SCIENCE ADVISORY GROUP - SCIENCE REQUIREMENTDOCUMENT UPDATE ROLF SCHLICHENMAIER - SCIENCE MEDIA
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Science Advisory Group Science Requirement Document Update Rolf Schlichenmaier “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500”
RPTIAC20012B_100510 EST: EUROPEAN SOLAR TELESCOPE EU PROJECT REF.: 212482 Chair of Science Core Team: SCIENCE REQUIREMENTS DOCUMENT Hector Socas Navarro Project Document Code: RPT-IAC-2001 Configuration Code: (PT code XXXX) Issue: 2.B Date: 10/05/10 Organization Document Code (optional): IP/SR-EST/094v.3 Control Name Org. Function Date Signature Prepared Science Core Team Science Core Team (members: section 1.1 of this document) Revised Héctor Socas-Navarro IAC Leader Scientist Approved Héctor Socas-Navarro IAC WP2000 Leader Manuel Collados IAC Project Coordinator Authorized Manuel Collados IAC Project Coordinator “This projectEST Projectfunding has received Officefrom the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500” 38200 La Laguna (S/C Tenerife) - ESPAÑA - Phone (922)605200 - Fax (922)605210
SAG meetings • Formed November 5th, 2017 (1st telecon meeting) • SAG members approved by EAST and PRE-EST Board in Freiburg, Nov. 23, 2017 • 2nd meeting in Freiburg, Nov 24, 2017 • 3rd telecon meeting, Dec 15, 2017 • 4th telecon meeting, March 26, 2018 SAG meeting in Freiburg, Nov 24, 2017 • 5th meeting in Belfast, April 16 & 17, 2018 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500”
Science Advisory Group slide text SAG in Belfast, April 17, 2018 (15 out of 22 members) “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500”
1. Luis Bellot Rubio (IAA, Spain); (Chair of Section II/1) 2. Luca Belluzzi (IRSOL, Suisse); 3. Mats Carlsson (UiO, Norway); 4. Sanja Danilovic (SU, Sweden); 5. Robertus Erdelyi (HSPF, Hungary); (Chair of Section II/2) 6. Alex Feller (MPS, Germany); (Chair of Section II/8) 7. Lyndsay Fletcher (University of Glasgow, UK); (Chair of Section II/6) 8. Peter Gömöry (AISAS, Slovakia); 9. Jan Jurčák (CAS, Czech Republic); (Chair of Section II/4) 10. Elena Khomenko (IAC, Spain); (Chair of Section II/7) 11. Christoph Kuckein (AIP, Germany); SAG members 12. Jorrit Leenaarts (SU, Sweden); (Chair of Section II/3 & II/9) 13. Arturo López Ariste (CNRS, France); 14. Marı́a Jesús Martı́nez González (IAC, Spain); 15. Mihalis Mathioudakis (QUB, UK); 16. Sarah Matthews (UCL, UK);(Chair of Section II/5) 17. Ada Ortiz (UiO, Norway); 18. Rolf Schlichenmaier (KIS, Germany, chair of SAG) 19. Javier Trujillo Bueno (IAC, Spain); 20. Dominik Utz (IGAM, Austria); 21. Luc Rouppe van der Voort (UiO, Norway); 22. Francesca Zuccarello (University of Catania & INAF, Italy); “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500”
Science Sections of SRD Contents I Executive Summary 3 II Top-level science goals 3 1 Structure and evolution of magnetic flux (2018-06-06) 3 2 Wave coupling throughout solar atmosphere (2018-06-03) 18 3 Chromospheric dynamics, magnetism, and heating (2018-06-07) 35 4 Large scale magnetic structures: sunspots, prominences and filaments (2018-05-24) 47 5 Coronal Science (2018-06-04) 61 6 Solar Flares and Eruptive Events (2018-06-07) 66 7 Coupling in partially ionized solar plasma (2018-05-25) 78 8 Atomic physics and Hanle-Zeeman diagnostics (2018-02-06) 86 9 Nasmyth focus science (2018-02-05) 92 III Requirement Summary 93 References 93 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500” A Optimum spatio-temporal resolution 101
I Executive Summary 5 SRD Science Sections II Top-level science goals 5 1 Structure and evolution of magnetic flux (2018-06-06) 5 1.1 Formation and disappearance of kG flux concentrations in the solar photosphere . . . . . . . . . . . . . . 6 1.2 Internal structure of small-scale flux concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Small-scale flux emergence in the quiet sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Magnetic flux cancellations in the quiet sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Quiet sun internetwork fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 Polar magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.7 Network dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 Wave coupling throughout solar atmosphere (2018-06-03) 20 2.1 Luis MHDBellot Rubio, waves in Dominik localized quiet SunUtz, Sanja .Danilovic, structures . . . . . . . Arturo . . . . .Lopez . . . . Ariste . . . . . . . . . . . . . . . 21 2.2 Magnetic twist and torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Wave propagation in active regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Wave propagation in the quiet Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Chromospheric dynamics, magnetism, and heating (2018-06-07) 37 3.1 Introduction . . has “This project . .received . . . funding . . . from . . the . .European . . . .Union’s . . .Horizon . . .2020 . . research . . . . . . . . . . . . . . . . . . . . . . . . 37 and innovation programme under grant agreement No 739500”
