Risk Structures: Concepts, Purpose, and the Causality Problem - Mario Gleirscher University of York, UK June 26, 2019
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Risk Structures: Concepts, Purpose, and the Causality Problem Mario Gleirscher University of York, UK June 26, 2019 Shonan, JP
Part I Risk-aware Systems: Abstraction by Example 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 52
Example: Air-traffic Collision Avoidance System (TCAS) Example: Safe Autonomous Vehicle (SAV) 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 53
Risk Mitigation / Intervention / Enforcement Test Risk Active model Structure synthesised Monitor from abstracts conforms from to Approach: Active safety monitors, System/ MDP, Active Implemen enforcement Process LTS, HA Monitor tation Model monitors pr orce s/ ab om en nise s str y og fr ert ac rec f ts op Monitored Process RQ: How to build a mitigation monitor? / Which model to use? / Which abstraction? / What do we need to verify? 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 56
Example: Air-traffic Collision Avoidance System (TCAS)
Example: Traffic Collision Avoidance System (TCAS) Ego 21Risk RiskSpace Risk Factors Factor near-collision before ncoll, coll collision tmo v{el ncoll u mov t e {ecoll u t l nc 0ncoll co ol l Risk Model R start tp1 , p3 , e ncoll start 0 coll coll tp2 , p5 u tp1 , p6 u tp4 u p4 , p6 u coll ncoll,t0 tmov{finu ěm 0ncoll , coll t?u e nc ll ol co Σztmov{finu abstracts l e m v {fin Σzttmov{finu Σztmov{ecoll u nc tm ncoll from Σzttmov{e u oll “ m“ a4 o 0ncoll , 0coll mov{fin l p4 rl4 , u4 q col 1`severity Process Model P e.g. red (TCAS move) ” : e ą 1`benefit c p4 rl, uq Λ 4 p2 tmov Λ5 : e ncoll oll : c p5 ll nco e rl5 , u5 q Λ2 : Λ Λ p1 mov p1 mov 6 : start a3 fin 1´ 1´ Λ2 : fin Λ a2 a1 p3 : fi n p6 p6 a5 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 57
Example: Traffic Collision Avoidance System (TCAS) Ego 21Risk RiskSpace Risk Factors Factor near-collision before ncoll, coll collision tmo v{el ncoll u mov t e {ecoll u t l nc 0ncoll co ol l Risk Model R start tp1 , p3 , e ncoll start 0 coll coll tp2 , p5 u tp1 , p6 u tp4 u p4 , p6 u coll ncoll,t0 tmov{finu ěm 0ncoll , coll t?u e nc ll ol co Σztmov{finu abstracts l e m v {fin Σzttmov{finu Σztmov{ecoll u nc tm ncoll from Σzttmov{e u oll “ m“ a4 o 0ncoll , 0coll mov{fin l p4 rl4 , u4 q col 1`severity Process Model P e.g. red (TCAS move) ” : e ą 1`benefit c p4 rl, uq Λ 4 p2 tmov Λ5 : e ncoll oll : c p5 ll nco e rl5 , u5 q Λ2 : Λ Λ p1 mov p1 mov 6 : start a3 fin 1´ 1´ Λ2 : fin Λ a2 a1 p3 : fi n p6 p6 a5 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 58
Example: Traffic Collision Avoidance System (TCAS) Ego 21Risk RiskSpace Risk Factors Factor near-collision before ncoll, coll collision tmo v{el ncoll u mov t e {ecoll u t l nc 0ncoll co ol l Risk Model R start tp1 , p3 , e ncoll start 0 coll coll tp2 , p5 u tp1 , p6 u tp4 u p4 , p6 u coll ncoll,t0 tmov{finu ěm 0ncoll , coll t?u e nc ll ol co Σztmov{finu abstracts l e m v {fin Σzttmov{finu Σztmov{ecoll u nc tm ncoll from Σzttmov{e u oll “ m“ a4 o 0ncoll , 0coll mov{fin l p4 rl4 , u4 q col 1`severity Process Model P e.g. red (TCAS move) ” : e ą 1`benefit c p4 rl, uq Λ 4 p2 tmov Λ5 : e ncoll oll : c p5 ll nco e rl5 , u5 q Λ2 : Λ Λ p1 mov p1 mov 6 : start a3 fin 1´ 1´ Λ2 : fin Λ a2 a1 p3 : fi n p6 p6 a5 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 58
Example: Safe Autonomous Vehicle (SAV)
Risk Mitigation / Intervention / Enforcement Test Risk Active model Structure synthesised Monitor from abstracts conforms from to Approach: Active safety monitors, System/ MDP, Active Implemen enforcement Process LTS, HA Monitor tation Model monitors pr orce s/ ab om en nise s str y og fr ert ac rec f ts op Process 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 62
