SCIENCE ADVISORY GROUP - SCIENCE REQUIREMENTDOCUMENT UPDATE ROLF SCHLICHENMAIER - SCIENCE MEDIA

Page created by Lillian Glover
 
CONTINUE READING
SCIENCE ADVISORY GROUP - SCIENCE REQUIREMENTDOCUMENT UPDATE ROLF SCHLICHENMAIER - SCIENCE MEDIA
Science Advisory Group
Science Requirement Document Update

 Rolf Schlichenmaier
 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
SCIENCE ADVISORY GROUP - SCIENCE REQUIREMENTDOCUMENT UPDATE ROLF SCHLICHENMAIER - SCIENCE MEDIA
RPTIAC20012B_100510

 EST: EUROPEAN SOLAR TELESCOPE

 EU PROJECT REF.: 212482
 Chair of Science Core Team:
 SCIENCE REQUIREMENTS DOCUMENT
 Hector Socas Navarro

Project Document Code: RPT-IAC-2001
Configuration Code: (PT code XXXX)
Issue: 2.B
Date: 10/05/10

Organization Document Code (optional): IP/SR-EST/094v.3

 Control Name Org. Function Date Signature
Prepared Science Core Team Science Core Team
 (members: section 1.1 of
 this document)
Revised Héctor Socas-Navarro IAC Leader Scientist

Approved Héctor Socas-Navarro IAC WP2000 Leader
 Manuel Collados IAC Project Coordinator
Authorized Manuel Collados IAC Project Coordinator

 “This projectEST Projectfunding
 has received Officefrom the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
 38200 La Laguna (S/C Tenerife) - ESPAÑA - Phone (922)605200 - Fax (922)605210
SCIENCE ADVISORY GROUP - SCIENCE REQUIREMENTDOCUMENT UPDATE ROLF SCHLICHENMAIER - SCIENCE MEDIA
SAG meetings

• Formed November 5th, 2017 (1st telecon meeting)

• SAG members approved by EAST and PRE-EST Board in Freiburg, Nov. 23, 2017

• 2nd meeting in Freiburg, Nov 24, 2017

• 3rd telecon meeting, Dec 15, 2017

• 4th telecon meeting, March 26, 2018
 SAG meeting in Freiburg, Nov 24, 2017
• 5th meeting in Belfast, April 16 & 17, 2018

 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
SCIENCE ADVISORY GROUP - SCIENCE REQUIREMENTDOCUMENT UPDATE ROLF SCHLICHENMAIER - SCIENCE MEDIA
Science Advisory Group

slide text

SAG in Belfast, April 17, 2018 (15 out of 22 members)
 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
SCIENCE ADVISORY GROUP - SCIENCE REQUIREMENTDOCUMENT UPDATE ROLF SCHLICHENMAIER - SCIENCE MEDIA
1. Luis Bellot Rubio (IAA, Spain); (Chair of Section II/1)
 2. Luca Belluzzi (IRSOL, Suisse);
 3. Mats Carlsson (UiO, Norway);
 4. Sanja Danilovic (SU, Sweden);
 5. Robertus Erdelyi (HSPF, Hungary); (Chair of Section II/2)
 6. Alex Feller (MPS, Germany); (Chair of Section II/8)
 7. Lyndsay Fletcher (University of Glasgow, UK); (Chair of Section II/6)
 8. Peter Gömöry (AISAS, Slovakia);
 9. Jan Jurčák (CAS, Czech Republic); (Chair of Section II/4)
10. Elena Khomenko (IAC, Spain); (Chair of Section II/7)
11. Christoph Kuckein (AIP, Germany); SAG members
12. Jorrit Leenaarts (SU, Sweden); (Chair of Section II/3 & II/9)
13. Arturo López Ariste (CNRS, France);
14. Marı́a Jesús Martı́nez González (IAC, Spain);
15. Mihalis Mathioudakis (QUB, UK);
16. Sarah Matthews (UCL, UK);(Chair of Section II/5)
17. Ada Ortiz (UiO, Norway);
18. Rolf Schlichenmaier (KIS, Germany, chair of SAG)
19. Javier Trujillo Bueno (IAC, Spain);
20. Dominik Utz (IGAM, Austria);
21. Luc Rouppe van der Voort (UiO, Norway);
22. Francesca Zuccarello (University of Catania & INAF, Italy);