1.2 Internal structure of small-scale flux concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Small-scale flux emergence in the quiet sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 SRDMagnetic 1.4 Science Sections flux cancellations in the quiet sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Quiet sun internetwork fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 Polar magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.7 Network dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 Wave coupling throughout solar atmosphere (2018-06-03) 20 2.1 MHD waves in localized quiet Sun structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Magnetic twist and torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Wave propagation in active regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Wave propagation in the quiet Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Chromospheric dynamics, magnetism, and heating (2018-06-07) 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2Robertus MagneticErdelyi, structure Elena at supergranular Khomenko,scales Mihalis . . . . . Mathioudakis, . . . . . . . . . . .Mats . . . Carlsson . . . . . . . . . . . . . . . 38 3.3 Spicules and jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4 Structure of small-scale chromospheric jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5 Wave propagation, mode conversion and wave damping . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.6 Flux emergence and reconnection events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.7 Observational determination of electric currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 “This project has received funding from the European Union’s Horizon 2020 research 3.8 Temperature structure and innovation of the programme solar under grantchromosphere agreement No 739500”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.1 MHD waves in localized quiet Sun structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Magnetic twist and torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 SRDWave 2.3 Science Sections propagation in active regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Wave propagation in the quiet Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Chromospheric dynamics, magnetism, and heating (2018-06-07) 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Magnetic structure at supergranular scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 Spicules and jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4 Structure of small-scale chromospheric jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5 Wave propagation, mode conversion and wave damping . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.6 Flux emergence and reconnection events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.7 Observational determination of electric currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.8 Temperature structure of the solar chromosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.9 Magnetic field measurements using Ca II H&K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.10 Summary of requested instrument capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4 Large scale magnetic structures: sunspots, prominences and filaments (2018-05-24) 49 Jorrit Leenaarts, Ada Ortiz, Christoph Kuckein, Mats Carlsson, Peter Gömöry 4.1 Stability of the umbra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Umbral dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Structure of cool sunspot umbrae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 “This project has received funding from the European Union’s Horizon 2020 research 4.4 Umbral andflashes asprogramme innovation a probe under of fine structure grant agreementin Nothe umbra chromosphere 739500” . . . . . . . . . . . . . . . . . . . 52
3.7 Observational determination of electric currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.8 Temperature structure of the solar chromosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 SRD 3.9 Science Magnetic Sections field measurements using Ca II H&K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.10 Summary of requested instrument capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4 Large scale magnetic structures: sunspots, prominences and filaments (2018-05-24) 49 4.1 Stability of the umbra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Umbral dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Structure of cool sunspot umbrae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.4 Umbral flashes as a probe of fine structure in the umbra chromosphere . . . . . . . . . . . . . . . . . . . 