Use of Unmanned Aerial Systems for Hydrological Monitoring
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Use of Unmanned Aerial Systems for Hydrological Monitoring Prof. Salvatore Manfreda and HARMONIOUS TEAM Dipartimento di Ingegneria Civile, Edile e Ambientale (DICEA) Professor of Hydrology and Advanced Monitoring - www.salvatoremanfreda.it Chair of the COST Action Harmonious - www.costharmonious.eu e-mail: salvatore.manfreda@unina.it Twitter: @Sal_Manfreda HARMONIOUS TEAM: Salvatore Manfreda, Brigitta Toth, David Helman, Giorgos Mallinis, Richard Lucas, Pauline Miller, Antonino Maltese, Petr Dvořák, Sander Mücher, Giuseppe Ciraolo, Yijian Zeng, Zhongbo Su, Jana Müllerová, Nunzio Romano, Xurxo Gago, Ruodan Zhuang, Goran Tmusic, Helge Aasen, Mike James, Gil Concalves, Eyal Ben-Dor, Anna Brook, Maria Polinova, Jose Juan Arranz, Janos Meszaros, Ruodan Zhuang, Kasper Johansen, Yoann Malbeteau, Matthew McCabe, Isabel Pedroso de Lima, Corine Davis, Sorin Herban, Sophie Pearce, Robert Ljubicic, Salvador Peña-Haro, Matthew Perks, Flavia Tauro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Dariia Strelnikova, Salvatore Grimaldi, Ian Maddock, Gernot Paulus, Jasna Plavšic, Dušan Prodanovic, Rafi Kent, Josef Brůna, Martynas Bučas, Joan Estrany, Adrien Michez, Martin Mokroš, Maria Tsiafouli, João L. M. P. de Lima
2 Unmanned Arial Systems (UAS) for Environmental Monitoring Scope: improve ability to monitor river basin processes Variable of interests: state of the vegetation, soil water content, streamflow (flow velocity and water level), flooded areas and river morphology. Objective: To define integrated procedures to improve hydrological/hydraulic monitoring capacity using UAS. Scale: from plot-scale to the river basin scale providing operational monitoring tools. Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
3 Environmental Monitoring Global Few hectars Few m2 Up to 30cm Up to 1cm Up to 1cm Comparable Scales Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
4 UAS vs Satellite (Manfreda et al., Remote Sensing 2018) Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
5 Number of articles extracted from the database ISI web of knowledge 3000 100% automation of a single or multiple vehicles, tracking and flight control systems, 90% 2500 hardware and software innovations, 80% Percentage of Environmental Studies (%) tracking of moving targets, image correction and mapping performance 70% 2000 assessment Number of Papers 60% 1500 50% UAS applications 40% 1000 Environmental Applications 30% Percentage of Environmental Studies 20% 500 10% 0 0% 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Year from 1990 up to 2017 (last access 15/01/2018) (Manfreda et al., Remote Sensing 2018) Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
6 CA16219 - COST Action HARMONIOUS • A network of scientists is currently cooperating within the framework of a COST (European Cooperation in Science and Technology) Action named “Harmonious”. • The aim of “Harmonious” is to promote monitoring strategies, establish harmonized monitoring practices, and transfer most recent advances on UAS methodologies to others within a global network. • HARMONIOUS involves 36 Countries Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
Action Chair Salvatore Manfreda Vice Chair Brigitta Toth Science Communications Manager: László Bertalan STSM coordinator: Isabel De Lima WG2: 7 Training School Coordinator: Giuseppe Ciraolo Vegetation Status WG5: Harmonization of ITC Grant Coordinator: Martin Mokros Leader Antonino Maltese methods and results Vice leader Felix Frances Leader Eyal Ben Dor Vice leader Jana Mullerova Vice leader Flavia Tauro WG1: UAS data processing Leader Sorin Herban WG3 Vice leader Corine Davis Soil Water Content Leader Yijian Zeng Harmonization Vice leader Anna Brook of different procedures Geometric Correction WG4 and algorithms and image calibration Leader Matthew Perks in different Vice leader Dariia Strelnikova environments River morphology Contrast Enhancement Stream flow Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
8 Stay Connected with Us Link Link Link Link Link Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
