Running Head: AN UNDERSTANDING OF HIV- 1, SYMPTOMS, AND TREATMENTS An Understanding of HIV- 1, Symptoms, and Treatments Benjamin Mills

Page created by Teresa Adams
 
CONTINUE READING
Running	
  Head:	
  AN	
  UNDERSTANDING	
  OF	
  HIV-­‐1,	
  SYMPTOMS,	
  AND	
  TREATMENTS	
  
	
  
                An	
  Understanding	
  of	
  HIV-­‐1,	
  Symptoms,	
  and	
  Treatments	
  
                                                       	
  
                                        Benjamin	
  Mills	
  
                                                       	
  
                                                                                                  	
  
AN	
  UNDERSTANDING	
  OF	
  HIV-­‐1,	
  SYMPTOMS,	
  AND	
  TREATMENTS	
  

Abstract	
  

	
         HIV-­‐1	
  is	
  a	
  virus	
  that	
  has	
  had	
  major	
  impacts	
  worldwide.	
  	
  Numerous	
  people	
  

have	
  died	
  due	
  to	
  infection	
  caused	
  by	
  HIV.	
  	
  Around	
  the	
  world,	
  HIV	
  is	
  contracted	
  in	
  

areas	
  that	
  are	
  full	
  of	
  infection	
  and	
  disease.	
  	
  Without	
  a	
  cure,	
  it	
  is	
  impossible	
  to	
  get	
  rid	
  

of	
  HIV	
  once	
  a	
  person	
  has	
  been	
  infected.	
  	
  Many	
  treatments	
  exist	
  to	
  counteract	
  

symptoms	
  of	
  HIV,	
  but	
  a	
  cure	
  has	
  yet	
  to	
  be	
  found.	
  	
  One	
  reason	
  that	
  scientists	
  have	
  not	
  

discovered	
  a	
  cure	
  yet	
  is	
  that	
  we	
  do	
  not	
  entirely	
  understand	
  how	
  HIV	
  works.	
  	
  In	
  

order	
  to	
  effectively	
  create	
  a	
  vaccine,	
  it	
  is	
  crucial	
  that	
  we	
  understand	
  how	
  the	
  virus	
  

works.	
  	
  This	
  paper	
  creates	
  a	
  very	
  simply,	
  light-­‐hearted	
  approach	
  into	
  the	
  molecular	
  

biology	
  of	
  HIV.	
  	
  	
  

	
  
AN	
  UNDERSTANDING	
  OF	
  HIV-­‐1,	
  SYMPTOMS,	
  AND	
  TREATMENTS	
  

Introduction	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  By	
  2008,	
  twenty-­‐five	
  million	
  people	
  had	
  died	
  of	
  a	
  similar,	
  unnatural	
  cause:	
  the	
  

human	
  immunodeficiency	
  virus	
  type-­‐1.	
  	
  At	
  that	
  point,	
  forty	
  million	
  people	
  were	
  

living	
  under	
  the	
  effects	
  of	
  HIV-­‐1.	
  	
  With	
  no	
  easy,	
  quick	
  treatment	
  in	
  the	
  near	
  future,	
  

the	
  prospects	
  were	
  drab.	
  	
  However,	
  scientists	
  were	
  quickly	
  discovering	
  the	
  method	
  

with	
  which	
  HIV	
  attacked	
  one’s	
  immune	
  system.	
  	
  This	
  report	
  gives	
  a	
  basic	
  

understanding	
  of	
  what	
  HIV	
  RNA	
  codes	
  for,	
  how	
  it	
  attacks	
  the	
  body,	
  and	
  some	
  

treatments.	
  	
  

	
  	
  

Cell	
  Entry	
  

	
            HIV-­‐1	
  is	
  a	
  virus.	
  	
  It	
  is	
  shaped	
  like	
  a	
  mushroom,	
  complete	
  with	
  a	
  capsid	
  and	
  an	
  

envelope	
  glycoprotein.	
  	
  The	
  capsid	
  contains	
  the	
  viral	
  RNA.	
  	
  The	
  envelope	
  

glycoprotein	
  recognizes	
  a	
  surface	
  glycoprotein.	
  	
  These	
  surface	
  glycoproteins	
  can	
  be	
  

found	
  in	
  abundance	
  in	
  the	
  phospholipid	
  bilayer	
  of	
  T-­‐lymphocytes	
  and	
  lymphocytes	
  

of	
  helper-­‐T	
  cells	
  (Haseltine).	
  	