 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
SCIENCE ADVISORY GROUP - SCIENCE REQUIREMENTDOCUMENT UPDATE ROLF SCHLICHENMAIER - SCIENCE MEDIA
Science Sections of SRD
Contents

I Executive Summary 3

II Top-level science goals 3

1 Structure and evolution of magnetic flux (2018-06-06) 3

2 Wave coupling throughout solar atmosphere (2018-06-03) 18

3 Chromospheric dynamics, magnetism, and heating (2018-06-07) 35

4 Large scale magnetic structures: sunspots, prominences and filaments (2018-05-24) 47

5 Coronal Science (2018-06-04) 61

6 Solar Flares and Eruptive Events (2018-06-07) 66

7 Coupling in partially ionized solar plasma (2018-05-25) 78

8 Atomic physics and Hanle-Zeeman diagnostics (2018-02-06) 86

9 Nasmyth focus science (2018-02-05) 92

III Requirement Summary 93

References 93
 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
A Optimum spatio-temporal resolution 101
SCIENCE ADVISORY GROUP - SCIENCE REQUIREMENTDOCUMENT UPDATE ROLF SCHLICHENMAIER - SCIENCE MEDIA
I Executive Summary 5
 SRD Science Sections
II Top-level science goals 5

1 Structure and evolution of magnetic flux (2018-06-06) 5
 1.1 Formation and disappearance of kG flux concentrations in the solar photosphere . . . . . . . . . . . . . . 6
 1.2 Internal structure of small-scale flux concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
 1.3 Small-scale flux emergence in the quiet sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
 1.4 Magnetic flux cancellations in the quiet sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
 1.5 Quiet sun internetwork fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
 1.6 Polar magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
 1.7 Network dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Wave coupling throughout solar atmosphere (2018-06-03) 20
 2.1 Luis
 MHDBellot Rubio,
 waves in Dominik
 localized quiet SunUtz, Sanja .Danilovic,
 structures . . . . . . . Arturo
 . . . . .Lopez
 . . . . Ariste
 . . . . . . . . . . . . . . . 21
 2.2 Magnetic twist and torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
 2.3 Wave propagation in active regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
 2.4 Wave propagation in the quiet Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Chromospheric dynamics, magnetism, and heating (2018-06-07) 37
 3.1 Introduction . . has
 “This project . .received
 . . . funding
 . . . from
 . . the
 . .European
 . . . .Union’s
 . . .Horizon
 . . .2020
 . . research
 . . . . . . . . . . . . . . . . . . . . . . . . 37
 and innovation programme under grant agreement No 739500”
SCIENCE ADVISORY GROUP - SCIENCE REQUIREMENTDOCUMENT UPDATE ROLF SCHLICHENMAIER - SCIENCE MEDIA
1.2 Internal structure of small-scale flux concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
 1.3 Small-scale flux emergence in the quiet sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

