Trabajo Fin de Grado/Máster - CEI-UPM
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Código F2021_1 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Grado/Máster DC Transformer based on DC-DC converter Summary The goal of this project is to find a solution for an efficient and light energy processing DC-DC converter for future weight-critical transport applications. This will be achieved by the means of a novel and optimized Air Core Solid State Transformer (SST). SST is a component which has been the key enabler of DC power grid paradigm, as it integrates energy conversion and galvanic isolation into a single device. In conservative designs, the galvanic isolation is obtained through a bulky low frequency transformer made of iron and copper and this project will develop a novel solution, a novel energy processing component, that omits employment of such an element as magnetic core, consequently decreasing the weight of transport vehicles (airplanes, ships, trains), and its CO2 footprint. The student will have to analyze different possible topological solutions, research the impact of the latest semiconductor technology (SiC and GaN) and perform a theoretical design of the described DC-DC converter. Advisor(s): Miroslav Vasić Contact email: miroslav.vasic@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_2 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Grado Characterization of a SiC Power Module Summary SiC has revolutionized Power Electronics, especially in the field of renewable energies, pushing the design envelope beyond the unimaginable limits. In this Project it is necessary to characterize a SiC module in different operating conditions. It will be necessary to model the device, design an experimental setup and perform experiments in order to clearly identify possible applications where this module could be applied. Advisor(s): Miroslav Vasić Contact email: miroslav.vasic@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_3 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Grado/Máster Fast and efficient Power Converters based on GaN Summary The issue of low consumption for autonomous and mobile devices (mobile phones, tablets, communication nodes ...) is of the outmost importance. Most of these devices have an RF amplifier that means high energy consumption. One of the modern techniques to lower its consumption is to feed it with a variable voltage depending on the signal it amplifies. In this project the student will use the latest semiconductor technology based on GaN. These transistors allow us to use frequencies in the MHz range implemented ultra efficient and ultra compact power supplies. The objective is to design a source and verify its operation. Advisor(s): Miroslav Vasić Contact email: miroslav.vasic@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_4 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Grado IEEE International Future Energy Challenge Summary Para la aplicaciones de automoción el rendimiento y densidad de potencia de los convertidores de potencia son los parámetros más importantes del diseño. En este proyecto es necesario diseñar un convertidor continua-continua de 1500 W de potencia de salida, con rendimiento por encima de 96% y densidad de potencia de 20kW/dm3. Para ello se va a apostar por la tecnología de semiconductores basados en GaN y magnéticos integrados. El alumno tendrá que realizar un diseño avanzado de los componentes magnéticos basados en la PCB optimizando lo desde el punto de vista de tamaño y pérdidas. Advisor(s): Miroslav Vasić Contact email: miroslav.vasic@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_5 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Grado/Máster Advanced Modelling of the latest Silicon IGBT Summary Technology revolution in Power Electronics started with SiC and GaN that have outperformed well established Si devices. Nevertheless, the silicon-based solutions will outperform the future SiC and GaN designs for many more years in the terms of cost-to-performance-ratio which is the main driver for great number of cost sensitive industrial applications. This activity is under the umbrella of an international consortium lead by Infineon and Fagor, among the others. The goal of this project is to model the latest Infineon Si IGBTs, verify the models through a set of experiments and clearly identify possible applications where this device will bring better performance than SiC MOSFET and to prove it through different design cases. Advisor(s): Miroslav Vasić Contact email: miroslav.vasic@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_6 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Grado/Máster Analysis and design of DC microgrids for more electric transportation Summary To reduce emissions and decrease fuel consumption, the goal for future transportation is to replace most of the major systems currently utilizing nonelectric power, such as environmental controls and engine start, with new electrical systems to improve