Trabajo Fin de Grado/Máster - CEI-UPM

Page created by Tyrone Walsh
 
CONTINUE READING
Trabajo Fin de Grado/Máster - CEI-UPM
Código       F2021_1                 Carga lectiva            12 ECTS                Fecha        Febrero 2021

                                                                Trabajo Fin de Grado/Máster
 DC Transformer based on DC-DC converter

Summary
 The goal of this project is to find a solution for an efficient and light
 energy processing DC-DC converter for future weight-critical transport
 applications. This will be achieved by the means of a novel and optimized
 Air Core Solid State Transformer (SST).
 SST is a component which has been the key enabler of DC power grid
 paradigm, as it integrates energy conversion and galvanic isolation into a
 single device. In conservative designs, the galvanic isolation is obtained
 through a bulky low frequency transformer made of iron and copper and
 this project will develop a novel solution, a novel energy processing
 component, that omits employment of such an element as magnetic core,
 consequently decreasing the weight of transport vehicles (airplanes,
 ships, trains), and its CO2 footprint.
 The student will have to analyze different possible topological solutions,
 research the impact of the latest semiconductor technology (SiC and GaN)
 and perform a theoretical design of the described DC-DC converter.

                                                           Advisor(s): Miroslav Vasić
                                                           Contact email: miroslav.vasic@upm.es

                                          UD Ingeniería Electrónica
                                               Curso 2020/21
Trabajo Fin de Grado/Máster - CEI-UPM
Código       F2021_2                Carga lectiva               12 ECTS             Fecha        Febrero 2021

                                                                          Trabajo Fin de Grado
 Characterization of a SiC Power Module

Summary
 SiC has revolutionized Power Electronics, especially in
 the field of renewable energies, pushing the design
 envelope beyond the unimaginable limits.
 In this Project it is necessary to characterize a SiC module
 in different operating conditions. It will be necessary to
 model the device, design an experimental setup and
 perform experiments in order to clearly identify possible
 applications where this module could be applied.

                                                          Advisor(s): Miroslav Vasić
                                                          Contact email: miroslav.vasic@upm.es

                                         UD Ingeniería Electrónica
                                              Curso 2020/21
Trabajo Fin de Grado/Máster - CEI-UPM
Código       F2021_3                Carga lectiva           12 ECTS                 Fecha        Febrero 2021

                                                                 Trabajo Fin de Grado/Máster
 Fast and efficient Power Converters based on GaN

Summary
 The issue of low consumption for autonomous and mobile
 devices (mobile phones, tablets, communication nodes ...) is
 of the outmost importance. Most of these devices have an
 RF amplifier that means high energy consumption. One of
 the modern techniques to lower its consumption is to feed it
 with a variable voltage depending on the signal it amplifies.
 In this project the student will use the latest semiconductor
 technology based on GaN. These transistors allow us to use
 frequencies in the MHz range implemented ultra efficient
 and ultra compact power supplies.
 The objective is to design a source and verify its operation.

                                                          Advisor(s): Miroslav Vasić
                                                          Contact email: miroslav.vasic@upm.es

                                         UD Ingeniería Electrónica
                                              Curso 2020/21
Trabajo Fin de Grado/Máster - CEI-UPM
Código     F2021_4              Carga lectiva         12 ECTS                 Fecha        Febrero 2021

                                                                Trabajo Fin de Grado
 IEEE International Future Energy Challenge

Summary
 Para la aplicaciones de automoción el rendimiento y
 densidad de potencia de los convertidores de potencia son
 los parámetros más importantes del diseño.
 En este proyecto es necesario diseñar un convertidor
 continua-continua de 1500 W de potencia de salida, con
 rendimiento por encima de 96% y densidad de potencia de
 20kW/dm3.
 Para ello se va a apostar por la tecnología de
 semiconductores basados en GaN y magnéticos integrados.
 El alumno tendrá que realizar un diseño avanzado de los
 componentes magnéticos basados en la PCB optimizando lo
 desde el punto de vista de tamaño y pérdidas.

                                                    Advisor(s): Miroslav Vasić
                                                    Contact email: miroslav.vasic@upm.es

                                    UD Ingeniería Electrónica
                                         Curso 2020/21
Trabajo Fin de Grado/Máster - CEI-UPM
Código      F2021_5               Carga lectiva           12 ECTS                 Fecha        Febrero 2021

                                                            Trabajo Fin de Grado/Máster
 Advanced Modelling of the latest Silicon IGBT

Summary
 Technology revolution in Power Electronics started with SiC
 and GaN that have outperformed well established Si devices.
 Nevertheless, the silicon-based solutions will outperform the
 future SiC and GaN designs for many more years in the terms
 of cost-to-performance-ratio which is the main driver for
 great number of cost sensitive industrial applications.
 This activity is under the umbrella of an international
 consortium lead by Infineon and Fagor, among the others.
 The goal of this project is to model the latest Infineon Si
 IGBTs, verify the models through a set of experiments and
 clearly identify possible applications where this device will
 bring better performance than SiC MOSFET and to prove it
 through different design cases.

