The Dimensions of the Phosphorus Status of European Beech Forest Ecosystems
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
The Dimensions of the Phosphorus Status of European Beech Forest Ecosystems Friederike Lang, Jaane Krüger, Jürgen Bauhus, Hans-Peter Dietrich, Frank Hagedorn, Cornelia Herschbach, Klaus Kaiser, Jörg Niederberger, Jörg Prietzel, Heike Puhlmann, Ulrike Talkner Uni Freiburg, LWF Freising, WSL Birmensdorf, Uni Halle, TU München, FVA Freiburg, NW-FVA Göttingen The motivation for the joint research project: ECOSYSTEM NUTRITION: Forest Strategies for limited Phosphorus Resources
Contact: Fritzi.lang@soil.uni-freiburg.de How to describe the P status of ecosystems? European Beech central questions: • Properties? • Processes? osp horus Soil Microorganisms • Indicators? Ph s • Interactions? Statu Soils
The study sites Study sites of the joint project present beech forest ecosystems with different parent materials and thus different total P stocks * * * SILICATE • European beech-dominated stands (100 – 140 years) • ICP-Forests, Level II monitoring sites (exception: MAN) • Operated by state forest institutions Mangfall Schänis Tuttlingen Mangfall Tuttlingen MAN S SCH TUT NE MAN N TUT SW * NxP fertilization experiment Total P • P-fertilization: 09/2016 50 kg P ha-1 Stock (1m) CARBONATE [t ha-1] 1685 SPP • Final sampling: 09/2018 2.6 2.4 2.1 1.4 1.3
European Beech – P leaf concentrations and stoichiometry 140 120 value relative to BBR [%] 100 80 60 P stock soil 40 P concentration leaf 20 0 BBR BBR MIT MIT VES VES MANS CON MAN CON SCH TUT SCHA TUTNE LUE LUE MANN TUT MAN TUTSW S NE N SW lower limit leaf P conc. Leaf [mg P g-1] 1.5 1.7 1.6 1.4 1.2 1.1 1.2 1.2 1.3 1.1 1.2 mg g-1 (Göttlein, 2015) Leaf SD 0.21 0.16 0.14 0.14 0.18 0.09 Upper N:P limit: Leaf N:P 16.2 16.0 14.6 20.6 21.6 18.9 18.9 22.4 18.9 (Mellert & Göttlein, 2012)
Contact: Fritzi.lang@soil.uni-freiburg.de Sensitivity of beech compartments to decreasing soil P supply P-concentration of different compartments of adult beeches at the poorest silicate site relative to the concentration at the richest site Strongest decrease of P leaf concentration in sapwood and coarse roots beechnut identified as storage pools of beech (Yang et al. 2016; fine root FF Netzer et al. 2017; Zavisic and Polle, 2018) fine root MS bark youngest tree ring coarse root 0 10 20 30 40 50 60 70 80 90 Soil P stock: 18% of the P-richest site
European Beech – response to P fertilization Adult trees Regeneration 140 years 15 years 1.0 0.8 Concentration 0.6 higher than control 0.4 Response ratio: 0.2 _ 0.0 = ln _ Concentration -0.2 lower -0.4 than control BBR MIT LUE -0.6 Leaves Wood Leaves Twigs Stem
Contact: Fritzi.lang@soil.uni-freiburg.de Soils – P depth distribution at silicate sites LUE: BBR: Hyperdystric folic P concentration [mg/kg] Dystric skeletic cambisol (Arenic. 0 500 1000 1500 2000 2500 3000 3500 cambisol Loamic. Nechic. 20 (Hyperhumic, forest floor Protospodic) Loamic) 0 -20 soil depth [cm] mineral soil -40 -60 BBR -80 MIT VES CON -100 LUE Lang et al. 2017
Depth distribution of P-uptake by European beech roots Contribution of different soil horizons for P uptake by European beech [%] Horizon P-poor P-rich LUE BBR Forest Floor 42 19 A 54 19 B 4 25 C 0,1 39 Calculated based on P mobilisation from the soil phase (DGT approach, unpublished) and distribution of fine root surface area (Löw et al. 2020)
Conclusions for soil P availability indicators 1.9 R² = 0.83 1.8 Leaf concentration mg g-1 1.7 Soil P-stocks (FF down to 1m) provided close 1.6 correlation with longterm 1.5 mean leaf concentration; 1.4 Soil P-stock 0-10 cm 1.3 showed no correlations 1.2 1.1 1 0 100 200 300 400 500 600 700 800 900 Soil stock of citrate extractable P [kg ha-1]
Microorganisms – P stoichiometry 25 1000 Intense P mobilisation from SOM 20 800 …by microorganisms 15 600 Bergkemper et al. 2016 Cmic/Pmic Corg/Porg Pistocchi et al. 2018 ...by beech + EMF Intense P 10 400 Hauenstein et al. 2018 mobilisation from Spohn et al. 2018 soil minerals 5 200 …by microorganisms Pistocchi et al. 2020, 0 0 Rodionov et al. 2020 290 310 330 350 370 390 410 430 450 ...by beech Cleaf/Pleaf Meller et al. 2019 BBR LUE Microbial P storage Microbial P exchange Chen et al. 2019: 33P/14C/15N incubation experiment Data of Carbonate sites from Prietzel et al, in prep.