efficiency, emissions, reliability, and maintenance costs. To do that, a DC microgrid is needed to distribute the power to the different subsystems . The goal of this work is to analyze the stability of DC microgrid with DC-DC transformers for transportation applications. Required skills: Fundamentos de Automática, Electrónica de Potencia. Advisor(s): Regina Ramos / Miroslav Vasić Contact email: regina.ramos@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_7 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Grado/Máster Design and validation of DC transformers for electrical vehicles Summary DC transformers are very useful in the emerging battery driven DC world. They allows cell balancing for solar cells and most any kind of electrochemical cells. In electrical vehicles, DC motors, of any voltage, can be driven from DC cells of any voltage, with only a DC Transformer interface. A DC transformer is generated by adding a number of overdriven mosfets to an AC Transformer. The goal of this work is to obtain a set of rules to optimize the volume and efficiency of DC transformers. Required skills: Fundamentos de Automática, Electrónica de Potencia. Advisor(s): Regina Ramos / Miroslav Vasić Contact email: regina.ramos@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_8 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Grado/Máster Design of prototype for brain tumor therapy validation Summary Glioblastoma (GBM) is the most frequent and devastating primary brain tumor. Recently, a new therapy based on the application of electric fields has been approved. This project envisages to develop a prototype of an implantable device which will be capable of generating the electric fields required to stop the reproduction of cancer cells. This project is in collaboration with the National Cancer Research Center (CNIO) and the Neurosurgery Service of Hospital de la Princesa. Required skills: Power electronics, Motivation Software: Pspice, LTspice, Altium Advisor(s): Regina Ramos / Miguel Jiménez Carrizosa Contact email: regina.ramos@upm.es miguel.jimenezcarrizosa@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_9 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Grado/Máster Electromagnetic analysis of an implanted antenna in the brain Summary New treatments in neurosurgery involve the implantation of tiny devices, which are capable of treating certain types of neurological diseases. The report of internal measurements to external equipment is a key factor for correct follow-up of the patient's state and treatment. This project envisages to design, analyze and verify the communication module of the implanted device. This project is in collaboration with the Neurosurgery Service of Hospital de la Princesa. Required skills: Basic digital system design, Motivation Advisor(s): Jorge Portilla / Miguel Jiménez Carrizosa Contact email: jorge.portilla@upm.es miguel.jimenezcarrizosa@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_10 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Grado/Máster Design and implementation of a circuit with ARM Cortex-A7 microprocessor and Coral TPU for Deep Neural Networks processing Summary Deep learning has gained attraction in the last years due to its good performance in image processing. There is a tendency to bring resources to the edge, close to data source. In this context, it becomes more and more important to process data locally, which impose huge challenges in architectures and algorithms, due to resources limitations. In this project the idea is to create a processing circuit board for LIDAR point cloud processing using neural accelerators, in the context of edge computing. Advisor(s): Jorge Portilla Contact email: jorge.portilla@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_11 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Grado/Máster Generation of 3D environments with Unity for LG simulator for auto-labeled dataset generation with LIDAR Summary Data set availability is crucial in Deep neural networks training. The use of simulators for LIDARs in realistic environment can help in this issue, by generating datasets on demand and moreover, and very important, allowing automatic labeling. In this project, the idea is to be able to generate 3D environments on demand for LIDAR simulation and generation of datasets on demand for Deep learning training. Advisor(s): Jorge Portilla Contact email: jorge.portilla@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_12 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Grado/Máster Análisis e implementación de un sistema de detección de acoplamiento virtual en trenes, basado en tecnología Ultra-Wideband (UWB) Summary La rápida evolución de las tecnologías de comunicaciones y procesamiento embebido dentro del paradigma de Internet de las Cosas (en inglés Internet of Things, IoT) están posibilitando la promoción de novedosos sistemas que monitorización, control y gestión automática en diversos ámbitos de aplicación, como es el caso del entorno