SAV: Low Level Vehicle Dynamics turn rp9 “ v, rp9 “ v, drive at rα9 “ f s left max speed 0ăyă5 yą |ą |v| 0 accel v=l ^ 0 v9 “ as v9 “ 0s yą ą |v 0 0ăvăl v“l α9 0 ^ 0 ^ “ “ ^ “ ^aą0 a ^a“0 0 α neutral move 0 α9 α ‰ ą 0 aă0 aą0 straight 0 rα9 “ 0s rα9 “ 0s halt a start ď α“0 α‰0 0 rp9 “ 0, rp9 “ v, α 0 ^ 0 “ “ v9 “ 0s v9 “ as decel ‰ α9 start yă |ą 0 |v| 0 α9 k ^ 0 α “ 0ăvăl yă v“0 v=0 ą |v ^ 0 rα9 “ f s 0 ^a“0 ^aď0 ´5 ă y ă 0 turn ^ 0 right Longitudinal dynamics LoD Lateral dynamics LaD drive (relative to route segment) accel turn left drive at max halt speed move neutral straight decel turn right Overall low-level dynamics: drive k LaD 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 63
SAV: Situational Perspective of Urban Driving Mode model of the driving activity: Integration with basic || supplyPower low level drive dynamics: driveAtL4 || requestTakeOverByDr driveAtL1 || operateVehicle In each mode, driveThroughCrossing exitTunnel manuallyOvertake driveAtL4Generic verify contract: halt autoOvertake driveAtL1Generic inv ^ pre ñ wppdrive k LaD, driveAtLowSpeed inv ^ postq steerThroughTrafficJam parkWithRemote manuallyPark autoLeaveParkingLot leaveParkingLot start 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 64
SAV: Risk Identification and Assessment Knowledge sources for risk/hazard identification, e.g. • accident reports • domain experts • situation/activity model • local dynamics model • control system architecture • control software Analysis techniques, e.g. • hazard identification: FHA, PHL, … • process/scenario analysis: HazOp, LOPA, BA, STPA, … • causal reasoning: ETA, FMEA, FTA, Bowties, … 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 65
SAV: Situational Perspective of Urban Driving Mode model of the driving activity: Risk factors basic || supplyPower (Yap script): drive 1 HazardModel for "drive" { driveAtL4 || requestTakeOverByDr driveAtL1 || operateVehicle 3 OC alias "on occupied driveThroughCrossing exitTunnel manuallyOvertake course" ; driveAtL4Generic 5 CR alias "increased collision risk" autoOvertake driveAtL1Generic ; halt 7 CC alias "on collision course" ; driveAtLowSpeed 9 ICS alias "inevitable steerThroughTrafficJam parkWithRemote manuallyPark collision state" ; 11 Coll alias "actual autoLeaveParkingLot leaveParkingLot collision" ; 13 ES alias "perception system fault" start ; 15 } 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 66
Risk Structures: Tool Support and Recent Publications Coll 1 OperationalSituation "generic" {} 3 ControlLoop "Robot" for "generic" { eColl emgBr alias "Emergency Brake"; 5 } 7 HazardModel for "generic" { nColl nColl alias "near-collision" 9 mitigatedBy (PREVENT_CRASH.emgBr) direct; enColl prvcnColl 11 Coll alias "collision" requires (nColl) 13 mishap; 0 } From Hazard Analysis to Hazard Mitigation Planning: The Automated Driving Case Mario Gleirscher(B) and Stefan Kugele Technische Universität München, Munich, Germany {mario.gleirscher,stefan.kugele}@tum.de 8.4 Strukturen für die Gefahren §§ Erfahrungen in der Architekturabsicherung komplexer einge- Run-Time Risk Mitigation in Automated Vehicles: erkennung und -behandlung in betteter Systeme1 und §§ der Beobachtung, dass einige Empfehlungen für die Gewähr- R ISK S TRUCTURES : T OWARDS E NGINEERING R ISK - AWARE Abstract. Vehicle safety depends on (a) the range of identified hazards A Model for Studying Preparatory Steps autonomen Maschinen leistung von AM-Sicherheit nicht eindeutig und vollständig AUTONOMOUS S YSTEMS and (b) the operational situations for which mitigations of these hazards sind.2 are acceptably decreasing risk. Moreover, with an increasing