production of soy and palm have also
increased this year, which has pressured most vegetable oil prices to go down.

Developments in biomass as well as the use of greenhouse gas emissions (CO, CO2, methane)
for potential feedstock has accelerated this year. Novomer and Bayer MaterialScience have
now started commercializing polyol products made from CO2. There are also several new
companies that the green blog has heard for the first time working in this burgeoning field.
Tecnon OrbiChem presented its insight on this field at the 3rd Conference on CO2 as
Feedstock for Chemistry and Polymers, which was held in Essen, Germany, early this month.

WHAT’S IN STORE FOR 2015?
It will be another interesting year for renewable chemicals next year as nobody knows if crude
petro oil prices will remain below the $50/bbl level or not. A more volatile crude oil price
scenario, however, will emphasize the need for a more stable feedstock found in agriculture
and even in waste materials.

More commercialization milestones are expected this year and maybe investors will be more
patient when it comes to production ramp-ups. The US Congress is now presided by
2014: Renewable chemicals review - Serpbio
4

Republicans, and it remains to be seen whether the ag sector will benefit from this shake-up or
will the oil/petro industry gain the upper hand?

Will the focus on climate change intensify next year? Will GDP growth in China and Brazil
improve in 2015? Will European economy and demand improve? There are so many factors
needed to consider (and I’m having a headache already), but one thing is for sure, the
renewable chemicals industry is definitely a growing force to consider as governments
worldwide are now recognizing its potential.

Let me know your thoughts and predictions for 2015! Happy New Year and wishing you a
prosperous 2015!

The economic logic of the plastic bag tax: it’s not just a
   “sin tax”
Posted in Politics on January 1st, 2015 Greg Stevens

Today I went to the grocery store. I didn’t want to: it’s New Years day, it’s raining, and Jon
and I both have a cold. But we ran out of Nyquil, so something had to be done. While I was at
the store, I picked up Nyquil, some chicken breast, some eggs, and two spring rolls from the
nice Japanese man at his Sushi counter. I went to the self-checkout kiosk, and worked my way
through it.
When I tapped the screen to show that I was finished, there was a prompt I’d never seen
before: “How many bags would you like to purchase?” it asked. I glanced over at my
2014: Renewable chemicals review - Serpbio
5

groceries, cuddled up in one of the store’s plastic bags. Normally I bring my own canvas bags,
but I was tired and in a rush and it slipped my mind.
I called over the store attendant who was watching over the self-checkout area, and asked, “I
haven’t seen this before. What is this?” He put on a sad face, and said in his most apologetic
tone: “It just started today. It’s a new law, across all of Dallas: 5 cents for each bag. I know,
it’s…”
I smiled brightly and interrupted him: “Oh, no, no… I have no problem with it! I think it’s
great! I was just asking because I hadn’t seen it before. Thank you.”
Conservatives hate stuff like this, because they see it as the use of government to arbitrarily
impose liberal “morals” on society. They see it as government-imposed “punishment” for
making certain economic choices, which goes against free market principles. Essentially, they
see it as a “sin tax”: the government taking money from you because it thinks you are
behaving badly… even though what you are doing is not illegal per se.
In the conservative world view, the correct way for liberals to fix the problem of plastic bag
use would be to take the following steps:
    1. Educate the populace about the dangers of plastic bags, and convince them that it is
         important to not use them.
    2. Convince small business owners to sell and publicize alternatives, like reusable canvas
         bags.
    3. Use private resources (not courts or laws) to try to convince grocery stores to either
         charge for plastic bags or stop carrying them.
    4. Once the first three steps are accomplished, the free market will sort it out: people will
         have the correct free-market pressures to stop using plastic bags, and will stop by their
         own choice.

That’s the free market vision.

The problem is that grocery stores are in what game theorists call a “prisoner’s dilemma“. If I
own a grocery store, I might very well know that there are long-term, environmental “hidden
costs” to distributing plastic bags. These costs are not part of what I pay for the bags, but
come in the form of litter and environmental damage, and the further depletion of oil as a
natural resource on this planet.
I may want to even take those “hidden costs” into account, and start charging a fee for plastic
bag use. But here is the dilemma: I know that if I do that, and none of the other grocery stores
do, I will drive away customers. It will not be in my short term interest to take into account
the long-term costs of distributing plastic bags.
Of course, since every single grocery store owner may think the same way, plastic bags
continue to be distributed, guaranteeing the acceleration of the cost to the environment.
In economics this is also known as the “tragedy of the commons“: when companies only act
in terms of their immediate self-interest, their short-term balance sheet, they do not take into
account the fact that they may be using up or damaging common global resources (“the
commons”). As a result, they will use and use and use, and eventually will end up damaging
their own business (along with everyone else’s) because that resource will be gone.
(For another current example of the “tragedy of the commons”, examine why oil prices are
dangerously low.)
The plastic bag fees imposed by Dallas are not a “sin tax” or a “punishment”. They are a way
to fix the fact that the free market system it, in fact, broken. The fees are requiring consumers
to pay for real costs incurred to “the commons” (the environment) that grocery stores, driven
only by their short-term balance sheets, won’t ask them to pay.
2014: Renewable chemicals review - Serpbio
6

Braskem Idesa JV nearing completion in Mexico, expected
  to open mid-2015
By Stephen Downer
Updated: December 29, 2014

  Image By: Braskem SA Braskem SA says its ethylene joint venture with Grupo Idesa SA in
                            Mexico is 88 percent finished.

