The of the respond to intense
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
MVSem--Masterseminar 2021-04-20 The of the : Atoms&molecules respond to intense laser flashes Thomas Pfeifer MPIK Heidelberg
Fundamental Quantum Dynamics Interference of quantum states Feynman: "... the only mystery [at the heart of quantum mechanics]." Potential position position Phase Phase
quantum dynamics a fundamental scientific question: “how do excited electrons move and interact in atoms and molecules?” spatial scale The R ~ sub/few Å “quantum few-body e- e- temporal scale problem” T ~ sub/few fs in strong fields Science goal: measure / understand / control the quantum dynamics of small systems Laser control of (x-ray) movies of single molecules in strong fields chemical reactions Petahertz-clocked x-ray precision computing spectroscopy
Electron Facts • lightest charged elementary particle e- • 'chemical glue', holding molecules together -> making and breaking of bonds in chemical reactions • carriers of electric current -> electricity generation/conversion/transport • carriers of information -> electronics, computing, data storage • mediating interactions of matter with light -> role in photosynthesis, photovoltaics, vision, ... ...typically more than one electron involved...
What is the problem? (with two or more electrons) Correlated e- lectron dynamics e- e- interaction (Coulomb) Correlation symmetry (Fermions) Y( e- 1, e- 2) ≠ Ψ(e- 1) ×Ψ ( e- 2) 'interacting' 'non-interacting' 1 location e- 2 |Y( e- 1, e- 2)|2 problem for: 0 - Hartree–Fock methods - DFT (exchange-correlation potential not known) location e- 1
Why is it important? Time-dependent correlated e-lectron dynamics e- e- interaction (Coulomb) Correlation symmetry (Fermions) Y( e- 1, e- 2) ≠ Ψ(e- 1) ×Ψ ( e- 2) 'interacting' 'non-interacting' any bonding orbital in matter Giant Magnetoresistance High Tc superconductivity typically occupied location e- 2 by 2 electrons e- e- fundamental role in chemical reactions excitation transfer, e- transport energy conversion, radiation damage importance in location e- 1 many branches of science
the language electrons speak ... ... and why is it so fast? Energy |ep ȁΨ2 ۧ |2p ȁΨ1 ۧ position x |1s
Wavepacket dynamics and observation Energy Quantum beat period: ℏ ȁΨ2 ۧ ∆ = ≈ 4.1 fs / ∆ [eV] ∆ − − ȁΨ1 ۧ 1 2 Ψ ~Ψ1 ℏ + Ψ2 ℏ position x e.g. time-dependent position/dipole: = Ψ( ) ො Ψ( ) − − − − 1 = Ψ1 ℏ 1 + Ψ2 ℏ 2 ො Ψ1 ℏ 1 + Ψ2 ℏ 2 2 ( 1 − 2 ) = Ψ1 ො Ψ2 ) cos ℏ + 0 ( )
the language electrons talk ... ... and why is it so fast? Quantum beat period: ℏ ∆ = ≈ 4.1 fs / ∆ [eV] ∆ |ep Oscillation period: |2p Hydrogen: Hydrogen: T = 0.4 fs (10-18 s) hn=10.2 eV and the way Iron (H-like): Iron (Z=26, H-like): T = 0.6 as (10-18 s) hn= 6.9 keV we "listen"...: Uranium (H-like): Uranium (Z=92, H-like): T = 48.0 zs (10-21 s) hn=86.3 keV |1s Spectroscopy
The light sources: Provided by two parallel revolutions in ultrashort x-ray/XUV laser science F E ree lectron L asers and H H igh armonic G eneration SACLA specifications @Japan demonstrated thus far: ~1 Å lowest wavelength ~1 nm FLASH @Germany ~5 mJ largest pulse energy ~1 J ~0.5 fs shortest pulse duration ~50 as LCLS partially fully @USA coherent coherent
Quantum dynamics imaging and spectroscopy Our “Eyes” … and “Ears” … time delay small (!) g t quantum system photon spectra g I+ I++ e- e- energy A-B+ g ions photon images Δ momentum electrons momentum momentum atom picture from: http://startswithabang.com/?p=1795