ferroviario. En tal sentido, uno de los principales temas de interés es el denominado Virtual Coupling o acoplamiento virtual, que tiene como objetivo incrementar y optimizar de forma segura la capacidad y circulación de la infraestructura ferroviaria con estrategias de detección automática entre trenes adyacentes. Este trabajo tiene como objetivo el estudio e implementación de un sistema de medición y detección entre trenes mediante tecnología inalámbrica UWB, dentro del marco de un proyecto europeo de investigación en el ámbito ferroviario. Advisor(s): Gabriel Mujica Contact email: gabriel.mujica@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_13 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Máster Optimización de técnicas de comunicación multi-salto en redes sensores inalámbricas para Internet de las Cosas Summary El paradigma de Internet de las Cosas (en inglés Internet of Things, IoT) engloba la integración de diversas tecnologías hardware, software y de comunicación inalámbricas para posibilitar la interacción entre dispositivos heterogéneos distribuidos en diversos ámbitos de aplicación, como las Smart Cities, sistemas inteligentes de transporte e Industria 4.0. Uno de los aspectos fundamentales del funcionamiento de estas redes inalámbricas y en particular del despliegue de nodos sensores en dichos entornos reales de aplicación es la implementación de estrategias de encaminamiento multi-salto y adaptación de topologías de red dinámica, para así conseguir una comunicación e intercambio de datos de forma remota y fiable entre los extremos de la red. En este trabajo se propone el análisis y optimización de algoritmos de encaminamiento dinámicos basados en tecnología hardware/software de Cookie Node IoT, para así posibilitar el despliegue y adaptación automática de redes de sensores inalámbricas en entornos de aplicación cambiantes. Advisor(s): Gabriel Mujica Contact email: gabriel.mujica@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_14 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Grado/Máster Implementación de estrategias de Computation Offloading en redes de sensores inalámbricas de bajo consumo para Internet de las Cosas Summary El paradigma de Internet de las Cosas (en inglés Internet of Things, IoT) engloba la integración de diversas tecnologías hardware, software y de comunicación inalámbricas para posibilitar la interacción entre dispositivos heterogéneos distribuidos en diversos ámbitos de aplicación, como las Smart Cities, sistemas inteligentes de transporte e Industria 4.0. Las redes de sensores inalámbricas se caracterizan por una limitada capacidad en términos de ancho de banda, consumo energético y recursos de procesamiento, con el fin de posibilitar un tiempo de vida mucho mas prolongado y totalmente desatendido de la red. En tal sentido, en este trabajo se propone el análisis y optimización de algoritmos de Computation Offloading sobre tecnología hardware/software de IoT para obtener un balance entre modos automáticos de operación con consumo reducido de los nodos sensores, optimización de la trasmisión y procesamiento de datos entre los dispositivos participantes de la red, y la carga computacional tanto individual como colaborativa entre los mismos. Advisor(s): Gabriel Mujica Contact email: gabriel.mujica@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_15 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Máster Deep Neuroevolution in Reconfigurable Hardware Summary This project aims at developing a neuro-evolvable hardware architecture capable of lifelong learning in dynamic environments. The hardware architecture will be based on a modular implementation of SqueezeNet, which is a highly efficient Convolutional Neural Network topology, specially designed for embedded domains. Together with the network, an evolutionary algorithm will be also implemented as the optimization algorithm in charge of training of the network, as an alternative to traditional backpropagation methods. Advisor(s): Andrés Otero Contact email: joseandres.otero@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_16 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Máster Hardware-based Neuroevolution with Indirect Encoding Summary This project aims at developing a neuro-evolvable hardware architecture for dynamic system’s control. The hardware architecture will be a highly regular computing substrate implemented on an FPGA, which configuration is indirectly encoded. This indirect encoding is evolved by a second evolutionary network, which provides the potential configurations. This learning strategy increases the potential of the network to discover solutions to given problems. Required skills: digital system design in RTL using HDLs (VHDL and/or Verilog), System-on-Chip Programming. Advisor(s): Andrés Otero Contact email: joseandres.otero@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_17 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Máster Feature Extraction for Physiological Signal Processing