Semi-analytic resummation in the Sherpa framework Daniel Reichelt May 25, 2021 - CERN ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Semi-analytic resummation in the Sherpa framework Daniel Reichelt May 25, 2021
Analytic NLL in Sherpa [Gerwick, Höche, Marzani, Schumann 2015] implement ingredients needed for NLL soft-gluon resummation using the CAESAR formalism [Banfi, Salam, Zanderighi 2004] in Sherpa framework interface to matrix element generator COMIX → ingredients for colour correlations in multileg born configurations immediate access to phase-space integration technology and fixed-order capabilities completely differential in kinematics and parton flavours, can be exploited in matching schemes May 25, 2021 D Reichelt (Göttingen University) Parton Showers and Resummation 2021 1/9
CAESAR formalism [Banfi, Salam, Zanderighi 2004] general formula for rIRC save observable: Z " # dσδ X B Σδres = dBδ exp − Rl δ S Bδ F Bδ Hδ (Bδ ) dBδ l∈δ hard function H to regularise born phase space B I implements phase space cuts in Sherpa collinear radiators Rl I known in relatively general form soft function S → captures non-trivial colour correlations I using matrix-element generator COMIX within Sherpa multiple emission function F I numerical evaluation of limits with multiple precision arithmetic achieving NLL0 accuracy: ΣNLL0 = 1 + C (1),δ Σδres P δ I simple to extract since full information on flavour channels δ in fixed order calculation May 25, 2021 D Reichelt (Göttingen University) Parton Showers and Resummation 2021 2/9
CAESAR formalism: S and F functions e + e − → jets, Q 2 = 91.2 GeV, Durham scale y45 F ( R′ ) |v̄ 0.9 X Y Z dΦn |Mn |2 b b b b b b b b F = lim lim b b b b b b b b b b b b b 0.8 b b b bc v̄ →0 →0 bc bc bc 0.7 bc n n emissions bc bc bc bc bc bc bc 0.6 bc bc bc bc bc bc qq̄gg qq̄qq̄ bc 0.5 bc bc F ( R′ = 8) × 100 → pre-calculated in separate Monte bc 0.4 bc F ( R′ = 4) × 5 F ( R′ = 1) Carlo 0.3 Lines: log10 (v̄) = −1500 0.2 bc bc bc bc bc 0.1 bc bc bc bc bc bc bc 0 bc bc 100 500 1000 1500 2000 factorisation in soft limit λs → 0 − log10 v̄ 2 Rs − e+ √e → qq̄gg(g) s = 91.2 GeV 1.5 t † t Tr He − 2 Γ ce − 2 Γ 1 S= Tr[cH] 0.5 P Q → Γ = −2 i
CAESAR formalism: NLL0 accuracy pp → Z + jet, jet angularity λ12 pT,jet ∈ [408, 1500] GeV, parton-level pT,jet ∈ [408, 1500] GeV, parton-level (1/σ quark,(0)) dσ quark/d log λ (1/σ gluon,(0)) dσ gluon/d log λ 1.25 full factorisation: 3.0 2.0 1.00 0.75 ΣNLL0 = δ 1 + C (1),δ Σδres 1.0 P 0.50 0.0 0.25 −1.0 LO 0.00 LO −2.0 Gluon channel NLO −0.25 NLO −3.0 Ungroomed exp LO exp LO Quark channel exp NLO −0.50 exp NLO Ungroomed −4.0 can be included via matching scheme exp NLO + C −0.75 exp NLO + C FO − Exp. FO − Exp. 4.0 0.50 3.0 0.25 2.0 1.0 0.00 −0.25 → need flavour information δ to 0.0 10−4 10−3 10−2 0.1 0.4 1 10−4 10−3 10−2 0.1 0.4 1 capture logs ∝ αS2 L2 in NLO λ12 [Thrust] λ12 [Thrust] cumulant from [Caletti, Fedkevych, Marzani, DR, Schumann, Soyez, Theeuwes 2021] use IR safe flavour algorithm [Banfi, Salam, Zanderighi 2006] to extract δ,(1) δ,(1) αS δ,(1) Σfo −Σres 2π C = limv →0 σ δ,(0) May 25, 2021 D Reichelt (Göttingen University) Parton Showers and Resummation 2021 4/9
Beyond CAESAR: soft-drop grooming [Baron, DR, Schumann, Schwanemann, Theeuwes 2020] η (l) popular jet substructure technique, soft-quark grooming (final state) remove radiation with [Lakorski, Marzani, Soyez, Thaler 2014] min(pT ,i ,pT ,j ) β ∆R pT ,i +pT ,j < zcut RSD shown to reduce non-perturbative corrections ln(kt /µQ ) also effective in event shape observables in bl = 1 e + e − → hadrons [Baron, Marzani, Theeuwes 2018] (l) [Marzani, DR, Schumann, Soyez, Theeuwes 2019] p p → hadrons [Baron, DR, Schumann, Schwanemann, Theeuwes 2020] no soft wide-angle radiation → to some extend ignore S and non-global logs β=2 β=0 additional contribution to radiators if soft-drop grooming is applied before observable calculation can be calculated in terms of the same generic parametrisation (+ grooming parameters zcut , β) Vl ∝ (kt,l /µQ )al exp (−bl ηl ) May 25, 2021 D Reichelt (Göttingen University) Parton Showers and Resummation 2021 5/9