Our Experimental Focus Employing (F Eree lectron )L asers and Bright H H igh armonic G eneration Light to understand &control Atoms, Ions & Molecules "listening" "imaging" Multidim. optical spectroscopy Reaction microscope/COLTRIMS Goal: extract time&energy-resolved complete coincidence detection of photons information detection of electrons/ions atom image from: http://startswithabang.com/?p=1795
Our Experimental Focus (F Eree lectron )L asers and Bright H H igh armonic G eneration Light to understand &control Atoms, Ions & Molecules "listening" "imaging" Multidim. optical spectroscopy Reaction microscope/COLTRIMS Goal: extract time&energy-resolved complete coincidence detection of photons information detection of electrons/ions
Experimental observation of few-body dynamics Multidim. optical spectroscopy Reaction microscope/COLTRIMS Goal: extract time&energy-resolved complete coincidence detection of photons information detection of electrons/ions Energy Energy dynamics of bound states dynamics of continuum states e- e- measure e- e- photons bound-bound bound-free transitions transitions Position Position
Strong-field Recollision Physics in “nonsequential” double ionization N. Camus et al. Phys. Rev. Lett. 108, 073003 high intensity low intensity Ar ?200 asec large recollision energy low recollision energy e- are the electrons field ionized e - at the same time e- e- e- e- e- a or with e- characteristic time delay ?
Experimental observation of few-body dynamics Multidim. optical spectroscopy Reaction microscope/COLTRIMS Goal: extract time&energy-resolved complete coincidence detection of photons information detection of electrons/ions Energy Energy dynamics of bound states dynamics of continuum states e- e- measure e- e- photons bound-bound bound-free transitions transitions Position Position
traditional spectroscopy (Kirchhoff, Bunsen, et al. @Heidelberg 1860) Electrons in atoms already taught us a lot of fundamental physics! g g e.g. Fraunhofer et al. Phase Phase atom image from: http://startswithabang.com/?p=1795 bunsen burner image from: http://www.west-michigan-family.com/holiday-archives-march.html flame image from: http://commons.wikimedia.org/wiki/File:Bunsen_burner_flame_types_.jpg
time-dependent absorption spectroscopy time delay gas-phase t isolated atoms Time-dependent absorption spectrum t near-VIS XUV XUV photon energy femtosecond attosecond pulse pulse Phase Phase
Listening to phases Mozart Mozart Mozart spectral intensity amplitude amplitude amplitude Frequency [Hz] Frequency [Hz] Frequency [Hz] spectral phase by spectral phase spectral phase by W. A. Mozart (1787) by Chance by Metallica (1992) (Eine kleine Nachtmusik) (randomized) (Nothing else matters) Metallica Metallica amplitude amplitude Frequency [Hz] Frequency [Hz]
Properties of different light sources spectral spectral phase phase solar spectrum cw laser spectrum fs pulse laser spectrum Bild-Quellen: http://www.bhakti-love.com/fotos/sonnenlicht.jpg, http://climate.met.psu.edu/www_prod/data/frost/images/rainbow.jpg
time-dependent absorption spectroscopy What's the dynamics of bound states and resonances in short and strong fields? time delay t Time-dependent absorption spectrum t near-VIS XUV XUV photon energy femtosecond attosecond pulse pulse Phase Phase
General: coupling of states coupling of one to coupling of one to coupling of one to a one other state multiple states continuum of states Quite well understood for cases of time-independent (or adiabatic) couplings 1.5 1.5 Energy E Energy E 1.0 What happens when the coupling is ultrashort ? 1.0 0.5 0.5 0.0 0.1 0.2 0.0 0.1 0.2 Coupling Strength Coupling Strength B Rabi oscillation Breit-Rabi U. Fano (1935) Phys. Rev. 124, 1866 (1961) in strong coupling e.g. Paschen-Back regime Nuovo Cim. 12, 154 (1935) 1 Ω12 Ω13 Ω14 Ω( ) 1 Ω12 Ω21 2 Ω23 Ω24 Ω21 2 Ω31 Ω32 3 Ω34 Ω( ) spectral intensity Ω41 Ω42 Ω43 4 photon energy hn photon energy hn photon energy hn