52 4.5 Penumbral and umbral micro-jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.6 Evolution of an individual penumbral filament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2 4.7 Light bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.8 Formation and decay of sunspot penumbrae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.9 Relation between the moat flows, MMFs, and sunspot decay . . . . . . . . . . . . . . . . . . . . . . . . 59 4.10 Fine structure of prominences and filaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.11 Are quiescent and active region prominences the same phenomenon? . . . . . . . . . . . . . . . . . . . . 61 4.12 Magnetic field and dynamics of tornado prominences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5 Coronal Jan Jurcak,Science Marian (2018-06-04) Martinez Gonzalez, Elena Khomenko, Luc Rouppe van der Voort 63 5.1 Sunspot light-bridges/light walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.2 Light Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 “This project has received funding from the European Union’s Horizon 2020 research 5.3 Originsand of innovation the solarprogramme wind . under. . . grant . . agreement . . . . . No . .739500” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.8 Formation and decay of sunspot penumbrae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.9 Relation between the moat flows, MMFs, and sunspot decay . . . . . . . . . . . . . . . . . . . . . . . . 59 SRD Science Sections 4.10 Fine structure of prominences and filaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.11 Are quiescent and active region prominences the same phenomenon? . . . . . . . . . . . . . . . . . . . . 61 4.12 Magnetic field and dynamics of tornado prominences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5 Coronal Science (2018-06-04) 63 5.1 Sunspot light-bridges/light walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.2 Light Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3 Origins of the solar wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.4 Probing pre-flare triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.5 Macrospicules/spicules and Transition Regions Quakes (TRQs) . . . . . . . . . . . . . . . . . . . . . . . 66 5.6 Ellerman bombs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6 Solar Flares and Eruptive Events (2018-06-07) 68 Sarah 6.1 Matthews, Robertus Erdelyi, Mihalis Mathioudakis Radiation, structure and evolution of the flare lower atmosphere . . . . . . . . . . . . . . . . . . . . . . 68 6.2 Velocity structure of the flaring atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3 Diagnostics for non-thermal particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4 Oscillations and Sunquakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.5 Large-scale structure and evolution of the magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.6 Small-scale structure and evolution of the magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . 78 “This project has received funding from the European Union’s Horizon 2020 research 6.7 Filaments in flaring and innovation activeunder programme regions . . . . No. 739500” grant agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Origins of the solar wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.4 Probing pre-flare triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 SRD 5.5 Science Sections Macrospicules/spicules and Transition Regions Quakes (TRQs) . . . . . . . . . . . . . . . . . . . . . . . 66 5.6 Ellerman bombs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6 Solar Flares and Eruptive Events (2018-06-07) 68 6.1 Radiation, structure and evolution of the flare lower atmosphere . . . . . . . . . . . . . . . . . . . . . . 68 6.2 Velocity structure of the flaring atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3 Diagnostics for non-thermal particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4 Oscillations and Sunquakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.5 Large-scale structure and evolution of the magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.6 Small-scale structure and evolution of the magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.7 Filaments in flaring active regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.8 Coronal Mass Ejections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7 Coupling in partially ionized solar plasma (2018-05-25) 80 Lyndsay Fletcher, 7.1 Dynamics Francesca of partially Zuccarello, ionized prominenceChristoph plasma . . .Kuckein, . . . . . .Sanja . . . . Danilovic . . . . . . . . . . . . . . . . . 81 7.2 Influence of partial ionization on spicules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.3 Detection of partial ionization e↵ects in the photosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.4 Multi-fluid physics of chromospheric waves, shocks and swirls . . . . . . . . . . . . . . . . . . . . . . . 85 7.5 Flares and “This energetic events project has received . . from funding . . the . .European . . . Union’s . . . Horizon . . . .2020 . .research . . . . . . . . . . . . . . . . . . . . . . . . 86 and innovation programme under grant agreement No 739500”