Beyond CAESAR: jet observables [Caletti, Fedkevych, Marzani, DR, Schumann, Soyez, Theeuwes 2021] ”vanilla” CAESAR: observables sensitive to radiation everywhere in phase space jets → collinear radiation from single leg + soft radiation into the jet area some (trivial) additions to radiators from jet boundary conditions soft wide-angle S(a) global : coefficients of colour k2 (b) k1 in jet radius R k2 insertions Ti Tj as expansion k1 additional complication: non-global logs a a → new soft contribution b S non-global b I existing MonteHCarlo L approach in large Nc H limit R HL HR [Dasgupta, Salam 2001] non-global contribution, illustration from I currently external calculation, Figure 1: Kinematic configurations of[Dasgupta, interestSalam 2001] parametrised/discretised I suppressed effect in groomed observables It is straightforward to exactly compute the first non-trivial term S2 and this is done May 25, 2021 D Reichelt (Göttingen University) Parton Showers and Resummation 2021 6/9
Application I: multijet observables σ d ln y56 [Baberuxki, Preuss, DR, Schumann 2019] 0.6 σ d ln y56 Durham scale y56 1 dσ Durham scale y56 1 dσ 0.5 NLO+NLL’ √ √ s = 91.2 GeV s = 91.2 GeV LC 0.5 Imp. LC NLO+NLL’ y45 > 0.02 0.4 y45 > 0.02 Sherpa MEPS@NLO 0.4 Sherpa MEPS@LO 0.3 e + e − → jets Vincia √ 0.3 0.2 s = 91.2 GeV 0.2 0.1 0.1 0 0 1.4 1.4 @ NLO + NLL′ 1.3 1.2 Durham scales yn,n+1 , 1.3 1.2 1.1 1.1 Ratio 1 0.9 for yn−1,n > ycut 1 0.9 0.8 0.8 0.7 0.7 0.6 FC LC 0.6 0.5 1.4-10 -9 -7 -5 -4 -3 -10 -9 -8 -7 -6 -5 -4 -3 @ LO + NLL′ 1.3 ln y56 1.2 1.1 1 0.9 0.8 0.7 LC FC 0.6 1.4-10 1.3 -9 -7 -5 -4 -3 results at NLO + NLL0 accuracy for y34 , y45 , y56 @ NLL 1.2 1.1 1 0.9 FC LC 0.8 0.7 0.6 -10 -9 -8 -7 -6 -5 -4 -3 non-trivial colour effects → assess finite NC effects ln y56 May 25, 2021 D Reichelt (Göttingen University) Parton Showers and Resummation 2021 7/9
Application II: jet substructure observables [Caletti, Fedkevych, Marzani, DR, Schumann, Soyez, Theeuwes 2021] pT, jet ∈ [408, 1500] GeV, hadron-level pp → Z + jet, pT bins from 50 GeV to 408 GeV 0.30 Groomed R0 = 0.8 corresponding to parallel CMS analysis Chr. hadrons (λbc/σ) dσ/dλ 0.25 [CMS collaboration 2021] 0.20 0.15 angularities λ1α of leading jet 0.10 (groomed and ungroomed) 0.05 SHERPA MEPS@NLO (µR, µF ) NLO + NLL0 + NP (µR, µF , xL, δNP) non-perturbative corrections as bin-by-bin MC / NLO + NLL0 1.50 ratios from MC (Pythia/Herwig/Sherpa) 1.25 1.00 0.75 validation against mulit-jet merged 0.1 0.2 0.4 0.8 MEPS@NLO sample from Sherpa λ11 [Width] May 25, 2021 D Reichelt (Göttingen University) Parton Showers and Resummation 2021 8/9
Conclusion establish tool for automated NLL resummation exploiting advantages of general event generator environment in Sherpa I easy access to fully differential phase space information I color calculation tools transfer from fixed order several applications executed, more to come missing: more advanced/independent hadronisation model I so far simple ratios from Monte Carlo generators May 25, 2021 D Reichelt (Göttingen University) Parton Showers and Resummation 2021 9/9
Backup May 25, 2021 D Reichelt (Göttingen University) Parton Showers and Resummation 2021 10 / 9
You can also read