fundamental e-–e- correlation in atoms prototypical target: He atom |cont.,2e- |es,ep excitation |cont.,1e- |2s,ep by XUV/soft-x-ray e- ... |3 |2s3p+|2p3s e- |2 |2p2p |1 |2s2p |1s,ep single-photon discrete states coupled to continuum double excitation by configuration interaction e- e- e- |0 |1s1s |2s2p |1s2 e-
doubly excited helium: Fano resonance ( + )2 σ ~ |cont.,2e- |es,ep 1 + 2 = Ugo Fano Phys. Rev. |cont.,1e- |2s,ep 1 d ( sp2,n + ) 124, 1866 VCI* d (1s, e p) (1961) ... Nuovo |3 |2s3p+|2p3s Cimento 12, 154 |2 |2p2p (1935) |1 |2s2p |1s,ep single-photon coupled double excitation by configuration interaction e- e- e- |0 |1s2 |2s2p |1s2 e-
doubly-excited helium, in a strong laser field ( + )2 σ ~ |cont.,2e- |es,ep 1 + 2 “coupling”- pulse = Ugo Fano Phys. Rev. |cont.,1e- “control”- |2s,ep (VIS) 1 d ( sp2,n + ) 124, 1866 VCI* d (1s, e p) (1961) ... Nuovo |3 |2s3p+|2p3s Cimento 12, 154 |2 |2p2p (1935) |1 |2s2p |1s,ep attosecond coupled single-photon pulse by configuration interaction double excitation e- 60-70 eV e- e- |0 |1s2 |2s2p |1s2 e-
doubly-excited helium, in a strong laser field |cont.,2e- |es,ep Previous work “coupling”- pulse (on laser coupling of |cont.,1e- “control”- (VIS) doubly-excited helium): ... Theory: e.g. Phys. Rev. A 24, 379 (1981) - Madsen, Themelis, Lambropoulos |3 |2s3p+|2p3s - Zhao, Chu, Lin et al. |2 |2p2p ... e.g. Phys. Rev. A 87, 013415 (2013) |1 |2s2p Experiment: Chem. Phys. 350, 7 (2008) |1s,ep - Loh, Greene, Leone, et al. attosecond - Gilbertson, Chang et al. single-photon pulse ... Phys. Rev. Lett. 105, 263003 (2010 double excitation 60 eV Experimental challenge: |0 |1s1s - high (asec) temporal and - high (meV) required at the same time
Experimental setup for XUV absorption spectroscopy Fano resonances q= U. Fano Phys. Rev. of autoionizing states 1 d ( sp2,n+ ) 124, 1866 VCI* d (1s, e p) (1961) Photon energy [eV] 58 60 62 64 66 1.5 XUV Optical density [OD] 2s2p Absorption light Spectrum [OD] 1.0 plane mirror sp2,3+ 0.5 sp2,n+(4,5,6,7) toroidal focusing mirror 0.0 target gas cell: Helium . Variable Line Spacing Experimental key challenge: High resolution (VLS) grating In photon energy ... : DE = 20 meV (@60 eV) flat-field spectrometer
Experimental setup for time-resolved XUV absorption spectroscopy neon cell for high-harmonic Photon energy [eV] generation 58 60 62 64 66 1.5 Optical density [OD] XUV 2s2p Absorption pulse Spectrum [OD] 1.0 VIS split pulse mirror sp2,3+ 0.5 sp2,n+(4,5,6,7) toroidal focusing mirror 0.0 target gas cell: Helium . Variable Line Spacing Experimental key challenge: High resolution (VLS) grating In photon energy ... : DE = 20 meV (@60 eV) flat-field spectrometer ... and time delay : Dt = 10 as
Experimental Setup in the Lab Flat-Field XUV Spectrometer, home built, for broadband high resolution Grazing-Incidence Split Mirror for broadband XUV throughput
Time-resolved doubly-excited 2e- dynamics in He Experimental data XUV first
comparison experiment and theory XUV first quantum-state interference phase ( ) Probing a time-dependent superposition state: Wavepacket
Measuring the time-dependent phase difference of 2s2p and sp23+ autoionization states cooperation with Javier Madroñero (Theory, TU München) 1D cut through atom (along laser polarization) 20 1.0 location electron 2 [a.u.] 10 0.5 0 0.0 -10 -20 -20 -10 0 10 20 Ott et al. Nature 2014 location electron 1 [a.u.]