WG1 UAS data processing 9 Examples of Common Image Artifacts a) saturated image; b) vignetting; c) chromatic aberration; d) mosaic blurring in overlap area; e) incorrect colour balancing; f) hotspots on mosaic due to bidirectional reflectance effects; g) relief displacement (tree lean) effects in final image mosaic; h) Image distortion due to DSM errors; i) mosaic gaps caused by incorrect orthorectification or missing images. (Whitehead and Hugenholtz, 2014) Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
WG2 Vegetation Status 10 Comparison between a Satellite, CubeSat and UAS NDVI map Multi-spectral false colour (near infrared, red, green) imagery collected over the RoBo Alsahba date palm farm near Al Kharj, Saudi Arabia. Imagery (from L-R) shows the resolution differences between: (A) UAV mounted Parrot Sequoia sensor at 50 m height (0.05 m); (B) a WorldView-3 image (1.24 m); and (C) Planet CubeSat data (approx. 3 m), collected on the 13th, 29° and 27th March 2018, respectively. Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
WG3 Soil Water Content Monitoring 11 a) Soil moisture downscaling workflow based on random forest regression (RF); b) The importance of land surface features for the RF model; c) RF-based soil moisture products at 15cm; d) Comparison of the downscaled soil moisture with in-situ measurements. (Su et al., Water 2020) Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
WG4 River Monitoring 12 Image Velocimetry 2-D flow velocity field derived using an optical camera mounted on a quadcopter hovering over a portion of the Bradano river system in southern Italy. One of the images used for the analysis is shown as a background, where surface features used by flow tracking algorithms are highlighted in the insets (a, b). (Manfreda and McCabe, Hydrolink 2019) Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
13 Stream Flow Monitoring – Data Collection for Benchmarking Optical Techniques Image velocimetry data available for 13 case studies Article: (Perks et al., ESSD 2019) Data: (Perks et al., ESSD 2019) Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
WG4 River Monitoring 14 Comparison among the most recent Image Velocimetry Techniques (Pearce et al., Remote Sensing 2020) Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
WG4 River Monitoring 15 UAS data Collection: How to improve DSM accuracy 10 0 10 1 Fig. 1: Comparison of results obtained changing (A) (B) (A) (B) (C) Single Flight Single Flight the number of GCPs and adopting a single flight Combined Flights Combined Flights 10 -1 10 0 RMSEX,Y (m) RMSEZ (m) 10 -2 RMSE X,Y= 0.2cm RMSE Z= 10cm or a two flights dataset on the plane (A) and z- (D) (E) (F) 10 -3 10 -1 axes (B). RMSE Z= 3.5cm 10 -4 10 -2 3 4 5 6 7 8 9 3 4 5 6 7 8 9 N. GCPs N. GCPs Fig. 1 Fig. 2: RMSE of the 3D model as a function of the mean distance between GCPs obtained for the Relative change of RMSEX,Y (%) 500 300 Relative change of RMSEZ (%) (B) flight N.2 (A, B) and for the combination of (A) 3 GCP 3 GCP 400 4 GCP 4 GCP 5 GCP 200 5 GCP Fligth Fligth plan Level Camera Avg GSD Images 300 6 GCP 6 GCP flights N.1 and N.4 (C, D). 7 GCP 7 GCP Above the Tilt (cm/px ) 8 GCP 100 8 GCP 200 9 GCP 9 GCP Ground (degree) R2=0.15 (m) 100 0 N.1 60 0° 1.9 276 0 -100 R2=0.08 -100 N.2 60 0° 1.9 268 -200 -200 0 50 100 150 0 5 10 15 Mean Planar Distance (m) Mean Vertical Distance (m) N.3 60 70° - 271 Relative change of RMSEX,Y (%) 600 500 Relative change of RMSEZ (%) (C) 3 GCP (D) 3 GCP 500 4 GCP 400 4 GCP N.4 60 20° 2.0 273 400 5 GCP 5 GCP 6 GCP 300 6 GCP 7 GCP 7 GCP 300 8 GCP 8 GCP 2 9 GCP 200 9 GCP N.5 60 0° 1.9 257 200 R =0.16 100 R2=0.00 3.3 85 100 0 0 UAS-based tiled Model N.6 120 0° -100 -100 -200 -200 0 50 100 150 0 5 10 15 Mean Planar Distance (m) Mean Vertical Distance (m) Fig. 2 (Manfreda et al., Drones 2019) Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
16 Guidelines for UAS-based monitoring Action Deliverables (Tmušić et al., Remote Sensing 2020) Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