Braskem SA’s Ethylene XXI joint venture with Mexico’s Grupo Idesa SA is 88 percent
finished, the two partners said Dec. 24. They aim to have the $4.5 billion complex up and
running by July.
Situated in the southeastern Mexico state of Veracruz, it includes an ethane cracker whose
planned output is 1.05 million metric tons of ethylene a year.
In addition there will be two polymerization plants with a capacity of 750,000 metric tons of
high density polyethylene a year and a third polymerization plant producing 300,000 metric
tons of low density PE a year.
Braskem Idesa said recent advances included the installation of the extrusion equipment in the
HDPE plant and the placement of valves in pipes in the LDPE facility. Work on installing the
cracker’s roof is continuing, Braskem Idesa said.
São Paulo-based Braskem, Latin America’s largest petrochemical company, owns 75 percent
of the joint venture, with Idesa owning the remainder.
A Braskem Idesa spokeswoman said the venture will have “a few hundred” customers in
place before startup.

Fungi Mutarium : transformer du plastique en
  champignons comestibles
Chaque année l’Homme génère en moyenne 280 millions de tonnes de plastique. Afin de
traiter ces dechets, des microbiologistes ont développé un système de recyclage original.
Découvrez en vidéo le Fungi Mutarium, un concept permettant de faire pousser des
champignons sur du plastique.

04/01/2015 - Par Jonathan SARE, Futura-Sciences (merci Pierre Feuilloley)
2014: Renewable chemicals review - Serpbio
7

Transformer des déchets en nourriture est au premier abord une idée qui semble audacieuse.
Pourtant, elle pourrait devenir réalisable grâce au Fungi Mutarium. Cet innovant projet réunit
des designers autrichiens et des microbiologistes de l’université de Utrecht aux Pays-Bas, bien
décidés à révolutionner la production de nourriture.

Le processus est simple : sous un dôme sont installés des récipients constitués d’amidon,
d’algues et de sucre, ils serviront à nourrir le Schizophyllum commune (rem. : Une précision:
le Schizophyllum commune, mentionné dans cet article, n'est pas spécialement vu comme comestible, même s'il a
pu être très localement et ponctuellement consommé. Il est en tout cas bien moins appréciable que le Pleurote en
huître également mentionné. Il peut même causer des infections chez les humains) et le Pleurotus ostreatus.
Deux espèces capables de digérer du polyuréthane. On ajoute ensuite le plastique qui devra
être dégradé, recouvert de mycélium dissous dans un liquide. Au bout de plusieurs mois le
plastique est consommé, le pod et les champignons sont alors intégralement comestibles.

Même si des questions de toxicité restent en suspens, l’équipe scientifique tente à
présent d'accélérer le processus par une gestion précise de la température, de l’humidité et
plus précisément de l’écosystème où se déroule la croissance du champignon.

La dégradation des plastiques en mer, par C. Dussud et J-
  F. Ghiglione
26 décembre 2014

La Société Française d’Ecologie (SFE) vous propose pour finir l’année 2014 ce regard de
Claire Dussud et Jean-François Ghiglione, écotoxicologues, sur la dispersion et dégradation
des plastiques en mer.

                           La dégradation des plastiques en mer
                   par Claire Dussud1,2 et Jean-François Ghiglione1,2

       1 : CNRS, UMR 7621, Laboratoire d’Océanographie Microbienne, Observatoire
                        Océanologique, F-66650 Banyuls/mer, France
  2 : Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Laboratoire d’Océanographie
           Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France

                                           ——-
  Mots clés : écotoxicologie microbienne, écosystèmes marins, déchets, réseaux trophiques,
                  bioaccumulation, bioremédiation, relation Homme-Nature
                                           ——–

Le devenir des déchets en mer est une préoccupation environnementale de premier ordre qui
fait aujourd’hui partie de la définition du « bon état écologique » de la Directive Cadre Sur le
Milieu Marin (DCSMM, descripteur n°10). En milieu marin, ces déchets sont composés de 40
à 80% de plastiques (Barnes et al., 2009). Des travaux récents estiment à 5 250 milliards le
nombre de particules plastiques qui flottent à la surface des mers et océans, équivalent à 268
940 tonnes de déchets (Eriksen et al., 2014).
2014: Renewable chemicals review - Serpbio
8

Une pollution mondiale

La pollution par les déchets plastiques touche tous les océans, y compris les zones polaires. Il
existe néanmoins des zones d’accumulation créées par des courants marins appelés gyres
océaniques (Lebreton et al., 2012). La plus connue est la zone d’accumulation dans le gyre du
Pacifique Nord (« 7ème continent de plastique » ou « grande zone d’ordure du Pacifique»),
mais cet exemple n’est pas un cas isolé. Les modèles de circulations océaniques suggèrent des
zones d’accumulations dans quatre autres gyres (Pacifique Sud, Atlantique Nord, Atlantique
Sud et Océan Indien). La Méditerranée est également très polluée par les plastiques du fait de
son caractère de mer semi-fermée, avec un taux de renouvellement des eaux de 90 ans alors
que la persistance des plastiques est supérieure à 100 ans (Lebreton et al., 2012).