Testing ab-initio theory of e- correlation dynamics cooperation: Luca Argenti & Fernando Martín (UAM Madrid, Spain) Javier Madroñero (TU Munich) experimentally reconstructed (2s2p & sp2,3+ only): position e- 2 position e- 1 ab-initio simulation, all excited states: position e- 2 position e- 1 first experimental observation Ott et al. of two-electron wavepacket motion Nature 2014
Time-resolved doubly-excited 2e- dynamics in He 5 XUV first 4 Time Delay (fs) 3 2 1 0 58 59 60 61 62 63 64 65 66 Photon Energy (eV) Ott et al. Nature 2014
Time-resolved doubly-excited 2e- dynamics in He 5 4 Time Delay (fs) 3 high temporal and 1.2 fs high spectral 2 resolution 20 meV are 1 required simultaneously 0 58 59 60 61 62 63 64 65 66 Photon Energy (eV) Ott et al. Nature 2014
Hold on, can I ask you a few questions? e- e- What is absorption? And how does it respond to intense pulsed light?
Control the electrons, and measure their response "Ask" "listen" Intensity laser photon energy
Intensity, the control knob Autler-Townes doublet tuning from weak perturbative to strong fields (Rabi cycling of autoionizing states) laser photon energy Ott et al. Nature 2014
Intensity, the control knob Autler-Townes doublet tuning from weak perturbative to strong fields (Rabi cycling of autoionizing states) U. Fano Phys. Rev. q= 124, 1866 (1961) laser photon energy Ott et al. Nature 2014
General: coupling of states coupling of one to coupling of one to coupling of one to a one other state multiple states continuum of states What happens when the coupling is ultrashort ? 1.5 1.5 Energy E Energy E 1.0 1.0 0.5 0.5 0.0 0.1 0.2 0.0 0.1 0.2 Coupling Strength Coupling Strength B Rabi oscillation Breit-Rabi U. Fano (1935) Phys. Rev. 124, 1866 (1961) in strong coupling e.g. Paschen-Back regime Nuovo Cim. 12, 154 (1935) 1 Ω12 Ω13 Ω14 Ω( ) 1 Ω12 Ω21 2 Ω23 Ω24 Ω21 2 Ω31 Ω32 3 Ω34 Ω( ) spectral intensity Ω41 Ω42 Ω43 4 photon energy hn photon energy hn photon energy hn
Resonance absorption in the Time Domain Dipole moment free (induction) polarization decay |1 Fourier transform |0 Delta-like Time excitation Im( ) Lorentzian Absorption [OD] line shape refractive index change: D ( ) ( ) susceptibility a (polarizability) Energy
Resonance absorption in the Time Domain Science 340, 716 (2013) Duration Dipole moment not "kicked" Δ "kicked" Δ |1 1 ∆ = Δ Δ Fourier transform ℏ |0 "kick" Delta-like Time laser + excitation Im( ) Lorentzian Absorption [OD] ...it IS a line shape Fano line shape! refractive index change: = 2 arg( − ) D ( ) ( ) Looks like a susceptibility a (polarizability) Fano line shape … = −cot( ) 2 Energy