The influence of various study conditions on the output quality 17 of a UAS observation • output product • quality parameters • software and hardware • experiment design • environmental conditions • internal (affected) parameters NB: The arrow color indicates the type of relationship: gray - direct dependence, orange - inverse dependence. (Tmušić et al., Remote Sensing 2020) Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
18 Activities involved in UAS-based Mapping (Tmušić et al., Remote Sensing 2020) Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
19 (Dis)advantages of Different Platforms (Tmušić et al., Remote Sensing 2020) Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
20 Preliminary Checklist before Flying (Tmušić et al., Remote Sensing 2020) Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
21 Metadata Associated with each UAS-survey A detailed description of the flight characteristics and preprocessing activities carried out on the published data is extremely useful, not only for scientific reproducibility, but also to guarantee a certain quality, while also advancing and educating the broader field. All potential variables and details about a survey are listed in the UAS survey form reported herein. (Tmušić et al., Remote Sensing 2020) Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
22 Proposed UAS Environmental Mapping Workflow (Tmušić et al., Remote Sensing 2020) Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
23 Final Remarks • UAS-based remote sensing provides new advanced procedures to monitor key variables, including vegetation status, soil moisture content, and stream flow. • The detailed description of such variables will increase our capacity to describe water resource availability and assist agricultural and ecosystem management. • HARMONIOUS COST Action is supporting the definition of standardized protocols for UAS-based applications to improve reliability of such technology. • Aim of the next activities is to specialize these guidelines on specific aspects and build new tools to support the use of UAS for environmental monitoring. Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
24 Publications produced by the COST Action HARMOIOUS Tmušić, G.; Manfreda, S.; Aasen, H.; James, M.R.; Gonçalves, G.; Ben-Dor, E.; Brook, A.; Polinova, M.; Arranz, J.J.; Mészáros, J.; Zhuang, R.; Johansen, K.; Malbeteau, Y.; de Lima, I.P.; Davids, C.; Herban, S.; McCabe, M.F. Current Practices in UAS-based Environmental Monitoring, Remote Sensing, 12, 1001, 2020. [pdf] Pearce, S.;R.; R. Ljubičić; S. Peña-Haro; M. Perks; F. Tauro; A. Pizarro; S.F. Dal Sasso; D. Strelnikova; S. Grimaldi; I. Maddock; G. Paulus; J. Plavšić; D. Prodanović; S. Manfreda, An Evaluation of Image Velocimetry Techniques under Low Flow Conditions and High Seeding Densities Using Unmanned Aerial Systems, Remote Sensing, 12, 232, 2020. [pdf] Perks, M. T., S. Fortunato Dal Sasso, A. Hauet, S. Pearce, S. Peña-Haro, F. Tauro, S. Grimaldi, B. Hortobágyi, M. Jodeau, J. Le Coz, I. Maddock, L. Pénard, and S. Manfreda, Towards harmonization of image velocimetry techniques for river surface velocity observations, Earth System Science Data Discussion, 2019. [pdf] Manfreda, S., S. F. Dal Sasso, A. Pizarro, F. Tauro, Chapter 10: New Insights Offered by UAS for River Monitoring, Applications of Small Unmanned Aircraft Systems: Best Practices and Case Studies, CRC Press, Taylor & Francis Groups, 211, 2019. Manfreda, S., M.F. McCabe. Emerging earth observing platforms offer new insights into hydrological processes, Hydrolink, 1, 8-9, 2019. [pdf] Manfreda, S., P. Dvorak, J. Mullerova, S. Herban, P. Vuono, J.J. Arranz Justel, M. Perks, Assessing the Accuracy of Digital Surface Models Derived from Optical Imagery Acquired with Unmanned Aerial Systems, Drones, 3(1), 15, 2019. [pdf] Manfreda, S., M. F. McCabe, P. E. Miller, R. Lucas, V. Pajuelo Madrigal, G. Mallinis, E. Ben-Dor, D. Helman, L. Estes, G. Ciraolo, J. Müllerová, F. Tauro, M. I. de Lima, J. L. M. P. de Lima, A. Maltese, F. Frances, K. Caylor, M. Kohv, M. Perks, G. Ruiz-Pérez, Z. Su, G. Vico, and B. Toth, On the Use of Unmanned Aerial Systems for Environmental Monitoring, Remote Sensing, 10(4), 641; 2018. [pdf] Prof. Salvatore Manfreda – Università degli Studi di Napoli Federico II
You can also read