La présence de ces matériaux synthétiques dans le milieu naturel est relativement récente,
puisque l’essor de l’industrie du plastique date des années 1970. Les débris plastiques
retrouvés à la surface de l’eau sont dominés par les particules de taille inférieure à 5mm,
communément appelées des microplastiques (Hidalgo-Ruz et al., 2012). Les microplastiques
sont issus de la fragmentation des plastiques et sont également dispersés dans tous les océans
(Ivar do Sul et al., 2014). Ces fragments sont très stables et peuvent parfois persister jusqu’à
1000 ans dans le milieu marin (Cózar et al., 2014).

Toxicité des plastiques et perturbation des chaînes alimentaires

Dans l’environnement, la pollution par les plastiques peut avoir plusieurs conséquences. Mise
à part la pollution visuelle qu’ils engendrent, les plastiques touchent les organismes marins de
manière directe ou indirecte à différents échelons de la chaîne alimentaire (Wright et al.,
2013). Au plan chimique, les matières plastiques sont constituées d’enchaînements de
séquences identiques (ou polymères) de molécules carbonées, principalement
d’hydrocarbures*, molécules organiques toxiques pour de nombreux organismes, susceptibles
de s’accumuler le long des chaînes alimentaires.

Dans les zones d’accumulation, la concentration de microplastiques observée (de taille de 0,5
à 5mm) est comparable à celle du zooplancton (entre 0.005 mm et plus de 50 mm). La
Méditerranée, par exemple, présente des ratios microplastiques/zooplancton entre 1/10 à 1/2
(Collignon et al., 2012). Le risque pour les prédateurs du zooplancton (i.e. les poissons)
d’ingérer du microplastique est donc considérable. Le temps de résidence du plastique dans de
petits poissons pélagiques est évalué entre 1 jour et 1 an (Davidson & Asch, 2011). Les
fragments de microplastiques ingérés sont retrouvés dans les déjections des animaux, ils
peuvent couler avec les cadavres ou encore être transférés aux prédateurs et ainsi atteindre les
échelons supérieurs de la chaîne alimentaire (Cózar et al., 2014).

Les plastiques sont également des vecteurs de dispersion de composés toxiques qui peuvent
aussi s’accumuler dans les chaînes alimentaires. Ces composés peuvent être directement
présent dans la composition des plastiques, ou bien s’adsorber à leur surface. Dans le premier
cas, il s’agit d’additifs (phtalates, biphényles) incorporés à certains plastiques pour augmenter
leur résistance. Différents travaux ont montré que ces composés peuvent être toxiques pour
certains animaux et l’homme (Lithner et al. 2011). D’autres composés toxiques
(hydrocarbures, pesticides, DDT, PCB) peuvent s’adsorber sur les plastiques, ce qui est
susceptible d’augmenter leur dispersion, leur persistance en mer et leur accumulation dans les
échelons trophiques les plus élevés (Teuten et al., 2009).
2014: Renewable chemicals review - Serpbio
9

Les effets désastreux de l’ingestion des débris de plastiques confondus avec des proies sont
également bien documentés, avec des conséquences sur les systèmes digestifs des animaux
tels que les poissons, les oiseaux, les tortues de mer et les mammifères marins, pouvant
entraîner leur mort (Andrady 2011). Ces débris sont également considérés comme vecteurs de
dispersion d’algues toxiques (Masó et al. 2007) et de microorganismes pathogènes (Zettler et
al., 2011).

Dégradation des plastiques en mer

Plusieurs études se sont attachées à décrire les étapes physiques, chimiques et biologiques
intervenant dans la décomposition du plastique (Andrady, 2011). La dégradation biologique
est en majeure partie réalisée par les microorganismes, essentiellement des bactéries (Shah et
al., 2008). Organismes les plus abondant dans les océans (~100 millions de bactéries et >500
espèces par litre d’eau de mer), ces microorganismes invisibles à l’œil nu ont des capacités
métaboliques extrêmement variées. Dans leur milieu naturel, les bactéries jouent un rôle
d’éboueur des océans (organismes saprophytes) puisqu’elles reminéralisent la moitié du
carbone organique qui provient des déchets de la chaîne alimentaire. De nombreuses bactéries
sont également spécialisées dans la dégradation des hydrocarbures (bactéries
hydrocarbonoclastes), composants majeurs des plastiques. La capacité de dégradation de
différents types de plastiques par les bactéries a largement été abordée dans la littérature,
2014: Renewable chemicals review - Serpbio
10

montrant une vaste diversité de bactéries capables de les dégrader (voir par exemple la revue
de Shah et al. 2008). On aperçoit ici l’enjeu environnemental des recherches actuelles visant à
mieux caractériser la biodégradation des plastiques par les communautés bactériennes.