 SRDMagnetic
 1.4
 Science Sections
 flux cancellations in the quiet sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
 1.5 Quiet sun internetwork fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
 1.6 Polar magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
 1.7 Network dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Wave coupling throughout solar atmosphere (2018-06-03) 20
 2.1 MHD waves in localized quiet Sun structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
 2.2 Magnetic twist and torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
 2.3 Wave propagation in active regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
 2.4 Wave propagation in the quiet Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Chromospheric dynamics, magnetism, and heating (2018-06-07) 37
 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
 3.2Robertus
 MagneticErdelyi,
 structure Elena
 at supergranular
 Khomenko,scales Mihalis
 . . . . . Mathioudakis,
 . . . . . . . . . . .Mats
 . . . Carlsson
 . . . . . . . . . . . . . . . 38
 3.3 Spicules and jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
 3.4 Structure of small-scale chromospheric jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
 3.5 Wave propagation, mode conversion and wave damping . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
 3.6 Flux emergence and reconnection events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
 3.7 Observational determination of electric currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
 “This project has received funding from the European Union’s Horizon 2020 research
 3.8 Temperature structure
 and innovation of the
 programme solar
 under grantchromosphere
 agreement No 739500”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
SCIENCE ADVISORY GROUP - SCIENCE REQUIREMENTDOCUMENT UPDATE ROLF SCHLICHENMAIER - SCIENCE MEDIA
2.1 MHD waves in localized quiet Sun structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
 2.2 Magnetic twist and torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
 SRDWave
 2.3 Science Sections
 propagation in active regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
 2.4 Wave propagation in the quiet Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Chromospheric dynamics, magnetism, and heating (2018-06-07) 37
 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
 3.2 Magnetic structure at supergranular scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
 3.3 Spicules and jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
 3.4 Structure of small-scale chromospheric jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
 3.5 Wave propagation, mode conversion and wave damping . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
 3.6 Flux emergence and reconnection events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
 3.7 Observational determination of electric currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
 3.8 Temperature structure of the solar chromosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
 3.9 Magnetic field measurements using Ca II H&K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
 3.10 Summary of requested instrument capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Large scale magnetic structures: sunspots, prominences and filaments (2018-05-24) 49
 Jorrit Leenaarts, Ada Ortiz, Christoph Kuckein, Mats Carlsson, Peter Gömöry
 4.1 Stability of the umbra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
 4.2 Umbral dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
 4.3 Structure of cool sunspot umbrae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
 “This project has received funding from the European Union’s Horizon 2020 research
 4.4 Umbral
 andflashes asprogramme
 innovation a probe under
 of fine structure
 grant agreementin
 Nothe umbra chromosphere
 739500” . . . . . . . . . . . . . . . . . . . 52
SCIENCE ADVISORY GROUP - SCIENCE REQUIREMENTDOCUMENT UPDATE ROLF SCHLICHENMAIER - SCIENCE MEDIA
3.7 Observational determination of electric currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
 3.8 Temperature structure of the solar chromosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

 SRD
 3.9 Science
 Magnetic Sections
 field measurements using Ca II H&K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
 3.10 Summary of requested instrument capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Large scale magnetic structures: sunspots, prominences and filaments (2018-05-24) 49
 4.1 Stability of the umbra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
 4.2 Umbral dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
 4.3 Structure of cool sunspot umbrae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
 4.4 Umbral flashes as a probe of fine structure in the umbra chromosphere . . . . . . . . . . . . . . . . . . . 52
 4.5 Penumbral and umbral micro-jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
 4.6 Evolution of an individual penumbral filament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
 2
 4.7 Light bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
 4.8 Formation and decay of sunspot penumbrae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
 4.9 Relation between the moat flows, MMFs, and sunspot decay . . . . . . . . . . . . . . . . . . . . . . . . 59
 4.10 Fine structure of prominences and filaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
 4.11 Are quiescent and active region prominences the same phenomenon? . . . . . . . . . . . . . . . . . . . . 61
 4.12 Magnetic field and dynamics of tornado prominences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

 5 Coronal
Jan Jurcak,Science
 Marian (2018-06-04)
 Martinez Gonzalez, Elena Khomenko, Luc Rouppe van der Voort 63
 5.1 Sunspot light-bridges/light walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
 5.2 Light Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
 “This project has received funding from the European Union’s Horizon 2020 research
 5.3 Originsand
 of innovation
 the solarprogramme
 wind . under. . . grant
 . . agreement
 . . . . . No
 . .739500”
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.8 Formation and decay of sunspot penumbrae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
 4.9 Relation between the moat flows, MMFs, and sunspot decay . . . . . . . . . . . . . . . . . . . . . . . . 59