degree of Mario Gleirscher Dr. Mario Gleirscher autonomy, risk ownership is likely to increase for vendors towards regula- Department of Computer Science, University of York und A P REPRINT tory certification. Hence, highly automated vehicles have to be equipped Faculty of Informatics Fakultät für Informatik, Technische Universität München 2 Hintergrund Technical University of Munich arXiv:submit/2663380 [cs.SE] 23 Apr 2019 with verified controllers capable of reliably identifying and mitigating Munich, Germany Mario Gleirscher In diesem Abschnitt werden einige Begriffe aus der Literatur und Computer Science Department, University of York, York, UK∗ hazards in all possible operational situations. To this end, available meth- mario.gleirscher@tum.de In diesem Abschnitt werden hochautomatisierte – insbesondere Vorarbeiten des Autors dargestellt, auf denen die spätere Diskus- ods for the design and verification of automated vehicle controllers have autonom handelnde – Maschinen (AM) wie zum Beispiel autono- sion aufbaut. to be supported by models for hazard analysis and mitigation. me mobile Roboter betrachtet. Man erwartet von solchen Syste- April 23, 2019 We assume that autonomous or highly automated driving (AD) will be accompanied by tough assur- In this paper, we describe (1) a framework for the analysis and design ance obligations exceeding the requirements of even recent revisions of ISO 26262 or SOTIF. Hence, men, dass deren Regelungen in Gefahrensituationen ebenso 2.1 Allgemeine Grundlagen of planners (i.e., high-level controllers) capable of run-time hazard iden- automotive control and safety engineers have to (i) comprehensively analyze the driving process and nützliche Handlungsalternativen bieten wie im Normalbetrieb. A BSTRACT tification and mitigation, (2) an incremental algorithm for constructing its control loop, (ii) identify relevant hazards stemming from this loop, (iii) establish feasible auto- Ausgehend von dieser Problemstellung wird nun eine werkzeug- In der Risikoanalyse wird bewertet, inwiefern eine Gefahrenquel- mated measures for the effective mitigation of these hazards or the alleviation of their consequences. gestützte Herangehensweise le (Aggressor) ein Risiko für ein Schutzziel (zum Beispiel Safety, Inspired by widely-used techniques of causal modelling in risk, failure, and accident analysis, this planning models from hazard analysis, and (3) an exemplary application work discusses a com positional framework for risk modelling. Risk models capture fragments of By studying an example, this article investigates some achievements in the modeling for the Security, körperliche Unversehrtheit) eines Schutzobjekts (im to the design of a fail-operational controller based on a given control sys- the space of risky events likely to occur when operating a machine in a given environment. More- steps (i), (ii), and (iii), amenable to formal verification of desired properties derived from potential i. für die Modellierung von Gefahrensituationen sowie Englischen: asset) darstellt und inwieweit ein Schutzmechanis- over, one can build such models into machines such as autonomous robots, to equip them with the tem architecture. Our approach equips the safety engineer with concepts assurance obligations such as the global existence of an effective mitigation strategy. In addition, the mus (auch Beschützer, Sicherheitsfunktion) dieses Risiko wenigs- ability of risk-aware perception, monitoring, decision making, and control. With the notion of a and steps to (2a) elaborate scenarios of endangerment and (2b) design proposed approach is meant for step-wise refinement towards the automated synthesis of AD safety risk factor as the modelling primitive, the