  In	
  this	
  way,	
  developing	
  cells	
  of	
  the	
  immune	
  system	
  are	
  

targeted.	
  	
  Because	
  these	
  cells	
  traverse	
  all	
  the	
  pathways	
  of	
  the	
  body,	
  HIV-­‐1	
  is	
  carried	
  

throughout	
  the	
  entire	
  body.	
  	
  The	
  two	
  glycoproteins	
  fuse	
  together.	
  	
  Once	
  the	
  

glycoproteins	
  fuse,	
  the	
  viral	
  RNA	
  is	
  inserted	
  past	
  the	
  phospholipid	
  bilayer	
  and	
  into	
  

the	
  cell.	
  	
  Once	
  in	
  the	
  cytosol,	
  the	
  viral	
  RNA	
  is	
  transported	
  to	
  the	
  nucleus.	
  

Genetic	
  Code	
  

	
            HIV-­‐1	
  is	
  a	
  retrovirus.	
  	
  A	
  retrovirus	
  is	
  a	
  virus	
  that	
  contains	
  RNA	
  rather	
  than	
  

viral	
  DNA.	
  	
  This	
  viral	
  RNA	
  is	
  “reverse-­‐transcribed”	
  into	
  the	
  DNA	
  in	
  the	
  infected	
  cell.	
  	
  
AN	
  UNDERSTANDING	
  OF	
  HIV-­‐1,	
  SYMPTOMS,	
  AND	
  TREATMENTS	
  

This	
  process	
  is	
  carried	
  out	
  using	
  the	
  reverse	
  transcriptase	
  enzyme	
  carried	
  in	
  the	
  

capsid.	
  	
  The	
  reverse	
  transcriptase	
  will	
  use	
  the	
  viral	
  RNA	
  as	
  a	
  template,	
  and	
  

synthesize	
  an	
  entirely	
  new	
  DNA	
  strand.	
  	
  Once	
  the	
  new	
  viral	
  DNA	
  has	
  successfully	
  

been	
  synthesized,	
  it	
  is	
  integrated	
  into	
  a	
  host	
  chromosome	
  using	
  the	
  integrase	
  

enzyme.	
  	
  The	
  viral	
  DNA	
  in	
  the	
  chromosomes	
  is	
  now	
  known	
  as	
  “pro-­‐viral	
  DNA”	
  or	
  a	
  

provirus	
  (Ward).	
  	
  

	
           At	
  this	
  point,	
  the	
  viral	
  DNA	
  goes	
  through	
  normal	
  cell	
  processes	
  in	
  order	
  to	
  

create	
  proteins.	
  	
  The	
  proteins	
  created	
  by	
  the	
  viral	
  DNA	
  go	
  on	
  to	
  perform	
  specific	
  

functions.	
  	
  Proteins	
  made	
  by	
  the	
  viral	
  DNA	
  are	
  used	
  to	
  make	
  the	
  budding	
  viruses.	
  	
  In	
  

order	
  to	
  understand	
  the	
  way	
  that	
  a	
  virus	
  infects	
  a	
  cell,	
  one	
  must	
  understand	
  the	
  

genes	
  in	
  a	
  virus	
  and	
  for	
  what	
  they	
  code.	
  	
  	
  

	
           HIV-­‐1	
  has	
  9	
  genes	
  in	
  all.	
  	
  However,	
  it	
  codes	
  for	
  17	
  proteins.	
  	
  This	
  is	
  possible	
  

through	
  a	
  unique	
  process	
  in	
  which	
  the	
  viral	
  mRNA	
  codes	
  for	
  several	
  proteins	
  that	
  

are	
  bonded	
  together	
  to	
  form	
  a	
  polyprotein.	
  	
  Three	
  of	
  HIV’s	
  genes	
  code	
  for	
  

polyproteins:	
  Gag,	
  Pol,	
  and	
  Env(Ward).	
  	
  	
  

	
           The	
  Gag	
  gene	
  codes	
  for	
  four	
  different	
  proteins.	
  	
  After	
  reverse-­‐transcription,	
  

transcription,	
  and	
  translation,	
  a	
  polyprotein	
  is	
  produced.	
  	
  The	
  polyprotein	
  is	
  then	
  

cleaved	
  by	
  HIV’s	
  protease	
  enzyme.	
  	