                                                        Advisor(s): Miroslav Vasić
                                                        Contact email: miroslav.vasic@upm.es

                                       UD Ingeniería Electrónica
                                            Curso 2020/21
Trabajo Fin de Grado/Máster - CEI-UPM
Código      F2021_6                Carga lectiva           12 ECTS                   Fecha           Febrero 2021

                                                             Trabajo Fin de Grado/Máster
 Analysis and design of DC microgrids for more electric transportation

Summary
 To reduce emissions and decrease fuel consumption, the
 goal for future transportation is to replace most of the major
 systems currently utilizing nonelectric power, such as
 environmental controls and engine start, with new electrical
 systems to improve efficiency, emissions, reliability, and
 maintenance costs. To do that, a DC microgrid is needed to
 distribute the power to the different subsystems .
 The goal of this work is to analyze the stability of DC
 microgrid with DC-DC transformers for transportation
 applications.
 Required skills: Fundamentos de Automática, Electrónica de
 Potencia.

                                                         Advisor(s): Regina Ramos / Miroslav Vasić
                                                         Contact email: regina.ramos@upm.es

                                        UD Ingeniería Electrónica
                                             Curso 2020/21
Trabajo Fin de Grado/Máster - CEI-UPM
Código      F2021_7               Carga lectiva           12 ECTS                   Fecha           Febrero 2021

                                                            Trabajo Fin de Grado/Máster
 Design and validation of DC transformers for electrical vehicles

Summary
 DC transformers are very useful in the emerging
 battery driven DC world. They allows cell balancing
 for solar cells and most any kind of electrochemical
 cells. In electrical vehicles, DC motors, of any
 voltage, can be driven from DC cells of any voltage,
 with only a DC Transformer interface. A DC
 transformer is generated by adding a number of
 overdriven mosfets to an AC Transformer.
 The goal of this work is to obtain a set of rules to
 optimize the volume and efficiency of DC
 transformers.
 Required skills: Fundamentos       de Automática,
 Electrónica de Potencia.

                                                        Advisor(s): Regina Ramos / Miroslav Vasić
                                                        Contact email: regina.ramos@upm.es

                                      UD Ingeniería Electrónica
                                           Curso 2020/21
Trabajo Fin de Grado/Máster - CEI-UPM
Código      F2021_8                  Carga lectiva     12 ECTS                  Fecha         Febrero 2021

                                                         Trabajo Fin de Grado/Máster
 Design of prototype for brain tumor therapy validation

Summary
 Glioblastoma (GBM) is the most frequent and devastating
 primary brain tumor. Recently, a new therapy based on the
 application of electric fields has been approved.
 This project envisages to develop a prototype of an
 implantable device which will be capable of generating the
 electric fields required to stop the reproduction of cancer
 cells.
 This project is in collaboration with the National Cancer
 Research Center (CNIO) and the Neurosurgery Service of
 Hospital de la Princesa.
 Required skills: Power electronics, Motivation
 Software: Pspice, LTspice, Altium

                                                     Advisor(s): Regina Ramos / Miguel Jiménez Carrizosa
                                                     Contact email: regina.ramos@upm.es
                                                                    miguel.jimenezcarrizosa@upm.es

                                        UD Ingeniería Electrónica
                                             Curso 2020/21
Trabajo Fin de Grado/Máster - CEI-UPM
Código       F2021_9                Carga lectiva             12 ECTS                    Fecha         Febrero 2021

                                                                Trabajo Fin de Grado/Máster
 Electromagnetic analysis of an implanted antenna in the brain

Summary
 New treatments in neurosurgery involve the implantation of
 tiny devices, which are capable of treating certain types of
 neurological diseases.
 The report of internal measurements to external equipment is
 a key factor for correct follow-up of the patient's state and
 treatment.
 This project envisages to design, analyze and verify the
 communication module of the implanted device.
 This project is in collaboration with the Neurosurgery Service
 of Hospital de la Princesa.
 Required skills: Basic digital system design, Motivation

