Semi-analytic resummation in the Sherpa framework Daniel Reichelt May 25, 2021 - CERN ...

Page created by Ryan Allen
 
CONTINUE READING
Semi-analytic resummation in the Sherpa framework

                 Daniel Reichelt

                  May 25, 2021
Analytic NLL in Sherpa                                                                    [Gerwick, Höche, Marzani, Schumann 2015]

          implement ingredients needed for NLL soft-gluon resummation
          using the CAESAR formalism [Banfi, Salam, Zanderighi 2004] in Sherpa framework

          interface to matrix element generator COMIX → ingredients for colour correlations in
          multileg born configurations

          immediate access to phase-space integration technology and fixed-order capabilities

          completely differential in kinematics and parton flavours, can be exploited in matching
          schemes

May 25, 2021   D Reichelt (Göttingen University)   Parton Showers and Resummation 2021                                               1/9
CAESAR formalism                                                                          [Banfi, Salam, Zanderighi 2004]

          general formula for rIRC save observable:
                                                        Z              "       #
                                                                dσδ       X B
                                          Σδres     =       dBδ     exp −  Rl δ S Bδ F Bδ Hδ (Bδ )
                                                                dBδ
                                                                                   l∈δ

          hard function H to regularise born phase space B
               I   implements phase space cuts in Sherpa
          collinear radiators Rl
               I   known in relatively general form
          soft function S → captures non-trivial colour correlations
               I   using matrix-element generator COMIX within Sherpa
          multiple emission function F
               I   numerical evaluation of limits with multiple precision arithmetic
          achieving NLL0 accuracy: ΣNLL0 =                                    1 + C (1),δ Σδres
                                                                      P                  
                                                                          δ
               I   simple to extract since full information on flavour channels δ in fixed order calculation
May 25, 2021   D Reichelt (Göttingen University)   Parton Showers and Resummation 2021                                     2/9
CAESAR formalism: S and F functions

                                                                                                         e + e − → jets, Q 2 = 91.2 GeV, Durham scale y45

                                                                                    F ( R′ ) |v̄
                                                                                                   0.9
                                       X              Y          Z
                                                                     dΦn |Mn |2
                                                                                                                                                                  b         b                b                 b           b          b
                                                                                                                                               b        b

          F = lim lim
                                                                                                                                                                            b                b                 b           b          b
                                                                                                                                      b                           b
                                                                                                                                  b            b        b
                                                                                                                    b                 b
                                                                                                                                  b

                                                                                                   0.8
                                                                                                                    b

                                                                                                               b
                                                                                                               b
                                                                                                                                                                                                                                          bc

                      v̄ →0 →0
                                                                                                                                                                       bc               bc                            bc

                                                                                                   0.7
                                                                                                                                                             bc

                                            n n emissions 
                                                                                                                                                   bc
                                                                                                                                                        bc

                                                                                                                                          bc

                                                                                                                             bc                                                         bc                                                bc
                                                                                                                                                                                                                      bc

                                                                                                   0.6
                                                                                                                                                                       bc                                 bc
                                                                                                                                                             bc

                                                                                                                        bc                         bc   bc

                                                                                                                                                                                qq̄gg            qq̄qq̄
                                                                                                                                          bc

                                                                                                   0.5
                                                                                                                             bc

                                                                                                                        bc

                                                                                                                                                                                                         F ( R′ = 8) × 100
                     → pre-calculated in separate Monte
                                                                                                               bc

                                                                                                   0.4         bc
                                                                                                                                                                                                         F ( R′ = 4) × 5
                                                                                                                                                                                                         F ( R′ = 1)
                     Carlo                                                                         0.3
                                                                                                                                                                                                 Lines: log10 (v̄) = −1500
                                                                                                   0.2                                    bc                           bc
                                                                                                                                                                                                          bc
                                                                                                                                                                                                                      bc                  bc

                                                                                                   0.1                  bc                                             bc                                                                 bc
                                                                                                                                                                                                          bc          bc

                                                                                                                        bc                bc

                                                                                                    0
                                                                                                          bc
                                                                                                          bc

                                                                                                                    100                                               500                            1000          1500             2000
                factorisation in soft limit λs → 0                                                                                                                                                                             − log10 v̄
           2
     Rs

                       −
                   e+
                    √e → qq̄gg(g)
                      s = 91.2 GeV
          1.5
                                                                                                                       
                                                                                                           t †      t
                                                                                                   Tr He − 2 Γ ce − 2 Γ
           1
                                                                                 S=                                                                     Tr[cH]
          0.5                                                                                                P            Q
                                                                                                   → Γ = −2 i
CAESAR formalism: NLL0 accuracy

                                                                                                                                            pp → Z + jet, jet angularity λ12
                                                                                                                   pT,jet ∈ [408, 1500] GeV, parton-level                                                   pT,jet ∈ [408, 1500] GeV, parton-level