  The	
  resultant	
  proteins	
  are	
  a	
  matrix	
  protein,	
  a	
  

major	
  capsid	
  protein,	
  a	
  nucleic	
  acid-­‐binding	
  protein,	
  and	
  a	
  small	
  proline-­‐rich	
  protein	
  

that	
  helps	
  with	
  virion	
  assembly.	
  	
  	
  

             The	
  next	
  gene	
  is	
  called	
  the	
  “Pol”	
  gene.	
  	
  It	
  is	
  reverse	
  transcribed	
  into	
  a	
  cell’s	
  

DNA	
  and	
  then	
  transcribed	
  into	
  viral	
  mRNA.	
  	
  The	
  mRNA	
  exits	
  the	
  nucleus	
  without	
  

any	
  post-­‐transcriptional	
  modifications.	
  	
  When	
  being	
  translated	
  in	
  a	
  ribosome,	
  the	
  
AN	
  UNDERSTANDING	
  OF	
  HIV-­‐1,	
  SYMPTOMS,	
  AND	
  TREATMENTS	
  

viral	
  mRNA	
  experiences	
  a	
  process	
  called	
  “frame	
  shifting”.	
  	
  While	
  the	
  enzyme	
  is	
  

reading	
  the	
  viral	
  mRNA,it	
  will	
  stop	
  at	
  a	
  certain	
  base	
  and	
  jump	
  back	
  one	
  base.	
  	
  Then	
  

the	
  enzyme	
  will	
  continue	
  reading	
  the	
  viral	
  RNA	
  from	
  that	
  point	
  on.	
  	
  “Frame	
  shifting”	
  

creates	
  a	
  whole	
  new	
  sequence	
  of	
  proteins	
  for	
  which	
  the	
  viral	
  mRNA	
  codes.	
  	
  Not	
  only	
  

does	
  frame	
  shifting	
  create	
  a	
  whole	
  new	
  sequence	
  of	
  proteins,	
  but	
  it	
  also	
  creates	
  a	
  

point	
  at	
  which	
  the	
  Gag	
  polyprotein	
  can	
  fuse	
  to	
  the	
  Pol	
  polyprotein(Ward).	
  	
  	
  

	
          Pol	
  codes	
  for	
  3	
  major	
  enzymes.	
  	
  The	
  three	
  enzymes	
  it	
  codes	
  for	
  are	
  a	
  viral	
  

protease,	
  reverse	
  transcriptase,	
  and	
  integrase.	
  	
  These	
  enzymes	
  are	
  then	
  released	
  

into	
  the	
  cytoplasm	
  for	
  virion	
  assembly.	
  	
  When	
  the	
  budding	
  virus,	
  or	
  the	
  second	
  

generation,	
  infects	
  a	
  different	
  cell,	
  protease,	
  reverse	
  transcriptase,	
  and	
  integrase	
  will	
  

be	
  used	
  to	
  create	
  the	
  third	
  generation	
  of	
  HIV	
  viruses.	
  	
  However,	
  when	
  these	
  

enzymes	
  are	
  made,	
  they	
  are	
  bound	
  together	
  to	
  form	
  a	
  polyprotein.	
  	
  The	
  Pol	
  

polyprotein	
  is	
  fused	
  to	
  the	
  Gag	
  polyprotein,	
  and	
  will	
  remained	
  fused	
  until	
  it	
  is	
  

cleaved	
  by	
  an	
  enzyme(Ward).	
  

	
  	
      The	
  last	
  gene	
  that	
  codes	
  for	
  a	
  polyprotein	
  is	
  called	
  Env.	
  	
  Env	
  is	
  responsible	
  

for	
  two	
  major	
  proteins.	
  	
  Like	
  all	
  the	
  other	
  genes	
  in	
  the	
  HIV	
  genome,	
  Env	
  goes	
  

through	
  reverse-­‐transcription,	
  transcription,	
  and	
  translation	
  without	
  any	
  post-­‐

transcriptional	
  modifications.	
  	
  When	
  translation	
  is	
  finished,	
  the	
  final	
  product	
  is	
  a	
  

polyprotein	
  called	
  gp160.	
  	
  gp160	
  is	
  cleaved	
  by	
  a	
  natural	
  protease	
  enzyme	
  created	
  by	
  

the	
  cell.	
  	
  gp160	
  then	
  becomes	
  two	
  glycoproteins,	
  gp120	
  and	
  gp41(Ward).	
  	