                                                            Advisor(s): Jorge Portilla / Miguel Jiménez Carrizosa
                                                            Contact email: jorge.portilla@upm.es
                                                                           miguel.jimenezcarrizosa@upm.es

                                        UD Ingeniería Electrónica
                                             Curso 2020/21
Trabajo Fin de Grado/Máster - CEI-UPM
Código      F2021_10               Carga lectiva          12 ECTS                   Fecha       Febrero 2021

                                                             Trabajo Fin de Grado/Máster
 Design and implementation of a circuit with ARM Cortex-A7 microprocessor and
 Coral TPU for Deep Neural Networks processing
Summary
 Deep learning has gained attraction in the last years
 due to its good performance in image processing.
 There is a tendency to bring resources to the edge,
 close to data source. In this context, it becomes
 more and more important to process data locally,
 which impose huge challenges in architectures and
 algorithms, due to resources limitations.
 In this project the idea is to create a processing
 circuit board for LIDAR point cloud processing using
 neural accelerators, in the context of edge
 computing.

                                                         Advisor(s): Jorge Portilla
                                                         Contact email: jorge.portilla@upm.es

                                       UD Ingeniería Electrónica
                                            Curso 2020/21
Código      F2021_11               Carga lectiva           12 ECTS                   Fecha       Febrero 2021

                                                              Trabajo Fin de Grado/Máster
 Generation of 3D environments with Unity for LG simulator for auto-labeled
 dataset generation with LIDAR
Summary
 Data set availability is crucial in Deep neural
 networks training.
 The use of simulators for LIDARs in realistic
 environment can help in this issue, by generating
 datasets on demand and moreover, and very
 important, allowing automatic labeling.
 In this project, the idea is to be able to generate 3D
 environments on demand for LIDAR simulation and
 generation of datasets on demand for Deep learning
 training.

                                                          Advisor(s): Jorge Portilla
                                                          Contact email: jorge.portilla@upm.es

                                        UD Ingeniería Electrónica
                                             Curso 2020/21
Código      F2021_12               Carga lectiva           12 ECTS                 Fecha        Febrero 2021

                                                              Trabajo Fin de Grado/Máster
 Análisis e implementación de un sistema de detección de acoplamiento virtual
 en trenes, basado en tecnología Ultra-Wideband (UWB)
Summary
 La rápida evolución de las tecnologías de comunicaciones y
 procesamiento embebido dentro del paradigma de Internet de las
 Cosas (en inglés Internet of Things, IoT) están posibilitando la
 promoción de novedosos sistemas que monitorización, control y
 gestión automática en diversos ámbitos de aplicación, como es el
 caso del entorno ferroviario. En tal sentido, uno de los principales
 temas de interés es el denominado Virtual Coupling o acoplamiento
 virtual, que tiene como objetivo incrementar y optimizar de forma
 segura la capacidad y circulación de la infraestructura ferroviaria con
 estrategias de detección automática entre trenes adyacentes.
 Este trabajo tiene como objetivo el estudio e implementación de un
 sistema de medición y detección entre trenes mediante tecnología
 inalámbrica UWB, dentro del marco de un proyecto europeo de
 investigación en el ámbito ferroviario.

                                                         Advisor(s): Gabriel Mujica
                                                         Contact email: gabriel.mujica@upm.es

                                        UD Ingeniería Electrónica
                                             Curso 2020/21
Código       F2021_13                 Carga lectiva            12 ECTS                 Fecha        Febrero 2021

                                                                         Trabajo Fin de Máster
 Optimización de técnicas de comunicación multi-salto en redes sensores
 inalámbricas para Internet de las Cosas
Summary
 El paradigma de Internet de las Cosas (en inglés Internet of Things, IoT)
 engloba la integración de diversas tecnologías hardware, software y de
 comunicación inalámbricas para posibilitar la interacción entre
 dispositivos heterogéneos distribuidos en diversos ámbitos de aplicación,
 como las Smart Cities, sistemas inteligentes de transporte e Industria 4.0.
 Uno de los aspectos fundamentales del funcionamiento de estas redes
 inalámbricas y en particular del despliegue de nodos sensores en dichos
 entornos reales de aplicación es la implementación de estrategias de
 encaminamiento multi-salto y adaptación de topologías de red dinámica,
 para así conseguir una comunicación e intercambio de datos de forma
 remota y fiable entre los extremos de la red.
 En este trabajo se propone el análisis y optimización de algoritmos de
 encaminamiento dinámicos basados en tecnología hardware/software de            Cookie Node
 IoT, para así posibilitar el despliegue y adaptación automática de redes
 de sensores inalámbricas en entornos de aplicación cambiantes.