                                                                                                                                                                 (1/σ quark,(0)) dσ quark/d log λ
                                                                        (1/σ gluon,(0)) dσ gluon/d log λ
                                                                                                                                                                                                     1.25
          full factorisation:                                                                               3.0
                                                                                                            2.0                                                                                      1.00
                                                                                                                                                                                                     0.75
          ΣNLL0 = δ 1 + C (1),δ Σδres
                                                                                                            1.0
                    P          
                                                                                                                                                                                                     0.50
                                                                                                            0.0
                                                                                                                                                                                                     0.25
                                                                                                           −1.0
                                                                                                                                                  LO                                                 0.00               LO
                                                                                                           −2.0             Gluon channel         NLO                                               −0.25               NLO

                                                                                                           −3.0             Ungroomed             exp LO                                                                exp LO          Quark channel
                                                                                                                                                  exp NLO
                                                                                                                                                                                                    −0.50               exp NLO         Ungroomed
                                                                                                           −4.0
          can be included via matching scheme                                                                                                     exp NLO + C                                       −0.75               exp NLO + C

                                                                                                       FO − Exp.

                                                                                                                                                                            FO − Exp.
                                                                                                            4.0                                                                                      0.50
                                                                                                            3.0                                                                                      0.25
                                                                                                            2.0
                                                                                                            1.0                                                                                      0.00
                                                                                                                                                                                                    −0.25
          → need flavour information δ to                                                                   0.0
                                                                                                                    10−4      10−3     10−2       0.1    0.4 1                                               10−4      10−3      10−2       0.1   0.4 1

          capture logs ∝ αS2 L2 in NLO                                                                                          λ12 [Thrust]                                                                             λ12 [Thrust]

          cumulant                                                                                                     from   [Caletti, Fedkevych, Marzani, DR, Schumann, Soyez, Theeuwes 2021]

          use IR safe flavour algorithm                   [Banfi, Salam, Zanderighi 2006]                                     to extract
                                                                                                                                                                                                             δ,(1)          δ,(1)
                                                                                                                                 αS δ,(1)                                                                   Σfo      −Σres
                                                                                                                                 2π C                   = limv →0                                                 σ δ,(0)

May 25, 2021   D Reichelt (Göttingen University)   Parton Showers and Resummation 2021                                                                                                                                                                   4/9
Beyond CAESAR: soft-drop grooming                                                         [Baron,          DR,    Schumann,           Schwanemann,

                                                                                          Theeuwes 2020]

                                                                                                                         η (l)
          popular jet substructure technique,
                                                                                                                 soft-quark grooming (final state)
          remove radiation with
                              [Lakorski,
                                   Marzani, Soyez, Thaler 2014]
          min(pT ,i ,pT ,j )                        β
                                            ∆R
           pT ,i +pT ,j        < zcut       RSD
          shown to reduce non-perturbative corrections

                                                                                             ln(kt /µQ )
          also effective in event shape observables in
                                                                                                                             bl = 1
          e + e − → hadrons [Baron,   Marzani, Theeuwes 2018]

                                                                                            (l)
                               [Marzani, DR, Schumann, Soyez, Theeuwes 2019]
          p p → hadrons [Baron, DR, Schumann, Schwanemann, Theeuwes 2020]
          no soft wide-angle radiation
          → to some extend ignore S and non-global logs                                                     β=2            β=0
          additional contribution to radiators if soft-drop
          grooming is applied before observable calculation
          can be calculated in terms of the same generic parametrisation
          (+ grooming parameters zcut , β)          Vl ∝ (kt,l /µQ )al exp (−bl ηl )

May 25, 2021   D Reichelt (Göttingen University)   Parton Showers and Resummation 2021                                                              5/9
Beyond CAESAR: jet observables                                                            [Caletti, Fedkevych, Marzani, DR, Schumann,

                                                                                          Soyez, Theeuwes 2021]

          ”vanilla” CAESAR: observables sensitive to radiation everywhere in phase space

          jets → collinear radiation from single leg + soft radiation into the jet area

          some (trivial) additions to radiators from jet
          boundary conditions
          soft wide-angle S(a)
                             global : coefficients of colour
                                             k2
                                                                                              (b)
                                       k1 in jet radius R                                                                   k2
          insertions Ti Tj as expansion                                                                    k1

          additional complication: non-global logs
                                                                                   a                                                              a
          → new soft contribution
                           b       S non-global                                              b
               I   existing MonteHCarlo
                                  L
                                        approach in large Nc H
                                                             limit
                                                               R                                 HL                                          HR
                   [Dasgupta, Salam 2001]                                                           non-global contribution, illustration from
               I   currently external calculation, Figure 1: Kinematic configurations of[Dasgupta,
                                                                                          interestSalam 2001]
                   parametrised/discretised
               I   suppressed effect in groomed observables
                                    It is straightforward to exactly compute the first non-trivial term S2 and this is done
May 25, 2021   D Reichelt (Göttingen University)   Parton Showers and Resummation 2021                                                               6/9
Application I: multijet observables
  σ d ln y56
                                                                                                             [Baberuxki, Preuss, DR, Schumann 2019]