  	
  

	
          The	
  gp120	
  glycoprotein	
  becomes	
  the	
  viral	
  envelope	
  of	
  the	
  budding	
  HIV	
  

virus.	
  	
  This	
  envelope	
  is	
  what	
  fuses	
  to	
  the	
  CD4	
  receptor	
  in	
  the	
  first	
  stage	
  of	
  

infection.	
  	
  The	
  gp41	
  glycoprotein	
  is	
  stem-­‐shaped.	
  	
  It	
  joins	
  with	
  gp120	
  to	
  form	
  the	
  
AN	
  UNDERSTANDING	
  OF	
  HIV-­‐1,	
  SYMPTOMS,	
  AND	
  TREATMENTS	
  

mushroom	
  shape	
  of	
  the	
  HIV	
  virion.	
  	
  These	
  two	
  structures	
  are	
  what	
  make	
  up	
  the	
  

exterior	
  of	
  the	
  HIV	
  virion.	
  	
  The	
  term	
  virion	
  refers	
  to	
  the	
  completed,	
  mature	
  virus	
  as	
  

it	
  is	
  outside	
  of	
  the	
  host	
  cell	
  (Ward).	
  

            	
  The	
  HIV	
  genome	
  also	
  contains	
  a	
  section	
  called	
  Tat.	
  	
  This	
  gene	
  codes	
  for	
  the	
  

Tat	
  protein,	
  the	
  ref	
  protein,	
  and	
  the	
  nef	
  protein.	
  	
  The	
  Tat	
  protein	
  is	
  also	
  known	
  as	
  

the	
  transactivator,	
  and	
  is	
  used	
  for	
  increasing	
  the	
  rate	
  of	
  viral	
  RNA	
  translation.	
  	
  Tat	
  

does	
  this	
  by	
  moving	
  to	
  the	
  nucleus	
  and	
  nucleolus	
  of	
  the	
  cell.	
  	
  It	
  then	
  binds	
  to	
  the	
  new	
  

viral	
  RNA	
  being	
  formed.	
  	
  The	
  transactivator	
  allows	
  an	
  entire	
  sequence	
  of	
  RNA	
  to	
  be	
  

translated	
  at	
  once.	
  	
  This	
  is	
  how	
  polyproteins	
  are	
  made.	
  	
  The	
  transactivator	
  also	
  

increases	
  the	
  frequency	
  of	
  RNA	
  initiation.	
  	
  The	
  other	
  two	
  proteins	
  created	
  by	
  Tat,	
  ref	
  

and	
  nef,	
  are	
  both	
  regulatory	
  and	
  regulate	
  infection	
  of	
  a	
  cell(Haseltine).	
  	
  	
  

            Also	
  important	
  to	
  the	
  replication	
  process,	
  the	
  Rev	
  gene	
  codes	
  for	
  one	
  Rev	
  

protein.	
  	
  The	
  Rev	
  protein	
  can	
  be	
  found	
  primarily	
  in	
  the	
  cytosol.	
  	
  In	
  the	
  cytosol,	
  Rev	
  

gathers	
  spliced	
  transcripts	
  and	
  moves	
  them	
  to	
  ribosomes,	
  where	
  the	
  transcripts	
  can	
  

be	
  translated	
  into	
  capsid	
  and	
  envelope	
  glycoproteins.	
  	
  Without	
  the	
  RNA	
  transcripts	
  

being	
  gathered	
  together	
  by	
  the	
  Rev	
  protein,	
  only	
  regulatory	
  proteins	
  could	
  be	
  made	
  

through	
  translation	
  (Kula).	
  	
  	
  

            The	
  Rev	
  protein	
  is	
  able	
  to	
  transport	
  spliced	
  transcripts	
  by	
  interacting	
  with	
  an	
  

export	
  receptor	
  called	
  Crm-­‐1.	
  	
  The	
  Rev	
  protein	
  and	
  spliced	
  viral	
  mRNA	
  transcripts	
  

will	
  bind	
  together	
  via	
  the	
  Crm-­‐1.	
  	
  This	
  occurs	
  in	
  the	
  nucleus.	
  	
  Once	
  the	
  binding	
  

occurs,	
  Crm-­‐1	
  can	
  interact	
  with	
  the	
  nuclear	
  pores	
  in	
  the	
  nuclear	
  membrane,	
  

allowing	
  the	
  Crm-­‐1,	
  Rev	
  protein,	
  and	
  mRNA	
  transcripts	
  to	
  enter	
  the	
  cytosol.	
  	