 SRD Science Sections
 4.10 Fine structure of prominences and filaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
 4.11 Are quiescent and active region prominences the same phenomenon? . . . . . . . . . . . . . . . . . . . . 61
 4.12 Magnetic field and dynamics of tornado prominences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Coronal Science (2018-06-04) 63
 5.1 Sunspot light-bridges/light walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
 5.2 Light Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
 5.3 Origins of the solar wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
 5.4 Probing pre-flare triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
 5.5 Macrospicules/spicules and Transition Regions Quakes (TRQs) . . . . . . . . . . . . . . . . . . . . . . . 66
 5.6 Ellerman bombs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Solar Flares and Eruptive Events (2018-06-07) 68
 Sarah
 6.1
 Matthews, Robertus Erdelyi, Mihalis Mathioudakis
 Radiation, structure and evolution of the flare lower atmosphere . . . . . . . . . . . . . . . . . . . . . . 68
 6.2 Velocity structure of the flaring atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
 6.3 Diagnostics for non-thermal particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
 6.4 Oscillations and Sunquakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
 6.5 Large-scale structure and evolution of the magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . 76
 6.6 Small-scale structure and evolution of the magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . 78
 “This project has received funding from the European Union’s Horizon 2020 research
 6.7 Filaments in flaring
 and innovation activeunder
 programme regions . . . . No. 739500”
 grant agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Origins of the solar wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
 5.4 Probing pre-flare triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
 SRD
 5.5 Science Sections
 Macrospicules/spicules and Transition Regions Quakes (TRQs) . . . . . . . . . . . . . . . . . . . . . . . 66
 5.6 Ellerman bombs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Solar Flares and Eruptive Events (2018-06-07) 68
 6.1 Radiation, structure and evolution of the flare lower atmosphere . . . . . . . . . . . . . . . . . . . . . . 68
 6.2 Velocity structure of the flaring atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
 6.3 Diagnostics for non-thermal particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
 6.4 Oscillations and Sunquakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
 6.5 Large-scale structure and evolution of the magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . 76
 6.6 Small-scale structure and evolution of the magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . 78
 6.7 Filaments in flaring active regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
 6.8 Coronal Mass Ejections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Coupling in partially ionized solar plasma (2018-05-25) 80
Lyndsay Fletcher,
 7.1 Dynamics Francesca
 of partially Zuccarello,
 ionized prominenceChristoph
 plasma . . .Kuckein,
 . . . . . .Sanja
 . . . . Danilovic
 . . . . . . . . . . . . . . . . . 81
 7.2 Influence of partial ionization on spicules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
 7.3 Detection of partial ionization e↵ects in the photosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 85
 7.4 Multi-fluid physics of chromospheric waves, shocks and swirls . . . . . . . . . . . . . . . . . . . . . . . 85
 7.5 Flares and
 “This energetic events
 project has received . . from
 funding . . the
 . .European
 . . . Union’s
 . . . Horizon
 . . . .2020
 . .research
 . . . . . . . . . . . . . . . . . . . . . . . . 86
 and innovation programme under grant agreement No 739500”
6.4 Oscillations and Sunquakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
 6.5 Large-scale structure and evolution of the magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . 76

 SRDSmall-scale
 6.6 Science Sections
 structure and evolution of the magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . 78
 6.7 Filaments in flaring active regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
 6.8 Coronal Mass Ejections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Coupling in partially ionized solar plasma (2018-05-25) 80
 7.1 Dynamics of partially ionized prominence plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
 7.2 Influence of partial ionization on spicules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
 7.3 Detection of partial ionization e↵ects in the photosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 85
 7.4 Multi-fluid physics of chromospheric waves, shocks and swirls . . . . . . . . . . . . . . . . . . . . . . . 85
 7.5 Flares and energetic events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8 Atomic physics and Hanle-Zeeman diagnostics (2018-02-06) 88
 8.1 The Resonance Lines of Ca i and Ca ii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
 8.2Elena
 The Khomenko, Robertus
 Ca i 4227 Å Resonance LineErdelyi,
 . . . . .Mihalis
 . . . . . Mathioudakis,
 . . . . . . . . . . .Mats
 . . . Carlsson
 . . . . . . . . . . . . . . . 89
 8.3 The Ca ii H & K Resonance Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
 8.4 Ti i multiplet around 4520 Å . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
 8.5 Spatial fluctuations of scattering polarization in Sr i 4607 Å . . . . . . . . . . . . . . . . . . . . . . . . . 92
 8.6 The physics and diagnostic potential of the Na i D1 and D2 lines . . . . . . . . . . . . . . . . . . . . . . 93