                                                             Advisor(s): Gabriel Mujica
                                                             Contact email: gabriel.mujica@upm.es

                                           UD Ingeniería Electrónica
                                                Curso 2020/21
Código      F2021_14                 Carga lectiva           12 ECTS                 Fecha        Febrero 2021

                                                                Trabajo Fin de Grado/Máster
 Implementación de estrategias de Computation Offloading en redes de sensores
 inalámbricas de bajo consumo para Internet de las Cosas
Summary
 El paradigma de Internet de las Cosas (en inglés Internet of Things, IoT)
 engloba la integración de diversas tecnologías hardware, software y de
 comunicación inalámbricas para posibilitar la interacción entre dispositivos
 heterogéneos distribuidos en diversos ámbitos de aplicación, como las Smart
 Cities, sistemas inteligentes de transporte e Industria 4.0. Las redes de
 sensores inalámbricas se caracterizan por una limitada capacidad en
 términos de ancho de banda, consumo energético y recursos de
 procesamiento, con el fin de posibilitar un tiempo de vida mucho mas
 prolongado y totalmente desatendido de la red.
 En tal sentido, en este trabajo se propone el análisis y optimización de
 algoritmos de Computation Offloading sobre tecnología hardware/software
 de IoT para obtener un balance entre modos automáticos de operación con
 consumo reducido de los nodos sensores, optimización de la trasmisión y
 procesamiento de datos entre los dispositivos participantes de la red, y la
 carga computacional tanto individual como colaborativa entre los mismos.

                                                           Advisor(s): Gabriel Mujica
                                                           Contact email: gabriel.mujica@upm.es

                                         UD Ingeniería Electrónica
                                              Curso 2020/21
Código      F2021_15               Carga lectiva          12 ECTS                  Fecha          Febrero 2021

                                                                    Trabajo Fin de Máster
 Deep Neuroevolution in Reconfigurable Hardware

Summary
 This project aims at developing a neuro-evolvable
 hardware architecture capable of lifelong learning in
 dynamic environments. The hardware architecture
 will be based on a modular implementation of
 SqueezeNet, which is a highly efficient Convolutional
 Neural Network topology, specially designed for
 embedded domains. Together with the network, an
 evolutionary algorithm will be also implemented as
 the optimization algorithm in charge of training of
 the network, as an alternative to traditional
 backpropagation methods.

                                                         Advisor(s): Andrés Otero
                                                         Contact email: joseandres.otero@upm.es

                                       UD Ingeniería Electrónica
                                            Curso 2020/21
Código      F2021_16               Carga lectiva          12 ECTS                 Fecha          Febrero 2021

                                                                    Trabajo Fin de Máster
 Hardware-based Neuroevolution with Indirect Encoding

Summary
 This project aims at developing a neuro-evolvable hardware
 architecture for dynamic system’s control.
 The hardware architecture will be a highly regular computing
 substrate implemented on an FPGA, which configuration is indirectly
 encoded. This indirect encoding is evolved by a second evolutionary
 network, which provides the potential configurations. This learning
 strategy increases the potential of the network to discover solutions
 to given problems.
 Required skills: digital system design in RTL using HDLs (VHDL and/or
 Verilog), System-on-Chip Programming.

                                                        Advisor(s): Andrés Otero
                                                        Contact email: joseandres.otero@upm.es

                                       UD Ingeniería Electrónica
                                            Curso 2020/21
Código     F2021_17               Carga lectiva          12 ECTS                 Fecha          Febrero 2021

                                                                   Trabajo Fin de Máster
 Feature Extraction for Physiological Signal Processing using Genetic
 Programming
Summary
 Genetic programming is a type of Evolutionary Algorithm (EA),
 which aims at automatically creating a computer program from a
 description of goals, without being explicitly programmed for it.
 In this project, we will apply Genetic Programming techniques to
 autonomously “discover” new features from a benchmark of
 physiological signals, which can be used in the Machine Learning
 Domain for an effective detection of anomalies. Matlab will be used
 during the first stages of the work, and the best solution will be
 potentially implemented in a FPGA.
 Required skills: digital system design in RTL using HDLs (VHDL
 and/or Verilog), System-on-Chip Programming.