  Once	
  in	
  
AN	
  UNDERSTANDING	
  OF	
  HIV-­‐1,	
  SYMPTOMS,	
  AND	
  TREATMENTS	
  

the	
  cytosol,	
  the	
  Rev	
  proteins	
  drop	
  the	
  transcripts	
  to	
  be	
  translated	
  and	
  then	
  return	
  to	
  

the	
  nucleus	
  (Kula).	
  	
  	
  

Effects	
  of	
  HIV	
  on	
  the	
  Body	
  and	
  the	
  Cell	
  

	
          HIV-­‐1	
  does	
  not	
  directly	
  kill	
  a	
  cell.	
  	
  It	
  has	
  adverse	
  effects	
  on	
  the	
  cell,	
  which	
  

may	
  lead	
  to	
  cell	
  death,	
  but	
  the	
  actual	
  virus	
  does	
  not	
  attack	
  a	
  cell	
  with	
  malicious	
  

intentions.	
  	
  Instead,	
  the	
  intention	
  of	
  a	
  virus	
  is	
  to	
  replicate	
  itself.	
  	
  All	
  of	
  the	
  coding	
  

genetic	
  material	
  is	
  meant	
  to	
  create	
  proteins	
  that	
  are	
  used	
  for	
  creating	
  new	
  viruses.	
  	
  	
  

However,	
  there	
  are	
  still	
  ways	
  in	
  which	
  viruses	
  can	
  cause	
  cell	
  death.	
  	
  	
  

	
          When	
  HIV-­‐1	
  virion	
  enters	
  the	
  body,	
  it	
  seeks	
  a	
  certain	
  type	
  of	
  cell	
  that	
  has	
  the	
  

cell	
  membrane	
  protein	
  receptor	
  CD4.	
  	
  These	
  CD4	
  receptors	
  can	
  be	
  found	
  in	
  

abundance	
  in	
  the	
  phospholipid	
  bilayers	
  of	
  T	
  lymphocytes	
  and	
  lymphocytes	
  of	
  helper	
  

T	
  cells.	
  	
  In	
  this	
  way,	
  the	
  immune	
  system	
  of	
  an	
  HIV-­‐positive	
  person	
  is	
  targeted	
  upon	
  

infection.	
  	
  Because	
  T-­‐lymphocytes	
  are	
  responsible	
  for	
  triggering	
  the	
  production	
  of	
  

antibodies,	
  disabling	
  these	
  cells	
  effectively	
  halts	
  the	
  body’s	
  attempt	
  to	
  fight	
  the	
  

virus.	
  	
  Without	
  antibodies	
  to	
  recognize	
  the	
  envelope	
  glycoprotein	
  responsible	
  for	
  

cell	
  fusion	
  on	
  an	
  HIV	
  virion,	
  macrophages	
  will	
  not	
  destroy	
  infected	
  cells	
  and	
  HIV	
  can	
  

continue	
  replication	
  in	
  the	
  body	
  undisturbed	
  (Haseltine).	
  	
  	
  

	
          HIV-­‐1	
  virions	
  fuse	
  with	
  the	
  CD4	
  receptors	
  in	
  order	
  to	
  inject	
  the	
  genetic	
  

material	
  into	
  a	
  cell.	
  	
  After	
  the	
  cell	
  has	
  created	
  budding	
  viruses	
  inside	
  itself,	
  the	
  new	
  

viruses	
  can	
  leave	
  the	
  cell.	
  	
  However,	
  the	
  first	
  generation	
  of	
  budding	
  viruses	
  will	
  

often	
  fuse	
  directly	
  with	
  the	
  cell	
  that	
  it	
  just	
  left.	
  	
  The	
  fusion	
  between	
  HIV	
  virions	
  and	
  a	
  
AN	
  UNDERSTANDING	
  OF	
  HIV-­‐1,	
  SYMPTOMS,	
  AND	
  TREATMENTS	
  

cell	
  will	
  quickly	
  deteriorate	
  a	
  cell	
  membrane,	
  resulting	
  in	
  death	
  of	
  the	
  cell.	
  	
  In	
  this	
  

way	
  the	
  first	
  generation	
  of	
  budding	
  HIV	
  viruses	
  can	
  kill	
  a	
  cell	
  (Haseltine).	
  