The Fano dipole phase Exact mapping from Fano parameter to temporal phase shift cooperation with C. Greene (Purdue), J. Evers and C. Keitel (MPIK) ( + )2 10 σ ~ 2 +1 'Fano to Lorentz' = parameter 5 −1 Im + exp( ) + q . Fano Fano 0 Phase-shifted Lorentzian 'Lorentz to Fano' ...it IS a Fano line shape! -5 Phase-Shifted Fano = 2 arg( − ) turns Lorentz and vice versa -10 = −cot( ) 2.0 1.0 0.0 -1.0 -2.0 2 phase dipolephase dipole C. Ott et al. Science 340, 716 (2013)
Fano to Lorentz, and Lorentz to Fano doubly-excited Helium singly-excited Helium originally Fano lineshape originally Lorentzian + - no laser + - Laser Intensity: 2·1012 W/cm2 Science 340, 716 (2013)
Laser Control of Fano and Lorentzian resonances '2s4p' '2s5p' '2s6p' ... Absorption (DOD) Helium 0.35 doubly excited turning 0.30 (above the original 'Fano' 0.25 continuum into 'Lorentz' 64.4 64.6 64.8 65.0 65.2 65.4 threshold) Photon energy (eV) 1s6p 1s7p 1s8p ... 0.60 Absorption (DOD) Helium 0.40 turning singly excited 0.20 original 'Lorentz' (below the 0.00 -0.20 into 'Fano' continuum -0.40 24.1 24.2 24.3 24.4 24.5 threshold) Photon energy (eV) = −2.55 ⇒ = 0.24 = −cot 2 Science 340, 716 (2013)
Extracting the laser-induced phase shift Cooperation with J. Madronero, L. Argenti, F. Martín I=3 experiment I=2 I=1 I I=0 exp. line shape fit atLine fixed elapsed Shape time, Analysis e.g. t = 15.6 fs φ ~ ΔE Δt theo. line shape fit theo. phase coeff. I=3 ab-initio theory (Argenti/Martin) I=2 I=1 I=0 Control of a two-electron wavepacket C. Ott et al. Nature 2014
Phase control of "real molecules" Can we change the (spectral) shape of complex molecules?
Fano control of molecules in the liquid phase cooperation with J.-M. Mewes, A. Dreuw, T. Buckup, M. Motzkus@Univ. Heidelberg Kristina Meyer et al., PNAS (2015) Laser Dye IR144 in methanol Intensity [arb. units]
Recent measurements in Aluminum-phthalocyanine-chloride Carina da Costa Castanheira et al. (in preparation) (AlPhCl)
Time-domain, impulsive, resonance control Variation of intensity: tuning of coupling strength, phase Science 340, 716 (2013) Atom Duration not "kicked" 2-level system Dipole moment 1 Δ |1 Δ "kicked" = ℏ Δ Δ |0 + - "kick" Delta-like Time laser + excitation Lorentz Absorption [OD] line shape Tuning from absorption to gain! Fano line shape ... in the "impulsive" limit! (much shorter than the lifetime) Energy
Proof-of-Principle: Observation of Resonant Gain in singly-excited helium + - absorption transformed into emission within
The Beauty of a Fundamental Mechanism Atom Duration not "kicked" 2-level system Dipole moment 1 Δ |1 Δ "kicked" = ℏ Δ Δ |0 + - "kick" Delta-like Time [fs] [as] [s] laser + excitation Lorentz Absorption [OD] line shape applies to all time scales and photon energies... Fano line shape Energy [eV][keV][neV]