Les étapes de la dégradation en mer
Un plastique qui arrive en mer va d’abord subir une dégradation abiotique (non biologique).
Des dégradations physiques (vagues, température et UV) et chimiques (oxydation ou
hydrolyse) vont contribuer à fragiliser les structures des polymères (Ipekoglu et al., 2007) et
réduire le plastique en morceaux de plus petite taille. La dégradation biologique intervient
ensuite. Elle est composée de quatre étapes successives (Figure 1).

Figure 1 : Les différentes étapes de la biodégradation du plastique par les bactéries (Dussus et Ghiglione, sous
presse).

1. La bio-détérioration est engendrée par l’action mécanique du biofilm bactérien qui se forme
à la surface du plastique (Figure 2) et qui va pouvoir agrandir les fissures déjà présentes
(Bonhomme et al., 2003). Une dégradation chimique peut également être orchestrée par la
grande diversité des espèces présentes dans le biofilm, telle que la production de composés
acides par les bactéries chimiolithotrophes et chimioorganotrophes.

Figure 2 : Biofilm formé par Rhodococcus ruber C208 sur la surface de polyéthylène UV photo-oxydée, observé
   au microscope électronique à balayage. Initiation de la biodégradation détectée dans les 3 jours. Contrôle :
                                Surface non inoculée (selon Sivan et al. 2011).
11

2. La bio-fragmentation est l’action d’enzymes bactériennes libérées à l’extérieur des cellules
pour cliver les polymères plastiques en séquences plus courtes, oligomères et monomères. Les
oxygénases, par exemple, rendent les polymères de plastique plus hydrosolubles et donc plus
facilement dégradables par les bactéries. Les lipases et les estérases attaquent spécifiquement
les groupes carboxyliques et les endopeptidases les groupements amines. Différentes espèces
bactériennes sont impliquées dans ce processus (Ghosh et al. 2013).

3. L’assimilation consiste au transfert des molécules plastiques de taille 100 ans) qui
conduit à leur accumulation dans les océans. Par exemple, on estime que la concentration de
microplastiques en Méditerranée augmentera de 8% dans les 30 prochaines années (Lebreton
et al., 2012). De nouveaux plastiques dits « biodégradables » apparaissent sur le marché pour
réduire l’impact des déchets plastiques en mer.

La définition d’un plastique biodégradable est donnée par la norme européenne EN 13432 de
2007 qui fixe la biodégradabilité à un seuil d’au moins 90% de dégradation en six mois
maximum dans des conditions de compostage (environnement microbiologique actif dans des
conditions particulières d’humidité et de température). Le résultat de cette dégradation est la
12

formation de biomasse bactérienne ou sa minéralisation. Cette norme ne donne pas
d’information sur la biodégradabilité dans des conditions environnementales – en milieu
marin notamment – et suggère une collecte des plastiques biodégradables. Sachant que les
plastiques retrouvés en mer ont pour origine un manque de collecte, le fait de répondre à cette
norme ne résout pas le problème des déchets plastiques en mer. Néanmoins, la recherche et
l’innovation peuvent proposer d’autres solutions.

Les plastiques biodégradables sont de deux types :

– Les plastiques « hydro-biodégradables » ou « biosourcés » sont des produits issus de
l’agriculture tels que l’amidon de maïs de maïs ou de pomme de terre. Si ce type de plastiques
répond à la norme EN 13432 (qui suppose leur compostage), sa dégradation en milieu «
naturel » reste sujette à controverse. D’autre part, il est entre 4 et 10 fois plus coûteux qu’un
plastique classique et encourage l’agriculture intensive (utilisation d’engrais et de pesticides
pour améliorer le rendement des récoltes).

– Les plastiques « oxo-biodégradables » sont de même composition primaire que les
plastiques conventionnels (polyéthylène, polypropylène, polystyrène,… même filières de
production) auxquels ont été ajoutés des stabilisants qui permettent de prédire leur durée de
vie et des pro-oxydants qui facilitent leur biodégradation par les microorganismes. Si la
dégradation abiotique de ces plastiques est bien documentée, la démonstration de leur
biodégradation reste un sujet d’équivoque dans le domaine. Néanmoins, les évolutions des
formulations des additifs semblent prometteuses. Très récemment, l’additif « d2w»
(http://www.symphonyenvironmental.com/d2w/) a obtenu un écolabel (365.001/14) décerné
aux produits respectueux de l’environnement selon les normes ISO 14020:2002 et
14024:2004.

Conclusions

Différentes actions de recherches nationales et internationales ont été encouragées ces
dernières années devant l’ampleur de la pollution par les plastiques en mer. La compréhension
des mécanismes de leur biodégradation en mer est à ses balbutiements. Si certains
mécanismes ont été observés en condition de laboratoire, leur étude en milieu naturel reste
largement inexplorée. Par exemple, les mécanismes moléculaires de bio-détérioration, bio-
fragmentation, bio-assimilation et bio-minéralisation sont aujourd’hui inconnus. La diversité
des microorganismes associés à ces différentes étapes de la biodégradation est également
ignorée. La compréhension de ces processus permettra de mieux définir les taux de
biodégradation des plastiques et de mieux prédire le devenir des plastiques dits «
biodégradables » en mer.
La mer est le réceptacle ultime de tous les déchets produits sur terre (80% des déchets
retrouvés en mer proviennent de la terre). La solution au problème de la pollution des
plastiques en mer ne viendra certainement pas de la mer elle-même, mais d’une prise de
conscience des citoyens qui sont responsables de cette pollution (plus de 30% des déchets
plastiques retrouvés en mer proviennent d’un manque de collecte de la part des ménages).