	
         A	
  second	
  way	
  that	
  HIV-­‐1	
  virions	
  can	
  kill	
  a	
  cell	
  is	
  very	
  dramatic	
  and	
  rapid.	
  	
  

When	
  a	
  virus	
  fuses	
  with	
  the	
  CD4	
  receptor	
  on	
  a	
  cell	
  membrane,	
  this	
  can	
  trigger	
  other	
  

CD4	
  receptors	
  along	
  the	
  cell	
  membrane	
  to	
  fuse	
  with	
  other	
  cells	
  that	
  have	
  the	
  CD4	
  

receptor	
  along	
  their	
  cell	
  membrane.	
  	
  One	
  HIV-­‐infected	
  cell	
  can	
  fuse	
  with	
  up	
  to	
  500	
  

uninfected	
  T-­‐cells.	
  	
  The	
  result	
  of	
  this	
  reaction	
  is	
  one	
  giant	
  multinucleated	
  cell.	
  	
  The	
  

half-­‐life	
  of	
  this	
  multinucleated	
  cell	
  is	
  very	
  short.	
  	
  This	
  means	
  that	
  individual	
  cells	
  

inside	
  the	
  multinucleated	
  cell	
  can	
  die	
  very	
  quickly	
  because	
  of	
  cell	
  membrane	
  

deterioration	
  (Haseltine).	
  	
  	
  

	
         Many	
  diseases	
  are	
  associated	
  with	
  HIV-­‐1.	
  	
  When	
  HIV-­‐infected	
  cells	
  get	
  into	
  

the	
  bloodstream,	
  they	
  can	
  travel	
  around	
  the	
  entire	
  body.	
  	
  HIV-­‐infected	
  cells	
  can	
  have	
  

the	
  most	
  damage	
  on	
  the	
  brain.	
  	
  HIV-­‐infected	
  cells	
  will	
  travel	
  via	
  the	
  bloodstream,	
  

where	
  they	
  can	
  be	
  dropped	
  off	
  into	
  vascular	
  tissue.	
  	
  Once	
  in	
  these	
  capillaries,	
  these	
  

cells	
  diffuse	
  across	
  the	
  selectively	
  permeable	
  blood-­‐brain	
  barrier	
  (BBB).	
  	
  Scientists	
  

are	
  unclear	
  of	
  how	
  the	
  HIV	
  virus	
  crosses	
  the	
  BBB,	
  but	
  several	
  theories	
  exist.	
  	
  One	
  

such	
  theory	
  is	
  the	
  “Trojan	
  Horse”	
  theory-­‐	
  that	
  HIV	
  can	
  “hide”	
  its	
  receptors	
  in	
  order	
  

to	
  be	
  disguised	
  as	
  something	
  else	
  and	
  cross	
  the	
  BBB	
  (Ghafouri).	
  	
  	
  

           Once	
  the	
  virus	
  is	
  inside	
  the	
  brain,	
  the	
  infected	
  human	
  can	
  acquire	
  many	
  

diseases.	
  	
  One	
  of	
  the	
  most	
  general	
  and	
  prominent	
  diseases	
  is	
  HIV-­‐associated	
  

dementia.	
  	
  Dementia	
  is	
  described	
  as	
  damages	
  and	
  disorders	
  to	
  the	
  brain	
  and	
  has	
  a	
  

wide	
  variety	
  of	
  symptoms.	
  	
  Dementia	
  can	
  be	
  expressed	
  in	
  many	
  different	
  ways,	
  

including	
  cognition,	
  behavior,	
  affection,	
  motor	
  skills,	
  and	
  psychiatric	
  disorders.	
  	
  In	
  
AN	
  UNDERSTANDING	
  OF	
  HIV-­‐1,	
  SYMPTOMS,	
  AND	
  TREATMENTS	
  

humans	
  under	
  60	
  years,	
  HIV	
  is	
  the	
  most	
  common	
  cause	
  of	
  dementia	
  worldwide	
  

(Ghafouri).	
  	
  	
  

            Many	
  STD’s	
  can	
  result	
  from	
  HIV	
  infection	
  as	
  well.	
  	
  Herpes	
  is	
  a	
  virus	
  that	
  can	
  

be	
  very	
  easily	
  acquired	
  once	
  HIV	
  has	
  infected	
  a	
  person.	
  	
  HIVE	
  stands	
  for	
  HIV-­‐related	
  

Encephalitis,	
  and	
  is	
  a	
  common	
  disease	
  in	
  HIV-­‐positive	
  patients.	
  	