6.4 Oscillations and Sunquakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.5 Large-scale structure and evolution of the magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . 76 SRDSmall-scale 6.6 Science Sections structure and evolution of the magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.7 Filaments in flaring active regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.8 Coronal Mass Ejections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7 Coupling in partially ionized solar plasma (2018-05-25) 80 7.1 Dynamics of partially ionized prominence plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.2 Influence of partial ionization on spicules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.3 Detection of partial ionization e↵ects in the photosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.4 Multi-fluid physics of chromospheric waves, shocks and swirls . . . . . . . . . . . . . . . . . . . . . . . 85 7.5 Flares and energetic events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8 Atomic physics and Hanle-Zeeman diagnostics (2018-02-06) 88 8.1 The Resonance Lines of Ca i and Ca ii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.2Elena The Khomenko, Robertus Ca i 4227 Å Resonance LineErdelyi, . . . . .Mihalis . . . . . Mathioudakis, . . . . . . . . . . .Mats . . . Carlsson . . . . . . . . . . . . . . . 89 8.3 The Ca ii H & K Resonance Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 8.4 Ti i multiplet around 4520 Å . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 8.5 Spatial fluctuations of scattering polarization in Sr i 4607 Å . . . . . . . . . . . . . . . . . . . . . . . . . 92 8.6 The physics and diagnostic potential of the Na i D1 and D2 lines . . . . . . . . . . . . . . . . . . . . . . 93 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500” 3
7.1 Dynamics of partially ionized prominence plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.2 Influence of partial ionization on spicules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 SRD 7.3 Science Sections Detection of partial ionization e↵ects in the photosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.4 Multi-fluid physics of chromospheric waves, shocks and swirls . . . . . . . . . . . . . . . . . . . . . . . 85 7.5 Flares and energetic events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8 Atomic physics and Hanle-Zeeman diagnostics (2018-02-06) 88 8.1 The Resonance Lines of Ca i and Ca ii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.2 The Ca i 4227 Å Resonance Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.3 The Ca ii H & K Resonance Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 8.4 Ti i multiplet around 4520 Å . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 8.5 Spatial fluctuations of scattering polarization in Sr i 4607 Å . . . . . . . . . . . . . . . . . . . . . . . . . 92 8.6 The physics and diagnostic potential of the Na i D1 and D2 lines . . . . . . . . . . . . . . . . . . . . . . 93 3 Alex Feller, Luca Belluzzi, Javier Trujillo Bueno, Rafa Manso Sainz “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500”
SRD Science Sections 9 Nasmyth focus science (2018-02-05) 94 9.1 White-light emission from flares - Continuum diagnostics in vicinity of Balmer jump . . . . . . . . . . . 94 9.2 Coronal forbidden lines in the visible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 9.3 Ca ii H&K spectroscopy and spectropolarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 9.4 Multi-line spectropolarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 III Requirement Summary 95 Sarah Matthews, Jorrit Leenarts, Luis Bellot Rubio, Mihalis Mathioudakis, Alex Feller References 95 A Optimum spatio-temporal resolution 103 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500”
he Nasmyth station inside the telescope pier will simplify the Nasmyth llowing focus foratscience a clear environment in NUV the telescope level. The placement placing the instrument in a thermally controlled environment. Coude Lab: coating optimized for 400 < < 2000 nm Nasmyth focus: less optical surfaces; rotating FOV N1 Nasmyth instrument coatings for < 400 nm N2 Three alternatives N1, N2, & N3: N1 after M4: No AO N2 after M6: TT N3 after M7: AO correction N3 Coudé lab myth station inside the telescope pier. Fixed instrument. “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500”