                                                       Advisor(s): Andrés Otero
                                                       Contact email: joseandres.otero@upm.es

                                      UD Ingeniería Electrónica
                                           Curso 2020/21
Código      F2021_18                Carga lectiva           12 ECTS                   Fecha           Febrero 2021

                                                              Trabajo Fin de Grado/Máster
 Design and implementation of a Delineation accelerator for e-Health Machine
 Learning systems
Summary
 e-Health is a new trend whose objective is to improve the
 patient diagnosis incorporating his/her daily life state into the
 analysis. Wearable devices with the power of Machine Learning
 techniques offer the possibility of measuring the physiological
 condition during daily activities, creating a “real-world” scenario
 for e-Health applications.
 The goal of this project is to develop a hardware accelerators for
 extracting bioparameters of a photoplethysmogram to aid e-
 Health Machine Learning systems.
 Required skills: digital system design in RTL using HDLs (VHDL
 and/or Verilog).

                                                          Advisor(s): Andrés Otero / Rodrigo Mariño
                                                          Contact email: joseandres.otero@upm.es

                                        UD Ingeniería Electrónica
                                             Curso 2020/21
Código       F2021_19               Carga lectiva           12 ECTS                  Fecha        Febrero 2021

                                                                      Trabajo Fin de Máster
 Advanced Reconfigurable Multi-Accelerator Systems with Xilinx Dynamic
 Function eXchange
Summary
  This project aims at exploring and evaluating the possibilities of the
  novel design flow for dynamic reconfigurable systems, proposed by
  Xilinx, and known as “Dynamic Function eXchange”. A system with
  multiple reconfigurable accelerators will be implemented using this
  flow, to explore its main benefits and drawbacks. Some criteria such
  as flexibility, productivity and modularity will be evaluated.
  Required skills: digital system design in RTL using HDLs (VHDL and/or
  Verilog), System-on-Chip Programming, Reconfigurable Computing.

 More information about Xilinx Dynamic Function eXchange:
 https://www.xilinx.com/support/documentation-navigation/design-
 hubs/dh0017-vivado-partial-reconfiguration-hub.html

                                                         Advisor(s): Andrés Otero / Alfonso Rodríguez
                                                         Contact email: joseandres.otero@upm.es

                                         UD Ingeniería Electrónica
                                              Curso 2020/21
Código      F2021_20                 Carga lectiva            12 ECTS                    Fecha        Febrero 2021

                                                                         Trabajo Fin de Máster
 Hardware/Software Co-Simulation of SoPCs using QEMU

Summary
 Quick EMUlator (QEMU) is a generic and open-source machine &
 userspace emulator and virtualizer. It can emulate a complete
 machine (i.e., computer architecture) in software without any need
 for hardware virtualization support. Hence, it allows developers to
 run and test ARM or RISC-V application binaries on their workstations
 rather than on the target embedded platforms.
 While QEMU can be used to evaluate the software components of a
 System on Programmable Chip (SoPC), it is still difficult to simulate
 hardware components and, more specifically, the hardware/software
 interactions. This project aims at developing a co-simulation
 environment for hardware-accelerated applications running under
 Linux, connecting HDL and SystemC modules with QEMU.
 Required skills: digital system design using both HDLs (VHDL and/or More information about Xilinx QEMU:
 Verilog) and SystemC, software programming in C, Linux.             https://www.xilinx.com/support/documentation/s
                                                                         w_manuals/xilinx2020_2/ug1169-xilinx-qemu.pdf

                                                           Advisor(s): Alfonso Rodríguez / Andrés Otero
                                                           Contact email: alfonso.rodriguezm@upm.es

                                          UD Ingeniería Electrónica
                                               Curso 2020/21
Código      F2021_21               Carga lectiva          12 ECTS                 Fecha       Febrero 2021

                                                            Trabajo Fin de Grado/Máster
 Automated Test Infrastructure for Reconfigurable Multi-Accelerator Systems

Summary
 ARTICo³ is an open-source run-time reconfigurable processing
 architecture to enable hardware-accelerated high-performance
 embedded computing. It comes with an automated toolchain that takes
 either low-level HDL code (VHDL/Verilog) or high-level C/C++ code (using
 an HLS engine) and generates reconfigurable hardware accelerators.
 Currently, ARTICo³ does not provide any means to validate hardware-
 accelerated functionality before it is implemented on the FPGA (e.g., RTL
 simulation is not supported), nor does it provide any run-time hardware
 debugging mechanism. The goal of this project is to develop an
 automated test infrastructure to address these issues.
 Required skills: digital system design in RTL using HDLs (VHDL and/or
 Verilog), System-on-Chip integration, software programming in C.

                                                        Advisor(s): Alfonso Rodríguez
                                                        Contact email: alfonso.rodriguezm@upm.es

                                       UD Ingeniería Electrónica
                                            Curso 2020/21
You can also read