using Genetic Programming Summary Genetic programming is a type of Evolutionary Algorithm (EA), which aims at automatically creating a computer program from a description of goals, without being explicitly programmed for it. In this project, we will apply Genetic Programming techniques to autonomously “discover” new features from a benchmark of physiological signals, which can be used in the Machine Learning Domain for an effective detection of anomalies. Matlab will be used during the first stages of the work, and the best solution will be potentially implemented in a FPGA. Required skills: digital system design in RTL using HDLs (VHDL and/or Verilog), System-on-Chip Programming. Advisor(s): Andrés Otero Contact email: joseandres.otero@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_18 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Grado/Máster Design and implementation of a Delineation accelerator for e-Health Machine Learning systems Summary e-Health is a new trend whose objective is to improve the patient diagnosis incorporating his/her daily life state into the analysis. Wearable devices with the power of Machine Learning techniques offer the possibility of measuring the physiological condition during daily activities, creating a “real-world” scenario for e-Health applications. The goal of this project is to develop a hardware accelerators for extracting bioparameters of a photoplethysmogram to aid e- Health Machine Learning systems. Required skills: digital system design in RTL using HDLs (VHDL and/or Verilog). Advisor(s): Andrés Otero / Rodrigo Mariño Contact email: joseandres.otero@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_19 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Máster Advanced Reconfigurable Multi-Accelerator Systems with Xilinx Dynamic Function eXchange Summary This project aims at exploring and evaluating the possibilities of the novel design flow for dynamic reconfigurable systems, proposed by Xilinx, and known as “Dynamic Function eXchange”. A system with multiple reconfigurable accelerators will be implemented using this flow, to explore its main benefits and drawbacks. Some criteria such as flexibility, productivity and modularity will be evaluated. Required skills: digital system design in RTL using HDLs (VHDL and/or Verilog), System-on-Chip Programming, Reconfigurable Computing. More information about Xilinx Dynamic Function eXchange: https://www.xilinx.com/support/documentation-navigation/design- hubs/dh0017-vivado-partial-reconfiguration-hub.html Advisor(s): Andrés Otero / Alfonso Rodríguez Contact email: joseandres.otero@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_20 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Máster Hardware/Software Co-Simulation of SoPCs using QEMU Summary Quick EMUlator (QEMU) is a generic and open-source machine & userspace emulator and virtualizer. It can emulate a complete machine (i.e., computer architecture) in software without any need for hardware virtualization support. Hence, it allows developers to run and test ARM or RISC-V application binaries on their workstations rather than on the target embedded platforms. While QEMU can be used to evaluate the software components of a System on Programmable Chip (SoPC), it is still difficult to simulate hardware components and, more specifically, the hardware/software interactions. This project aims at developing a co-simulation environment for hardware-accelerated applications running under Linux, connecting HDL and SystemC modules with QEMU. Required skills: digital system design using both HDLs (VHDL and/or More information about Xilinx QEMU: Verilog) and SystemC, software programming in C, Linux. https://www.xilinx.com/support/documentation/s w_manuals/xilinx2020_2/ug1169-xilinx-qemu.pdf Advisor(s): Alfonso Rodríguez / Andrés Otero Contact email: alfonso.rodriguezm@upm.es UD Ingeniería Electrónica Curso 2020/21
Código F2021_21 Carga lectiva 12 ECTS Fecha Febrero 2021 Trabajo Fin de Grado/Máster Automated Test Infrastructure for Reconfigurable Multi-Accelerator Systems Summary ARTICo³ is an open-source run-time reconfigurable processing architecture to enable hardware-accelerated high-performance embedded computing. It comes with an automated toolchain that takes either low-level HDL code (VHDL/Verilog) or high-level C/C++ code (using an HLS engine) and generates reconfigurable hardware accelerators. Currently, ARTICo³ does not provide any means to validate hardware- accelerated functionality before it is implemented on the FPGA (e.g., RTL simulation is not supported), nor does it provide any run-time hardware debugging mechanism. The goal of this project is to develop an automated test infrastructure to address these issues. Required skills: digital system design in RTL using HDLs (VHDL and/or Verilog), System-on-Chip integration, software programming in C. Advisor(s): Alfonso Rodríguez Contact email: alfonso.rodriguezm@upm.es UD Ingeniería Electrónica Curso 2020/21
You can also read