framework provides several means to construct and shape ii. für die Bewertung der Plausibilität und Vollständigkeit tens auf ein akzeptables Restrisiko3 reduzieren kann. Häufig wird controllers implementing such properties. risk models. Relational and algebraic properties are investigated and proofs support the validity and operational strategies for mitigating such scenarios. solcher Modelle dazu eine Menge wahrscheinlicher Szenarien in Form von poten- consistency of these properties over the corresponding models. Several examples throughout the ziell unendlichen Ursache-Wirkungs-Ereignisketten betrachtet, discussion illustrate the applicability of the concepts. Overall, this work focuses on the qualitative 1 Introduction anhand eines Beispiels aus dem Bereich des automatisierten wobei die ultimativen und unerwünschten Auswirkungen als Un- treatment of risk with the outlook of transferring these results to probabilistic refinements of the Keywords: Risk analysis · Hazard mitigation · Safe state · Controller Fahrens (AF) diskutiert. glücks-, Unfalls- oder Schadensereignis und alle Ereignisse auf discussed framework. design · Autonomous vehicle · Automotive system · Modeling · Planning For many people, driving a car is a difficult task even after guided training and many years of driving diesem Wege als Zusammensetzung von potenziell verursachen- Keywords Causal modelling · risk · analysis · modelling · safety monitoring · risk mitigation · robots · autonomous practice: This statement gets more tangible when driving in dense urban traffic, complex road settings, den Faktoren beschrieben werden. Hierzu wird weiter unten von systems road construction zones, unknown areas, with hard-to-predict traffic co-participants (i.e., cars, trucks, 1 Motivation Kausalfaktoren und -strukturen gesprochen. Ein kompatibler Be- cyclists, pedestrians), bothersome congestion, or driving a defective car. Consequently, hazards such as griffsrahmen wird in den Kapiteln 3/Schnieder und Schnieder, 1 Challenges, Background, and Contribution drivers misjudging situations and making poor decisions have had a long tradition. Hence, road vehicles Im Rahmen der gefahrenreduzierenden Absicherung von Syste- 5/Beyerer und Geisler sowie 7.1/Vieweg ausführlicher Contents have been equipped with many sorts of safety mechanisms, most recently, with functions for “safety men ist es eine Herausforderung, möglichst starke Sicherheits behandelt. 1 Introduction 2 Automated and autonomous vehicles (AV) are responsible for avoiding mishaps decision support” [7], driving assistance, and monitor-actuator designs, all aiming at reducing operational eigenschaften für autonome, hochautomatisierte Maschinen schon zum Entwurfszeitpunkt festzulegen und Regler solcher Dieser vielfach diskutierte Begriffsrahmen lässt sich auf ganz un- 1.1 Abstractions for Machine Safety and Risk Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . 3 and even for mitigating hazardous situations in as many operational situations risk or making a driver’s role less critical. In AD, more highly automated mechanisms will have to contribute to risk mitigation at run-time and, thus, constitute even stronger assurance obligations [7]. Maschinen für die Einhaltung dieser Eigenschaften zur Laufzeit terschiedliche Bereiche anwenden, zum Beispiel technische An- 1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 as possible. Hence, AVs are examples of systems where the identification (2a) zu entwerfen. Im Folgenden werden formale Strukturen, welche lagen, IT-Systeme, in der Patientenbehandlung im Krankenhaus, In Sec. 1.1, we introduce basic terms for risk analysis and (run-time) mitigation (RAM) for automated 1.3 Contributions