Glossaire
Bactéries chimiolithotrophes : Bactéries puisant leur énergie dans les liaisons chimiques de composés
minéraux.
Bactéries chimioorganotrophes : Bactéries puisant leur énergie dans les liaisons chimiques de molécules
organiques.
Groupement carboxyle : – CO2
13

Gyre océanique : tourbillon d’eau océanique formé d’un ensemble de courants marins et provoqué par la force
de Coriolis.
Hydrocarbure : composé organique constitué exclusivement d’atomes de carbone et d’hydrogène.
Organismes saprophytes : micro-organismes qui se nourrissent de matières organiques en décomposition qu’ils
transforment en matière minérale.
Poissons pélagiques : poissons vivant et se nourrissant dans la colonne d’eau.
Pyroséquençage haut débit : technique permettant de séquencer le génome rapidement avec une lecture directe
de la séquence.
SIP : Stable Isotope Probing, technique en écologie microbienne qui permet de tracer les flux de nutriments
utilisés par les microorganismes. Le substrat est enrichi avec un isotope stable qui est consommé par les
organismes à étudier.
Zooplancton : organismes de type animal qui flottent au gré des courants, ils sont à la base de la plupart des
chaines alimentaires.

Bibliographie
Andrady AL, 2011. Microplastics in the marine environment. Mar. Pollut. Bull. 62: 1596-1605.
Bonhomme S, Cuer A et al. 2003. Environmental biodegradation of polyethylene. Polymer Degradation and
Stability, 81: 441-452.
Barnes DK, Galgani F, Thompson RC and Barlaz M, 2009. Accumulation and fragmentation of plastic debris in
global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526): 1985-
1998.
Collignon A, Hecq JH, Glagani F, Voisin P, Collard F et Goffart A, 2012. Neustonic microplastic and
zooplankton in the North Western Mediterranean Sea. Marine pollution bulletin, 64(4): 861-864.
Cózar A, Echevarría , et al., 2014. Plastic debris in the open ocean. Proceedings of the National Academy of
Sciences, 111(28): 10239-10244.
Davison P et Asch RG, 2011. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre.
Marine Ecology Progress Series, 432: 173-180.
Dussud C and Ghiglione JF. Bacterial degradation of synthetic plastics. CIESM Monograph 46 on Marine
Litters. Sous presse.
Eriksen M, Lebreton LC et al, 2014. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces
Weighing over 250,000 Tons Afloat at Sea. PloS one, 9(12): e111913.
Ghosh SK, Pal S and Ray S, 2013. Study of microbes having potentiality for biodegradation of plastics.
Environmental Science and Pollution Research 20: 4339-4355.
Hidalgo-Ruz V, Gutow L, Thompson RC and Thiel M, 2012. Microplastics in the marine environment: A review
of the methods used for identification and quantification. Environ Sci Technol 46(6): 3060–3075.
Ipekoglu B, Böke H and Cizer O., 2007. Assessment of material use in relation to climate in historical buildings.
Building and Environment, 42: 970-978.
Ivar do Sul JA and Costa MF, 2014. The present and future of microplastic pollution in the marine environment.
Environmental Pollution, 185: 352-364.
Lebreton LCM, Greer SD and Borrero JC, 2012. Numerical modelling of floating debris in the world’s oceans.
Mar Pollut Bull 64(3): 653–661.
Lithner D, Larsson A and Dave G, 2011. Environmental and health hazard ranking and assessment of plastic
polymers based on chemical composition. Sci. Total Environ. 409: 3309e3324.
Masó M, Garcés E, Pagès F and Camp J, 2007. Drifting plastic debris as a potential vector for dispersing
Harmful Algal Bloom (HAB) species. Sci. Mar. 67: 107−111.
Sauret C, Severin T and a;., 2014. ‘Rare biosphere’ bacteria as key phenanthrene degraders in coastal seawaters.
Applied and Environmental Microbiology 194: 246-253.
Sivan A, 2011. New perspectives in plastic biodegradation. Current Opinion in Biotechnology, 22: 422-426.
Shah AA, Hasan F, Hameed A and Ahmed S, 2008. Biological degradation of plastics: a comprehensive review.
Biotechnology advances, 26(3): 246-265.
Teuten EL, Saquing JM et al., 2009. Transport and release of chemicals from plastics to the environment and to
wildlife. Phil. Trans. R. Soc. B 364: 2027e2045
Wright SL, Thompson RC and Galloway TS, 2013. The physical impacts of micro- plastics on marine
organisms: a review. Environ. Pollut. 178: 483e492.
Zettler ER, Mincer TJ and Amaral-Zettler LA, 2013. Life in the ‘‘plastisphere’’: microbial communities on
plastic marine debris. Environmental Science and Technology, 47: 7137-7146.
14