  Encephalitis	
  is	
  

described	
  as	
  an	
  inflammation	
  of	
  the	
  brain,	
  and	
  has	
  many	
  serious	
  symptoms.	
  	
  HIVE	
  

occurs	
  when	
  the	
  aforementioned	
  large,	
  multinucleated	
  cells	
  enter	
  the	
  brain.	
  	
  These	
  

giant	
  structures	
  act,	
  virtually,	
  as	
  tumors	
  in	
  the	
  brain.	
  	
  This	
  is	
  how	
  the	
  swelling	
  

results	
  (Ghafouri).	
  	
  	
  

Treatment	
  

	
          Unfortunately,	
  HIV	
  has	
  no	
  direct	
  cure.	
  	
  Because	
  HIV	
  targets	
  T-­‐cells	
  and	
  

prevents	
  the	
  production	
  of	
  antibodies,	
  the	
  body	
  has	
  no	
  way	
  to	
  stimulate	
  the	
  

production	
  of	
  antibodies.	
  	
  The	
  job	
  of	
  antibodies	
  is	
  to	
  find	
  and	
  recognize	
  a	
  virus.	
  	
  

Once	
  it	
  has	
  found	
  and	
  recognized	
  a	
  virus,	
  it	
  can	
  kill	
  it	
  and	
  recognize	
  it	
  in	
  the	
  future.	
  	
  

However,	
  because	
  HIV	
  stops	
  the	
  production	
  of	
  these	
  antibodies,	
  the	
  body	
  cannot	
  

recognize	
  HIV	
  upon	
  entry	
  of	
  the	
  body.	
  	
  This	
  is	
  why	
  there	
  is	
  no	
  vaccination	
  to	
  

encourage	
  immunity	
  to	
  HIV	
  in	
  the	
  body.	
  

	
          One	
  way	
  to	
  treat	
  HIV	
  symptoms	
  is	
  through	
  inhibitors.	
  	
  Inhibitors	
  are	
  drugs	
  

that	
  inhibit	
  the	
  reacting	
  of	
  certain	
  processes.	
  	
  For	
  example,	
  the	
  most	
  common	
  

inhibitors	
  are	
  protease	
  inhibitors.	
  	
  Each	
  HIV	
  virion	
  has	
  a	
  protease	
  enzyme.	
  	
  This	
  

enzyme	
  is	
  coded	
  for	
  in	
  the	
  Gag	
  polyprotein	
  and	
  is	
  necessary	
  for	
  the	
  virion	
  to	
  become	
  

mature	
  and	
  have	
  the	
  ability	
  to	
  harm	
  cells.	
  	
  A	
  protease	
  inhibitor	
  will	
  prevent	
  protease	
  
AN	
  UNDERSTANDING	
  OF	
  HIV-­‐1,	
  SYMPTOMS,	
  AND	
  TREATMENTS	
  

enzymes	
  from	
  being	
  active.	
  	
  This	
  treatment	
  can	
  help	
  slow	
  down	
  or	
  stop	
  HIV,	
  but	
  it	
  

cannot	
  cure	
  a	
  person	
  of	
  the	
  virus	
  (Ghafouri,	
  Jr.,	
  J.E.).	
  	
  	
  

	
            Other	
  such	
  inhibitors	
  work	
  as	
  well.	
  	
  There	
  are	
  5	
  FDA-­‐approved	
  inhibitors	
  on	
  

the	
  market	
  today.	
  	
  All	
  of	
  these	
  can	
  help,	
  but	
  none	
  can	
  cure	
  a	
  person	
  of	
  HIV.	
  	
  There	
  

are	
  also	
  drugs	
  to	
  help	
  treat	
  the	
  symptoms	
  of	
  HIV.	
  	
  These	
  drugs	
  may	
  relieve	
  HIVE	
  

symptoms,	
  or	
  help	
  boost	
  the	
  immune	
  system.	
  	
  However,	
  none	
  of	
  these	
  deal	
  directly	
  

with	
  the	
  HIV	
  virus	
  (Jr,	
  J.E.).	
  	
  	
  

Conclusion	
  

              Although	
  there	
  is	
  no	
  immediate	
  cure	
  for	
  HIV,	
  scientists	
  are	
  researching	
  and	
  

growing	
  closer	
  to	
  a	
  cure.	
  	