and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 and mitigation (2b) of hazards have to be highly automated. This circumstance vehicles (AV) as discussed in this work. Sec. 1.2 elaborates some of these assurance obligations. für die Modellbildung und später für die detaillierte Entwicklung im unternehmerischen Projektmanagement, in Arbeitsprozessen makes these systems even more complex and difficult to design. Thus, safety von Reglern hilfreich sind, besprochen. Die Motivation, solche im Hochbau oder an Flughäfen (siehe Kapitel 8.1/Wolf und 2 Background 7 engineers require specific models and methods for risk analysis and mitigation. Strukturen zu nutzen, resultiert aus Lichte sowie 8.2/Deutschmann et al.). Je nach Art des Schutz- 2.1 Notions of Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 Background and Terminology ziels und -objekts gibt es spezifische Herangehensweisen zur RA As an example, we consider manned road vehicles in road traffic with an §§ Bestrebungen, die Risikobewertung und den Verlässlich- 2.2 The Risk of Undesired Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 According to control theory, a control loop L comprises a (physical) process P to be controlled and sowie verschiedene Bezeichnungen, wie zum Beispiel funktiona- autopilot (AP) feature. Such vehicles are able to automatically conduct a ride a controller C, i.e., a system in charge of controlling this process according to some laws defined by keitsnachweis für allgemeine Systemklassen durch speziali- le Sicherheit in der Mechatronik und Automatisierungstechnik4 2.3 Formal Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 only given some valid target and minimizing human intervention. The following an application and an operator [20]. The engineering of safety-critical control loops typically involves sierte Modellbildung zu unterstützen (siehe Kapitel 4/ oder Cyber Security für stark vernetzte IT-Systeme.5 Regelmäßig Bertscheet al.), wird versucht, Erkenntnisse aus verschiedenen Arbeitsfeldern 3 Risk Elements 9 AV-level (S)afety (G)oal specifies the problem we want to focus on in this paper: reducing hazards by making controllers safe in their intended function (SOTIF), resilient (i.e., tolerate ∗ Correspondence and offprint requests to: Mario Gleirscher, Univerity of York, Deramore Lane, Heslington, York YO10 5GH, disturbances), dependable (i.e., tolerate faults), and secure (i.e., tolerate misuse). UK. e-mail: mario.gleirscher@york.ac.uk SG: The AV can always reach a safest possible state σ wrt. the hazards In automated driving, the process under consideration is the driving process which we decompose This work is supported by the Deutsche Forschungsgemeinschaft (DFG) under Grants no. GL 915/1- into a set of driving situations S , see Sec. 2. Taxonomies of such situations have been published in, e.g. 1 and GL 915/1-2. c 2019. This manuscript is made available under the CC-BY-NC-ND 4.0 license identified and present in a specific operational situation os . 1| Vgl. Kugele et al. 2017. http://creativecommons.org/licenses/by-nc-nd/4.0/. 2| Vgl. Alexander et al. 2009. Reference Format: Gleirscher, M.. Risk Structures: Towards Engineering Risk-aware Autonomous Systems (April 23, 2019). c Springer International Publishing AG 2017 L. Bulwahn, M. Kamali, S. Linker (Eds.): First Workshop on c M. Gleirscher 3| Vgl. McDermid 2001 und Kumamoto 2007 diskutieren „As Low As Reasonably Practicable“ (ALARP). Unpublished working paper. Department of Computer Science, University of York, United Kingdom. C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 310–326, 2017. Formal Verification of Autonomous Vehicles (FVAV 2017). This work is licensed under the 4| Vgl. Schnieder/Schnieder 2009, Schnieder/Schnieder 2008, Schnieder/Drewes 2008. DOI: 10.1007/978-3-319-57288-8 23 EPTCS 257, 2017, pp. 75–90, doi:10.4204/EPTCS.257.8 Creative Commons Attribution License. 5| Vgl. Lund et al. 2011. 154 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 67