Les Larmes de Calypso

Emery Oleochemicals Completes Construction of its Bio-
  polyols Production Facility in Ohio
SpecialChem / Jan 5, 2015
CINCINNATI, Ohio -- Emery Oleochemicals, a world leader in natural-based chemicals
announced that construction activities of its new technologically advanced bio-polyol plant
located in Cincinnati, Ohio has reached mechanical completion. The plant will further
strengthen Emery Oleochemicals’ ability to provide wide range of Eco-Friendly Polyoyls
products and customer service.
15

With the initiation of pre-commissioning activities and site operational verification, startup of
the first phase of the US$50mil investment marks a key milestone in the expansion project
designed to boost capacity and technical capabilities in the manufacturing of performance bio-
based polyols for the automotive, furniture and bedding and major appliances industries.
Announced in 2012, the project will reach initial production goals by the end of the year
specifically in the area of renewable-based polyols, using Emery Oleochemicals’ proprietary
ozonolysis technology.
"Once the commercial operation of the first phase begins, the bio-polyol plant will
demonstrate unique capabilities of renewable-based polyols that can deliver on both
performance and cost," said Jay Taylor, Senior Vice President, Chief Manufacturing Officer
and Regional Managing Director, North America.
The second phase adjoins in this same manufacturing complex and is in its final building
stage with civil and structural installation at various process units nearing completion. This
state-of-the-art site is dedicated to the production of recyclable polyols, bringing to life Emery
Oleochemicals’ "closed-loop" processing value proposition and marks the successful
integration of award-winning INFIGREEN® technology acquired in 2012.
"Supported by over 100 workers and external consultants, we have done an excellent job in
constructing what will be the world’s first commercial plant offering both renewable and
recyclable polyols for polyurethanes. Surpassing over 1.6 million man hours without a lost
time accident, the facility already allows potential customers to explore opportunities in which
our products can be economically integrated into their product development goals as we also
embark on pre-marketing activities," added Taylor.
When full facility commissioning completes in Q2 2015, the Cinccinati site will additionally
produce solutions for Emery Oleochemicals’ Agro Green, Bio-Lubricants and Green Polymer
Additives businesses, therefore providing natural-based solutions in market segments such as
agriculture, lubricants, oilfield, packaging, toys and other high-growth industries.
"As we reach this first critical milestone, we are very pleased with the team’s effort in
delivering on a international-standard project while meeting the highest specifications of
safety, quality of construction, and maintaining costs and scheduling commitments," said
Dr.Kongkrapan Intarajang, Group Chief Executive Officer, during a recent site visit.
"This project is a testament to our global strategy of growing our innovation capabilities in
providing natural-based specialty chemical solutions. Combined with our enhanced technical
development centre here in Cincinnati, we are poised to drive the innovation and
sustainability agenda in bio-polyols. By positioning ourselves in the radar of automotive
industry players, we aim to be a preferred partner to deliver quality solutions the global
marketplace have come to expect from Emery Oleochemicals," Dr. Intarajang added.
The company’s Eco-Friendly Polyols business unit aims to demonstrate opportunities for the
automotive industry to meet performance and sustainability goals through a specially
designed Concept Car called "CASP" (Concepts for Advanced Sustainability in
Polyurethanes) at the upcoming North American International Auto Show 2015. Featuring
automotive components and materials made from both renewable and recycled polyurethane
foam, CASP is a distinctive first for a chemicals manufacturing company. CASP will
demonstrate Emery Oleochemicals’ proprietary technology in which recovered foam scrap
materials were chemically processed and turned into recycled polyol are used in the
production of polyurethane foams. This will be on display in Cobo Hall, Cobo Center Detroit,
Michigan from January 12th to 25th 2015.

Roquette élargit son offre en bioplastiques
Le 07 janvier 2015 par Tiziano Polito
16

                                 Un sac de caisse en Gaïaplast.

L’amidonnier-bioraffineur lance Gaïaplast et Gaïalene ZE. -

À l’occasion d'Emballage 2014 qui a eu lieu à Paris-Nord Villepinte, en novembre dernier,
Roquette a présenté deux nouvelles gammes de plastiques d’origine renouvelable destinés au
marché de l’emballage et du conditionnement.

Issue, à hauteur de 40%, de ressources végétales qui ne sont pas destinées à la consommation
alimentaire, Gaïaplast est une résine « développée pour convenir à la future réglementation
sur les sacs à usage unique autres que les sacs de caisse », indique Léon Mentink,
responsable produits à la direction Plastiques végétaux de Roquette. Elle sera donc utilisée en
sacherie, pour l’emballage de marchandises sur le point de vente, au rayon fruits et légumes,
ou pour des produits vendus au détail ou sur les marchés. Tous les grades de ce plastique sont
compostables selon la norme sur le compostage industriel des emballages EN 13432. Certains
d’entre eux peuvent même être compostés à domicile. La mise en œuvre ne comporte pas de
modifications substantielles de l’outil de production ; en outre, le produit peut être « filmé »
dans les épaisseurs requises par le marché et présente un toucher agréable.