 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
 3
7.1 Dynamics of partially ionized prominence plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
 7.2 Influence of partial ionization on spicules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

 SRD
 7.3
 Science Sections
 Detection of partial ionization e↵ects in the photosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 85
 7.4 Multi-fluid physics of chromospheric waves, shocks and swirls . . . . . . . . . . . . . . . . . . . . . . . 85
 7.5 Flares and energetic events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8 Atomic physics and Hanle-Zeeman diagnostics (2018-02-06) 88
 8.1 The Resonance Lines of Ca i and Ca ii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
 8.2 The Ca i 4227 Å Resonance Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
 8.3 The Ca ii H & K Resonance Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
 8.4 Ti i multiplet around 4520 Å . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
 8.5 Spatial fluctuations of scattering polarization in Sr i 4607 Å . . . . . . . . . . . . . . . . . . . . . . . . . 92
 8.6 The physics and diagnostic potential of the Na i D1 and D2 lines . . . . . . . . . . . . . . . . . . . . . . 93

 3

 Alex Feller, Luca Belluzzi, Javier Trujillo Bueno, Rafa Manso Sainz

 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
SRD Science Sections

9 Nasmyth focus science (2018-02-05) 94
 9.1 White-light emission from flares - Continuum diagnostics in vicinity of Balmer jump . . . . . . . . . . . 94
 9.2 Coronal forbidden lines in the visible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
 9.3 Ca ii H&K spectroscopy and spectropolarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
 9.4 Multi-line spectropolarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

III Requirement Summary 95
 Sarah Matthews, Jorrit Leenarts, Luis Bellot Rubio, Mihalis Mathioudakis, Alex Feller
References 95

A Optimum spatio-temporal resolution 103

 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
he Nasmyth station inside the telescope pier will simplify the
 Nasmyth
llowing focus foratscience
 a clear environment in NUV
 the telescope level. The placement
 placing the instrument in a thermally controlled environment.

 Coude Lab: coating optimized for 400 < < 2000 nm
 Nasmyth focus: less optical surfaces; rotating FOV
 N1 Nasmyth instrument coatings for < 400 nm

 N2
 Three alternatives N1, N2, & N3:
 N1 after M4: No AO
 N2 after M6: TT
 N3 after M7: AO correction

 N3

 Coudé lab

myth station inside the telescope pier. Fixed instrument.
 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
er, giving an M1 hole
 inner hole of
 The telescope 677 mm in
 elevation axis
 and elevation is located 1.5
 axes are dece m below the p
the optical pa n tred with resp rimary mirror
 th is folded in ect to the opti vertex and the
 What are the particular strengths of EST?
performance,
azimuth angle
 with a telesco
 an asymmetric
 pe Mueller m w a y to p ro
 cal axis of the
 duce a polari
 main telescop
 e
 azimuth
 b ecause
 s, for all wave atrix that is in metrically co
 lengths. dependent of mpensated
 the telescope
 elevation and EUROPEAN SOLAR TELESCOPE:
 Page: 16 of 206
 CONCEPTUAL DESIGN STUDY
 Date: 09/08/11
 Polarimetrically compensated
 REPORT
 • Code:RPT-EST-0001 Issue:2.A File: RPTEST00012A.DOC

 • Rotating transfer optics
 • Fixed Coudé Lab
 • 4m on-axis

 Figure 4.1. Com
 plete layout of
 the telescope
 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
Reflections at two subsequent Mirrors

Unfavourable configuration of two subsequent mirrors:

 inclined inclined
 Mirror 1 Mirror 2
 Maximal attenuation of one
 direction of linear polarisation:
 • increase of noise!
 • loss of sensitivity!
Compensated design in EST:

 inclined inclined
 Mirror 1 Mirror 2

 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
What are the particular strengths of EST?