  Some	
  scientists	
  believe	
  that	
  a	
  cure	
  will	
  be	
  found	
  within	
  the	
  

decade,	
  while	
  others	
  believe	
  that	
  it	
  may	
  be	
  farther	
  away.	
  	
  What	
  we	
  do	
  know	
  is	
  that	
  

the	
  more	
  research	
  that	
  is	
  conducted,	
  the	
  closer	
  we	
  are	
  to	
  finding	
  a	
  cure.	
  	
  And	
  as	
  2.6	
  

million	
  people	
  are	
  being	
  diagnosed	
  as	
  “HIV-­‐positive”	
  each	
  year,	
  the	
  need	
  to	
  find	
  a	
  

cure	
  is	
  very	
  real.	
  	
  Understanding	
  HIV	
  is	
  a	
  great	
  way	
  to	
  begin	
  people	
  along	
  the	
  path	
  of	
  

contributing	
  to	
  finding	
  a	
  cure	
  for	
  the	
  human	
  immunodeficiency	
  virus-­‐type	
  1.	
  	
  	
  

              	
  
AN	
  UNDERSTANDING	
  OF	
  HIV-­‐1,	
  SYMPTOMS,	
  AND	
  TREATMENTS	
  

                                             References	
  

Barnabas, R., & Celum, C. (2013). Infectious Co-factors in HIV-1 transmission Herpes

      Simplex Virus type-2 and HIV-1: New Insights and Interventions. NIHPA Author

      Manuscripts, 10(3), 228-237. Retrieved April 9, 2013, from

      http://www.ncbi.nlm.nih.gov/pmc/articles/P

Chugh, P., Bradel-Tretheway, B., Monteiro-Filho, C., Planelles, V., Maggirwar, S.,

      Dewhurst, S., et al. (2008). Akt inhibitors as an HIV-1 infected macrophaphage-

      specific anti-viral therapy. Retrovirology, 5(11). Retrieved April 9, 2013, from

      http://www.retrovirology.com/content/pdf/1742-4690-5-11.pdf

Ghafouri, M., Amini, S., Khalili, K., & Sawaya, B. (2006). HIV-1 associated dementia:

      symptoms and causes. Retrovirology, 3(28). Retrieved April 9, 2013, from

      http://www.retrovirology.com/content/pdf/1742-4690-3-28.pdf

Haseltine, W. (1991). Molecular biology of the human immunodeficiency virus type. The

      FASEB Journal, 5(10), 2349-2357. Retrieved April 9, 2013, from

      http://www.fasebj.org/content/5/10/2349.

Jr., J. E. (2000). HIV-1 Protease Inhibitors. Journals of the Royal Society of Tropical

      Medicine and Hygiene, 30(2), 160-170. Retrieved April 9, 2013, from

      http://cid.oxfordjournals.org/content/30/S

Kula, A., & Marcello, A. (2012). Dynamic Post-Transcriptional Regulation of HIV-1

      Gene Expression. Structural and Molecular Biology of HIV, 1(2), 116-133.

      Retrieved April 9, 2013, from

      http://www.mdpi.com/journal/biology/special_issues/HIV
AN	
  UNDERSTANDING	
  OF	
  HIV-­‐1,	
  SYMPTOMS,	
  AND	
  TREATMENTS	
  

Sampey, G., Guendel, I., Das, R., Jaworski, E., Klase, Z., Narayanan, A., et al. (2012).

       Transcriptional Gene Silencing (TGS) via the RNAi Machinery in HIV-1

       Infections. Structural and Molecular Biology of HIV, 1(2), 339-369. Retrieved

       April 9, 2013, from http://www.mdpi.com/journal/biology/special_issues/HIV

Simon, V., Ho, D., & Karim, Q. (2006). HIV/AIDS Epidemiology, pathogenesis,

       prevention, and treatment. The Lancet, 368(9534), 489-504. Retrieved April 9,

       2013, from http://www.sciencedirect.com/science/article/pii/S0140673606691575

Ward, D. (1999). The AmFAR AIDS Handbook. New York: W.W. Norton & Company.

Zeinalipour-Loizidou, E., Nicolaou, C., Nicolaides, A., & Kostrikis, L. (2007). HIV-1

       Integrase: From Biology to Chemotherapeutics. Current HIV Research, 5, 365-388.

       Retrieved April 9, 2013, from

       http://www.kostrikislab.com/files/shared/Loizidou__Current_HIV_Research_2007.

       pdf

                                                                                           	
  
You can also read