Compétitivité prix
Le lancement de la gamme Gaïalene ZE – ZE signifiant « Zéro Emission » – vise à répondre à
une demande croissante du marché en produits hautement biosourcés, écoresponsables et
compétitifs par rapport aux plastiques pétroliers usuels comme le polyéthylène. La part
biosourcée représente 75% de ce plastique. D'après Roquette, ce contenu élevé de matière
végétale permettrait d'obtenir une empreinte carbone nulle. « Nous franchissons aujourd’hui
une étape décisive avec Gaïalene ZE en apportant au marché une offre unique à ce jour. Nos
nouvelles résines permettent de substituer les polyoléfines à isocoût et à isoperformance, en
premier lieu pour les sacs de caisse réutilisables, les sacs à déchets devant être incinérés
pour des raisons hygiéniques ou techniques et aussi les films d’emballage conçus pour être
recyclables et à faible empreinte environnementale », souligne le fabricant.

Ces deux polymères sont fabriqués à Lestrem (Pas-de-Calais) où le groupe possède une
bioraffinerie, à proximité des zones de culture des céréales, qui constituent la principale
matière première.

Spécialisé dans la transformation des matières premières végétales telles que le maïs, le blé, la
pomme de terre, le pois et, depuis peu, les micro-algues, Roquette réalise un chiffre d’affaires
de plus de 3,4 milliards d’euros avec un effectif de 8 000 personnes. Le groupe compte parmi
les leaders mondiaux de l’industrie amidonnière.
17

07 janvier 2015 – Nous sommes tous Charlie

                  C’est l’encre qui doit couler, pas le sang !

TEQ Eyes Solegear PLA Compound For Medical Packages
Posted on December 29, 2014 by Doug Smock 0

Hospitals are increasingly interested in bioplastics as they increase their focus on
sustainability. A company called Pharmafilter which has been developing a materials
recycling system for hospitals, has said it would use bioplastics for bed pans, trash bags and
plastic tableware. Compostable bioplastics have the potential benefit of fitting into hospital-
based composting systems.
18

Solegear Bioplastics and Thermoform Engineered Quality (TEQ) are now entering into a
strategic agreement to accelerate the growth and expansion of bioplastics into “identified
growth sectors” of the rigid plastic packaging marketplace. Medical is a TEQ specialty and
one of its partners is McFarland Medical, which makes home medical equipment.

Solegear was founded in 2006 and is still in startup mode. Thermoformed medical packaging
could be an important beachhead for its Polysole compound, which is made by combining
polylactic acid (PLA) with a natural additive formulation that increases mechanical and
physical performance characteristics. Solegear has worked with the Industrial Research
Assistance Program of the National Research Council of Canada to develop proprietary
formulations. Canadian patent applications are still pending.

Earlier this year, Solegear received $1.6 million in funding from the Western Innovation
(WINN) Initiative, a program offered by Western Economic Diversification Canada, a federal
department. In October, Solegear closed it first commercial debt financing as a complement to
venture equity backing.

Bioplastics in 2014: the 'green' year that was
By Karen Laird
Published: December 22nd, 2014

All considering, 2014 was not at all a bad year - at least in terms of bioplastics innovations
and applications, that is.

As designers, processors and manufacturers cautiously adapt to the idea of green plastics, the
use of renewably sourced materials is being introduced in more and more application areas.
Looking back at some of the developments we covered over the past months, it was clear that,
while packaging remains a key area for bioplastics, new applications are turning up at an
increasingly rapid pace, ranging from the automotive industry - both under the hood and in
the interior - to coffee capsules, air fans and even corks.
19

The latter story [Corked wine a thing of the past with a 'green' Corc] particularly generated a
lot of interest this spring, when we wrote about this wholly new application for Braskem's
green polyethylene developed by a company called Normacorc. In the 15 years since
Normacorc was founded, its synthetic corks, initially developed in order to solve the problem
of "corked" wine, have become the world's leading brand of synthetic wine closures. This
year, motivated by a desire to develop a more sustainable packaging solution, the company
introduced its first green Corc made of Braskem's I'm Green PE, which it called the Select Bio
plant-based wine bottle closure. "The use of Braskem's green polyethylene made from
sugarcane gave us the materials we needed to offer our customers carbon-neutral corks," said
Olav Aagaard, principal scientist at Nomacorc. Braskem's green plastic is made from
sugarcane ethanol, a 100% renewable raw material, and captures 2.15 kilograms of CO2 for
every kilogram produced. It's a drop-in replacement in the plastic production chain - not
biodegradable, but recyclable in the same recycling chain as used by traditional polyethylene.

Lego [Lego investigates shift to bioplastics] certainly caught our attention this year with its
mention that it was looking at the possibility of using PLA for its iconic plastic blocks, as part
of a long-term sustainability program. A volume application if ever there was one: as the
world's premier construction toy brand, Lego annually consumes 60,000 metric tons of
plastic, mostly ABS, at giant captive molding plants in Denmark, Mexico, Hungary and, as
from 2017, China. "I know it will happen; it is just a matter of time," Alan Rasmussen, a
materials engineer at Lego said at a presentation at the Innovation Takes Root conference
early in 2014. However, although they look deceptively simple, Lego blocks are actually a
very clever feat of plastics engineering. More research is required to solve the various issues
seen with the blocks made of PLA and the various other bioplastic materials being tested.