14.4 keV, Resonant gain for hard x-rays 57Fe Mössbauer phase shift at = 0 FEL or synchrotron pulse 14.412497 keV Spectrometer (m)eV bandw. 5 neV bandw. or experiment 57Fe absorber 12 Spectral Intensity [arb. units] 10 Laser-like 8 narrowband 6 line emission 4 at hard x-rays 2 0 14.4120 14.4122 14.4124 14.4126 14.4128 14.4130 Photon energy [keV]
Resonant Mössbauer "gain" @ Heeg et al. Science (2017) cooperation with groups of J. Evers, R. Röhlsberger, R. Rüffer phase shift at = 0 using a Mössbauer Coherent Control method pioneered by Kocharovskaya group (Vagizov et al. Nature (2014)) Avalanche FEL or synchrotron pulse 14.412497 keV detector (m)eV bandw. 5 neV bandw. array 57Fe absorber on 57Feabsorber Mössbauer drive on piezo drive synched to bunch clock 2 X-ray Transmission Now: Mechanical motion for phase shift 3 X-ray Transmission => nanosecond response 1 Future: Optical control of phonons 2 => femtosecond response 0 0 200 400 600 800 photon energy - 14.412497 keV [neV] 1000 2 X-ray Transmission 1 X-ray pulse ? 1 0 Experiment@ 0 100 200 300 400 500 0 0 200 400 600 800 1000 photon energy - 14.412497 keV [neV] photon energy - 14.412497 keV [neV]
Towards x-ray frequency combs Cooperation with group of C. H. Keitel (MPIK): Cavaletto, Harman et al., Nat. Photonics (2014) Liu, Ott, et al., New. J. Phys. (2014) Atom Duration 2-level system Δ |1 Δ |0 + - "kick" "kick" "kick" Delta-like +...+laser + laser +laser excitation Using a pulse train for periodic phase shifting ... ... creates a frequency comb precisely locked to an atomic transition
Towards x-ray precision metrology of highly-charged ions Crespo group (MPIK) (image modified from: Bernitt et al. Nature 492, 225 (2012)) High-resolution spectroscopy of long-lived transitions in highly-charged ions: - Precision tests of theories in heavy ions (QED, nuclear&relativistic-electronic structure) - linking nuclear/electronic x-ray transitions: variation of coupling "constants"?
time scales in science shortest man-made flash/pulse of light age of the universe ~50 attoseconds 1 second 14 billion years electronic human/biological timescale timescale nuclear/atomic molecular geological/astronomical timescale timescale timescale cameras laser pulses
Ultra s l o w dynamics… The Fine structure constant: fundamental constant ? 1 ≈ + ሶ × 137.035999139(31) Godun et al. PRL 113, 210801 (2014) Huntemann et al. PRL 113, 210802 (2014)
sensitivity to a variation Dzuba, Flambaum, Webb 1 PRL 82, 888 (1999) Δ = ( ) 2 − ( , ) + 1/2 Δ 1 |1 Δ 2 |2 |0 |0 ( 0 − ) 0 ( 0 + )
The highly charged ion (HCI) advantage: Enhanced sensitivity to a variation Dzuba, Flambaum, Webb 1 PRL 82, 888 (1999) Δ = ( ) 2 − ( , ) + 1/2 Hg+ : ~ 52 200 cm-1 = 2 Δ / + . Ir17+: ~ 740 000 cm-1 Δ 1 |1 Δ 2 |2 |0 |0 ( 0 − ) 0 ( 0 + ) At some point, controlled/precision VUV/XUV/xray light may be helpful… Can we generate VUV frequency combs?