er, giving an M1 hole inner hole of The telescope 677 mm in elevation axis and elevation is located 1.5 axes are dece m below the p the optical pa n tred with resp rimary mirror th is folded in ect to the opti vertex and the What are the particular strengths of EST? performance, azimuth angle with a telesco an asymmetric pe Mueller m w a y to p ro cal axis of the duce a polari main telescop e azimuth b ecause s, for all wave atrix that is in metrically co lengths. dependent of mpensated the telescope elevation and EUROPEAN SOLAR TELESCOPE: Page: 16 of 206 CONCEPTUAL DESIGN STUDY Date: 09/08/11 Polarimetrically compensated REPORT • Code:RPT-EST-0001 Issue:2.A File: RPTEST00012A.DOC • Rotating transfer optics • Fixed Coudé Lab • 4m on-axis Figure 4.1. Com plete layout of the telescope “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500”
Reflections at two subsequent Mirrors Unfavourable configuration of two subsequent mirrors: inclined inclined Mirror 1 Mirror 2 Maximal attenuation of one direction of linear polarisation: • increase of noise! • loss of sensitivity! Compensated design in EST: inclined inclined Mirror 1 Mirror 2 “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500”
What are the particular strengths of EST? EST: • Muller matrix, MEST, independent on time (=unity) and independent on wavelength • M (M1) = M (M2) = Unity matrix, since axially symmetric! DKIST: • Muller matrix, MDKIST(t), is time and wavelength dependent • M1 and M2 are difficult to calibrate and their Muller matrices are time dependent. Solar Science objective: Measure magnetic fields via spectropolarimetry EST particular strength: Polarimetrically compensated design of EST “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500”
What are the particular strengths of EST? Multi-wavelength, multi-instrument capabilities “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500”
What are the particular strengths of EST? Particular Science Cases that profit from telescope design: Ø Measure magnetic fields in the chromosphere: Ø Suite of unique instruments (3-5 FPs, 2 SPs, IFUs!) Ø High cadence by measuring many lines simultaneously ü Magnetic field of spicules: cadence ~ 5s with IFUs ü high-frequency waves ~1s with several large FOV FPs Ø Multi-fluid physics beyond MHD (partially ionized plasma) Ø Why is EST needed in addition to DKIST: Ø To address science questions, one telescope is not enough. Ø Competition is necessary for development Ø Out-of-phase development cycles “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500”
EST Site: ORM or OT ATST Site Survey Results (r0) EST DKIST Annual hours with the Fried parameter r0 being larger than 12cm versus height above ground for Big Bear (black), Haleakala (red), and La Palma (blue). DKIST will be 28m above ground (green box), and EST will be at 38m (red box). (from ATST site survey working group final report)
What are the particular strengths of EST? At both sites, Seeing dominated by ground layer. Ø Improvement with height DKIST EST Ø dome size of 4m off-axis corresponds to 8m on-axis Ø EST can be built higher above ground “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500”
What are the particular strengths of EST? • Europe has a large young community of solar researchers (Ref: GREST, D7.1). • European expertise is crucial for success of DKIST. To sustain the strong, young, successful, relevant scientific solar community: Ø Europe needs a next generation solar telescope, the EST “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500”
SAG task: update SRD Ø Describe need of EST Ø Particular strengths of EST (and its community) Ø Define top science goals, science case and observing programmes Ø Summarize scientific requirements: Which configurations are needed in terms of: Ø FOV, Ø spatial resolution, spectral resolution, temporal resolution, Ø wavelength coverage, multi-line capabability, light distribution, Ø instrument types: FPs, spectrographs, IFUs: Slicers, Microlenses, others? Ø polarimetric sensitivity and accuracy Time line: Final* document in 2018 (*): Final document to infer final design to start construction. “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739500”
EST Science Meeting 1. The state of the art of the EST project: Manolo Collados (IAC, Spain) The SRD: an overview: Rolf Schlichenmaier (KIS, Germany) 2. Structure and evolution of magnetic flux: Mark Cheung (LMSAL, USA) SRD G1 : Luis Bellot Rubio 3. Wave coupling throughout solar atmosphere: Valery Nakariakov (U. of Warwick, UK) SRD G2: Mats Carlsson 4. Chromospheric dynamics and heating: Viggo Hansteen (University of Oslo, Norway) SRD G3: Ada Ortiz Carbonell 5. Large scale magn. structures: sunspots, prominences and filaments: Nazaret Bello Gonzales (KIS, Germany) SRD G4: Marian Martinez Gonzalez 6. The solar corona: Daniele Spadaro (INAF, Catania, Italy) SRD G5: Robertus Erdelyi 7. Solar flares and eruptive events: Manolis Georgoulis (AoA, Greece) SAG G6: Lyndsay Fletcher 8. Atomic physics and Hanle diagnostics: Roberto Casini“This(HAO, USA) project has received funding from the European Union’s Horizon 2020 research SRD G7: Lucaand Belluzzi innovation programme under grant agreement No 739500”
You can also read