Back when Bayer MaterialScience starting experimenting with ways to turn CO2 into useful
plastics, the response from much of the industry was a polite guffaw. No more. With the first
polyurethane matrass based on CO2 planned to sell in 2016, Bayer's 'dream' is starting to
become real. And in 2014, we reported on the progress the company had made with this
Dream Polymers project [Bayer MaterialScience dreams of expanding range of CO2-based
plastics]: researchers at Bayer developed a new technology which involved incorporating
CO2 at the precursor level, replacing 20% of the petroleum needed. Earlier technology had
already yielded a 20% reduction in the amount of petroleum used. "We have now succeeded
in reducing the petroleum content to just 60%," said Project Manager Christoph Gürtler.
What's more, according to the company, the technology is suitable for the production of other
plastics, as well.

And finally, perhaps the best news about bioplastics this year was the fact that, well, they're
no longer real news. "At Interpack this year, one of the statements heard again and again was
20

'we are already working with bioplastics','" said Hasso von Pogrell, managing director of the
European Bioplastics association. As bioplastics go mainstream, their use - in packaging
applications [Bioplastics in packaging come into its own] at least - is apparently increasingly
becoming a taken-for-granted reality.

Chinese PLA Market Is Looking Good To Go
Posted on December 31, 2014 by Doug Smock 0

Widespread adoption of polylactic acid (PLA) has been slowed due to lack of a broad supply
chain for the renewably sourced material that has significant potential in packaging, and even
some durable applications.

The giant in the room has been NatureWorks, which has a PLA production capacity of
150,000 metric tons per year in Nebraska and has announced tentative plans to build a PLA
production plant in Thailand. NatureWorks, which is owned by Cargill and PTT Chemical,
has put a lot of financial muscle into market development and has had some notable
successes, but has faced some resistance from customers concerned that there has been no
significant second source of supply.

But now the second largest producer in the world (5,000 metric tons per year), Zhejiang Hisun
Biomaterials Co. is proceeding with plans to expand its capacity to 50,000 metric tons per
year in in Taizhou, China. The expansion was first announced a while ago, but has been
delayed about two to three years due to slower-than-expected adoption of PLA.

Meanwhile, the major European-based player, Corbion Purac, said it intends to build a 75,000
metric tons per year PLA plant in Thailand, but only if customers will commit to at least one-
third of the projected capacity in advance.

Corbion conducted a study indicating that the PLA market is estimated to reach 3 million
metric tons by 2020, assuming a PLA price of $1.10 per pound. According to Corbion, PLA
capacity is almost sold out.

The expansion in natural gas supply produced by fracking in the United States is sure to
unsettle future American demand for PLA, which often competes with polyethylene and
polypropylene, the two plastics that will benefit the most from fracking. Prices for those two
plastics will be under pressure when new plants built for the new feedstock streams start
coming on line in two to three years. The situation is different in China, where processors
already pay a premium–as much as double–for plastic resins compared to the United States.
Plastics made from crop waste in China will likely have a cost advantage over plastics made
from fossil fuels.

Corbion Purac’s path to commercialization is different, eyeing higher-priced durable
applications for its optimized PLA compounds.
21

Dairy Home adopts Ingeo yogurt cups
08/01/15

Dairy Home, an organic dairy and fresh farm goods business in Thailand, has selected Ingeo
for its yogurt packaging. The company’s emphasis on sustainability makes Ingeo packaging a
natural fit for Dairy Home’s organic yogurt. Dairy Home’s senior manager said the
competitive price for Ingeo packaging made the choice feasible

(China) Jilin Province takes the lead on plastic shopping
    bags
CCTV.com 01-06-2015

A new year with a new prospect: Jilin province in northeast China has approved the country's
first ban on the production and sale of single use, non-biodegradable plastic shopping bags.
The ban went into effect on the first day of the year.
"For me I'm willing to pay 1 or 2 Yuan for each bio-degradable plastic bag," Changchun
resident Dong Xueren said.
"To reduce the amount of white trash is good for the people and good for society," Changchun
resident Zhang Suying said.
At one of the downtown supermarkets in Changchun, locals have said goodbye to the white
trash that clogs waterways and spoils the landscape. Alternatively, they can now either bring
their own shopping bags or simply grab one over the counter.
"We've noticed the reaction from our customers following the ban order, people are giving a
positive response to the new bio-degradable plastic bags even if they are more expensive, and
they think a better environment is what matters," Wang Xiaowei, floor manager of Ouya
Outlets, Changchun, said.
It is a fact that almost every piece of plastic we have ever thrown away 50 years ago is still
here on this planet and will be here for centuries to come. In 2007 the central government laid
a soft approach on limiting the use of non-biodegradable plastic bags, but what Jilin province
is doing now is to test the water on a much stricter rule - putting an end to the non-recyclable,
toxic carriers.
"The use of bio-degradable plastic bags -- like the ones we produce -- is very common
consumer behavior in the EU and some other developed countries. The problem in
popularizing such green products in China is that the cost of biological raw materials is still
high, and it can only be brought down once more people start using them," Larry Lin, general
manager of Becausewecare Environmental Industry Co., Ltd, said.
You can also read