Design of enhancement/HHG cavity • Enhancement cavity mounted on high- stiffness titanium frame on optical table • Pump vibrations absorbed through mechanical low-pass filter, factor 10 reduction in amplitude
VUV-Comb-in-a-box (planning: -3 yrs) Container enclosure for Lisa Schmöger et al., Science (2015) Temperature stabilization Noise isolation HCI deceleration/transfer line Mini-EBIT Comb-Laser (in operation) CryPTEx Paul Trap for Ion Crystal + Amplifier (under construction) HHG-comb enhancement cavity on stabilized optical table mechanically decoupled from vacuum system (under construction) 62/12
VUV-Comb-in-a-box
VUV-Comb-in-a-box EBIT Hall Area
Assembling the cavity vacuum chamber
Design of the HHG interaction region
VUV-comb experimental results 25th harmonic observed with high-density jet on fluorescent screen (Janko Nauta, Jan-Hendrik Oelmann, José Crespo et al. )
VUV-comb experimental results
Next-step VUV-Spectroscopy of HCIs • In-vacuo enhancement cavity • In 15 µm focus: 1013 W/cm2 • 100 MHz repetition rate Decceleration VUV EBIT frequency comb RF linear trap Lisa Schmöger et al., Science (2015)
Acknowledgements Quantum Dynamics&Control Division @ MPIK Christian Ott Robert Moshammer Andreas Kaldun José Crespo Claus Dieter SchröterDr. Anne Anne Harth Dr. Claus Divya Dieter Dr. José Bharti Dr. Christian Dr. Robert Alexander Blättermann Dr. LisaAlexander Schmöger Kirsten Schnorr Ott Ding Moshammer Hendrik DornBekker Harth Nicolas Camus Alexander Shobeiry Crespo Schröter Farshad Thomas Hemkumar Srinivas Veit Stooß Sven Bernitt Sven Augustin Blättermann Yonghao Mi Chintan Shah Patrick Froß Martin Laux Janko Nauta Alexander Dorn Peter Micke Ana Denhi Xueguang Ren Marc Rebholz Frans Schotsch Stepan Dobrodey Enliang Wang Max Hartmann Michael Blessenohl Georg Schmid Marvin Weyland Paul Birk Yifan Liu Julian Stark Niels Kurz Lennart Aufleger Jan-Hendrik Oelmann Severin Meister Silva Mezinska Patrick Rupprecht Hannes Lindenblatt Steffen Kühn Deepthy Mootheril Gergana Borisova Alexander Ackermann Florian Trost Carina Da Costa Castaneira Sandra Bogen Patrizia Schoch Stephan Görttler Michael Rosner Alexander Magunia Christian Warnecke Main Cooperators: Thanks to … and many more ! C. Keitel, J. Evers, Z. Harman, S. Cavaletto and groups (MPIK): Fano physics C. Greene (Purdue Univ., USA): Fano physics L. Argenti, F. Martín (Univ. A. Madrid, Spain): 2e- WP, 2D spec J. Madroñero (TUM&Univ. del Valle, Cali, Colombia): 2e- WP Funding: A. Brown, H. Van der Hart (Queens University, Belfast): 2d spec Neon J. M. Mewes, A . Dreuw, T. Buckup, M. Motzkus (U. Heidelberg): Liquid phase Grant #PF790 S. Roling, H. Zacharias (Univ. Münster): FLASH FEL Split and Delay S. Düsterer, R. Treusch, N. Stojanovich, G. Brenner, M. Braune (DESY): FLASH FEL exp. Heidelberg Center for A. Attar (UC Berkeley, USA): FLASH exp. Quantum Dynamics Z.-H. Loh (NTU, Singapore): FLASH exp. X-MuSiC T. Gaumnitz (ETH Zurich, Switzerland): FLASH exp.
Summary - Ultrafast Laser quantum control of small atomic/molecular quantum systems (natural, well-defined "Å-labs") for fundamental-physics experiments - Phase information is key to quantum dynamics and can be retrieved by time-"resolved" experiments - qualitatively new insights into fundamental processes (e.g. Fano ↔ Lorentz, Absorption ↔ Gain) => New ideas… Understand, and modify, general mechanisms of Quantum Dynamics Unifying Ultrafast Control and Precision Physics
You can also read