P-poor beech forests rely on tight re-cycling of P within the forest floor 90 P rich 80 P poor 70 60 Trade-offs: 50 • Low capability to retain inorganic P (fertilization experiment) 40 • High vulnerability to drought 30 (Brödlin et al. 2019) 20 10 0 P residence time in FF [a] (based on netto Cmic stock FF [kg ha-1] Cfine root /Cmic turnover) P residence time in FF [a] Cmic stock FF Cfine root/Cmic (based on net turnover) [kg ha-1]
P-storage by European Beech P storage by ACQUIRING soil Microorganisms Share of „flowing“ P P storage by mineral soils RECYCLING P interchange by soil microorganisms Internal P-recycling by European Beech
Contact: Fritzi.lang@soil.uni-freiburg.de Ecosystem Nutrition conference 2021 New Approaches to Ecosystem Nutrition Phosphorus and Beyond Freiburg Thank you! October 25 - 28, 2021 Submission deadline: 1 July 2021 • FORECOMON organizing team • Members of SPP 1685 • ICP Forests community • State Forest Institutions: Baden-Württemberg, Bayern, Niedersachsen, Thüringen • WSL • Thünen-Institute, Braunschweig • Special thanks to: Andrea Hölscher, Henning Meesenburg, Stefan Raspe • DFG, SNF
Sensitivity of beech compartments to decreasing soil P supply values for different plant compartments at the P-poorest site relative to the P-richest site [%] leaf beechnut fine root FF Increased by factor 50 fine root MS biomass-stock P-concentration bark youngest tree ring coarse root 0 20 40 60 80 100 120 140 Soil P stock: 18% of the P-richest site
180 160 P stock soil value relative to BBR [%] 140 P concentration leaf 120 Pmic/Cmic [%BBR] 100 Microorganisms show 80 stronger response to decreasing soil P than 60 beeches 40 Possible reason: Higher P-resorption from 20 leaves at P-poor sites 0 BBR BBR MIT MIT VES VES MAN CON MAN S CON SCH SCHA TUT TUT NE LUE LUE MAN TUT MAN Resorption efficiency S NE N N TUT SW SW study sites LUE: 60% Microbial C:P 12 7 10 13 50 19 20 31 BBR: 10% Leaf C:P 342 303 305 357 418 425 409 436 391 485 Meller et al. 2019 Microbial C:N 14 10 13 11 5 7 16 6
Dissolved P fluxes from the forest floor into the mineral soil of the P-fertilization experiment (over 26 months) Low capability of the FF at the P-poor site to retain high amounts of inorganic P P-rich site: P-poor site: Efficient mobilisation Efficient and uptake from mobilisation from inorganic sources organic sources …by microorganisms …by microorganisms Bergkemper et al. 2016, Bergkemper et al. 2016 Pistocchi et al. 2020, Pistocchi et al. 2018 Rodionov et al. 2020 Spohn et al. 2018 Siegenthaler, sub. Siegenthaler, sub. ...by beech ...by beech + EMF Meller et al. 2019 Hauenstein et al. 2018 Spohn et al. 2018 * Values for BBR roughly estimated based on Fetzer et al. 2021; values for MIT and LUE measured by resin accumulators
Stoichiometry carbonate sites 60 1000 900 50 800 700 40 600 Cmic/Pmic 30 500 400 20 300 200 10 100 0 0 250 300 350 400 450 Cleaf/Pleaf
Microorganisms – P stoichiometry Decreasing soil P stock BBR MIT VES MAN CON SCH TUT LUE MAN TUT S NE N SW Microbial C:P 12 7 10 13 50 19 20 31 A horizons Leaf C:P 342 303 305 357 418 425 409 436 391 485 Microbial C:N 14 10 13 11 5 7 16 6 A horizons BBR LUE Microbial P storage Microbial P exchange Chen et al. 2019: 33P/14C/15N incubation experiment Data of Carbonate sites from Prietzel et al, in prep.
Feinwurzelgrößenverteilung Auflage/A-Horizont
Feinwurzelgrößenverteilung Unterboden Häufigkeit
You can also read