EST:
• Muller matrix, MEST, independent on time (=unity) and independent on wavelength
• M (M1) = M (M2) = Unity matrix, since axially symmetric!
DKIST:
• Muller matrix, MDKIST(t), is time and wavelength dependent
• M1 and M2 are difficult to calibrate and their Muller matrices are time dependent.

Solar Science objective: Measure magnetic fields via spectropolarimetry
EST particular strength: Polarimetrically compensated design of EST

 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
What are the particular strengths of EST?

 Multi-wavelength,
 multi-instrument
 capabilities

 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
What are the particular strengths of EST?

Particular Science Cases that profit from telescope design:

Ø Measure magnetic fields in the chromosphere:
 Ø Suite of unique instruments (3-5 FPs, 2 SPs, IFUs!)
 Ø High cadence by measuring many lines simultaneously
 ü Magnetic field of spicules: cadence ~ 5s with IFUs
 ü high-frequency waves ~1s with several large FOV FPs

Ø Multi-fluid physics beyond MHD (partially ionized plasma)

Ø Why is EST needed in addition to DKIST:
 Ø To address science questions, one telescope is not enough.
 Ø Competition is necessary for development
 Ø Out-of-phase development cycles

 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
EST Site: ORM or OT
 ATST Site Survey Results (r0)

 EST

 DKIST

Annual hours with the Fried parameter r0 being larger than 12cm versus height above ground for
Big Bear (black), Haleakala (red), and La Palma (blue). DKIST will be 28m above ground (green
box), and EST will be at 38m (red box). (from ATST site survey working group final report)
What are the particular strengths of EST?

At both sites, Seeing dominated by ground layer.
Ø Improvement with height

 DKIST EST
Ø dome size of 4m off-axis corresponds to 8m on-axis
Ø EST can be built higher above ground

 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
What are the particular strengths of EST?

 • Europe has a large young community of solar researchers (Ref: GREST, D7.1).
 • European expertise is crucial for success of DKIST.

 To sustain the strong, young, successful, relevant scientific solar community:

 Ø Europe needs a next generation solar telescope, the EST

 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
SAG task: update SRD

 Ø Describe need of EST
 Ø Particular strengths of EST (and its community)
 Ø Define top science goals, science case and observing programmes
 Ø Summarize scientific requirements:
 Which configurations are needed in terms of:
 Ø FOV,
 Ø spatial resolution, spectral resolution, temporal resolution,
 Ø wavelength coverage, multi-line capabability, light distribution,
 Ø instrument types: FPs, spectrographs, IFUs: Slicers, Microlenses, others?
 Ø polarimetric sensitivity and accuracy

Time line: Final* document in 2018
(*): Final document to infer final design to start construction.

 “This project has received funding from the European Union’s Horizon 2020 research
 and innovation programme under grant agreement No 739500”
EST Science Meeting
1. The state of the art of the EST project:
 Manolo Collados (IAC, Spain)
 The SRD: an overview:
 Rolf Schlichenmaier (KIS, Germany)
2. Structure and evolution of magnetic flux:
 Mark Cheung (LMSAL, USA)
 SRD G1 : Luis Bellot Rubio
3. Wave coupling throughout solar atmosphere:
 Valery Nakariakov (U. of Warwick, UK)
 SRD G2: Mats Carlsson
4. Chromospheric dynamics and heating:
 Viggo Hansteen (University of Oslo, Norway)
 SRD G3: Ada Ortiz Carbonell
5. Large scale magn. structures: sunspots,
 prominences and filaments:
 Nazaret Bello Gonzales (KIS, Germany)
 SRD G4: Marian Martinez Gonzalez
6. The solar corona:
 Daniele Spadaro (INAF, Catania, Italy)
 SRD G5: Robertus Erdelyi
7. Solar flares and eruptive events:
 Manolis Georgoulis (AoA, Greece)
 SAG G6: Lyndsay Fletcher
8. Atomic physics and Hanle diagnostics:
 Roberto Casini“This(HAO, USA)
 project has received funding from the European Union’s Horizon 2020 research
 SRD G7: Lucaand Belluzzi
 innovation programme under grant agreement No 739500”
You can also read