                                                                                                                                 0.6

                                                                                                                    σ d ln y56
                           Durham scale y56
  1 dσ

                                                                                                                                          Durham scale y56

                                                                                                                    1 dσ
                  0.5                                        NLO+NLL’                                                                                                       √
                           √                                                                                                                                                    s = 91.2 GeV
                             s = 91.2 GeV                    LC                                                                  0.5
                                                             Imp. LC                                                                        NLO+NLL’                        y45 > 0.02
                  0.4      y45 > 0.02
                                                                                                                                            Sherpa MEPS@NLO
                                                                                                                                 0.4
                                                                                                                                            Sherpa MEPS@LO
                  0.3                                                            e + e − → jets                                             Vincia
                                                                                 √                                               0.3

                  0.2                                                               s = 91.2 GeV                                 0.2

                  0.1                                                                                                            0.1

                    0                                                                                                              0
                  1.4                                                                                                            1.4
   @ NLO + NLL′

                  1.3
                  1.2
                                                                                 Durham scales yn,n+1 ,                          1.3
                                                                                                                                 1.2
                  1.1                                                                                                            1.1

                                                                                                                      Ratio
                    1
                  0.9                                                            for yn−1,n > ycut                                 1
                                                                                                                                 0.9
                                                                                                                                 0.8
                  0.8                                                                                                            0.7
                  0.7
                                                                                                                                 0.6
   FC
   LC

                  0.6                                                                                                            0.5
                  1.4-10      -9              -7        -5    -4        -3                                                          -10      -9      -8      -7   -6   -5          -4         -3
   @ LO + NLL′

                  1.3                                                                                                                                                                    ln y56
                  1.2
                  1.1
                    1
                  0.9
                  0.8
                  0.7
   LC
   FC

                  0.6
                  1.4-10
                  1.3
                              -9              -7        -5    -4        -3       results at NLO + NLL0 accuracy for y34 , y45 , y56
    @ NLL

                  1.2
                  1.1
                    1
                  0.9
   FC
   LC

                  0.8
                  0.7
                  0.6
                     -10      -9        -8    -7   -6   -5    -4         -3
                                                                                 non-trivial colour effects → assess finite NC effects
                                                                    ln y56

May 25, 2021                   D Reichelt (Göttingen University)      Parton Showers and Resummation 2021                                                                                         7/9
Application II: jet substructure observables                                                             [Caletti, Fedkevych, Marzani, DR, Schumann,

                                                                                                         Soyez, Theeuwes 2021]

                                                                                                          pT, jet ∈ [408, 1500] GeV, hadron-level
          pp → Z + jet,
          pT bins from 50 GeV to 408 GeV                                                          0.30                                               Groomed
                                                                                                                                                     R0 = 0.8
          corresponding to parallel CMS analysis                                                                                                     Chr. hadrons

                                                                              (λbc/σ) dσ/dλ
                                                                                                  0.25
          [CMS collaboration 2021]
                                                                                                  0.20

                                                                                                  0.15
          angularities λ1α of leading jet
                                                                                                  0.10
          (groomed and ungroomed)
                                                                                                  0.05              SHERPA MEPS@NLO (µR, µF )
                                                                                                                    NLO + NLL0 + NP (µR, µF , xL, δNP)

          non-perturbative corrections as bin-by-bin

                                                                                MC / NLO + NLL0
                                                                                                  1.50
          ratios from MC (Pythia/Herwig/Sherpa)                                                   1.25
                                                                                                  1.00
                                                                                                  0.75
          validation against mulit-jet merged
                                                                                                                                   0.1         0.2       0.4   0.8
          MEPS@NLO sample from Sherpa
                                                                                                                           λ11 [Width]
May 25, 2021   D Reichelt (Göttingen University)   Parton Showers and Resummation 2021                                                                              8/9
Conclusion

          establish tool for automated NLL resummation

          exploiting advantages of general event generator environment in Sherpa
               I   easy access to fully differential phase space information
               I   color calculation tools transfer from fixed order

          several applications executed, more to come

          missing: more advanced/independent hadronisation model
               I   so far simple ratios from Monte Carlo generators

May 25, 2021   D Reichelt (Göttingen University)   Parton Showers and Resummation 2021   9/9
Backup

May 25, 2021   D Reichelt (Göttingen University)   Parton Showers and Resummation 2021   10 / 9
You can also read