Risk Factors (Basic Phase Model) ofm …mitigated operation f recovery… mfr mf …mitigation endanger- ment … ef ofn ofe ef …endangerment nominal 0f f …endangered operation… operation mfd …direct mitigation Purposes: • Modelling primitive for risk space exploration • Semantics of basic events in DFTs or DFRTs • Synthesis of local enforcement monitors 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 68
SAV: Situational Risk Space CCOCICSCollCR e OC e ICS e Coll e CR e CC Vehicle Vehicle Vehicle Vehicle Vehicle CCICSCollCR CCOCCollCR CCOCICSCR CCOCICSColl OCICSCollCR e ICS e Coll e CR e CC e OC e Coll e CR e CC e OC e ICS e CR e CC e OC e ICS e Coll e CC e OC e ICS e Coll e CR Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle CCCollCR CCICSCR CCICSColl ICSCollCR CCOCCR CCOCColl OCCollCR CCOCICS OCICSCR OCICSColl e Coll e CR e CC e ICS e CR e CC e ICS e Coll e CC e ICS e Coll e CR e OC e CR e CC e OC e Coll e CC e OC e Coll e CR e OC e ICS e CC e OC e ICS e CR e OC e ICS e Coll Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle CCCR CCColl CollCR CCICS ICSCR ICSColl CCOC OCCR OCColl OCICS e CR e CC e Coll e CC e Coll e CR e ICS e CC e ICS e CR e ICS e Coll e OC e CC e OC e CR e OC e Coll e OC e ICS Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle CC CR Coll ICS OC e CC e CR e Coll e ICS e OC Vehicle Vehicle Vehicle Vehicle Vehicle 0 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 69
SAV: Situational Risk Space (zoomed) CCOCICSCollCR e OC e ICS e Coll e CR Vehicle Vehicle Vehicle Vehicle CCOCCollCR CCOCICSCR CCOC e OC e Coll e CR e CC e OC e ICS e CR e CC e OC Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle lCR CCOCCR CCOCColl OCCollCR e Coll e CR e OC e CR e CC e OC e Coll e CC e OC e C Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle ICSCR ICSColl CCOC OCCR e CC e ICS e CR e ICS e Coll e OC e CC e OC e CR Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle Vehicle CR Coll ICS OC e CC e CR e Coll e ICS e OC Vehicle Vehicle Vehicle Vehicle Vehicle 0 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 69
Causality (Lewis 1973) Definition (Counterfactual Conditional) A 2Ñ C is nonvacuously true iff C holds at all the closest A-worlds. What are the closest A-worlds? 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 70
SAV: Risk Identification and Assessment Yap script OperationalSituation "drive" excludes (OC) 2 { 26 mitigatedBy (PREVENT_CRASH.EB) include "envPerc"; ; 4 } 28 CC alias "on collision course" requires (CR) 6 ControlLoop "Vehicle" for "drive" 30 deniesMit (CR,OC) { excludes (CR,OC) 8 replan alias "Slow-down || re-plan 32 mitigatedBy (PREVENT_CRASH.swerve) route"; ; brake alias "Standard brake"; 34 ICS alias "inevitable collision state" 10 swerve alias "Short-term circumvention requires (CC) of obstacle"; 36 excludes (CC,CR,OC) EB alias "Emergency brake"; causes (Coll) 12 accel alias "Accelerate"; 38 mitigatedBy (PREVENT_CRASH.EB) airbag alias "Front airbag"; ; 14 } 40 Coll alias "actual collision" requires (ICS) 16 HazardModel for "drive" 42 excludes (CC,CR,OC,ICS,ES) { mitigatedBy (ALLEVIATE.airbag) 18 OC alias "on occupied course" 44 mishap mitigatedBy (PREVENT_CRASH.replan) ; 20 direct 46 ES alias "perception system fault" ; excludes (CC,CR,OC,ICS) 22 CR alias "increased collision risk" 48 deniesMit (OC,CC) requires (OC) ; 24 deniesMit (OC) 50 } 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 71
SAV: Situational Risk Space ES Coll e ES e CollICS Vehicle Vehicle e ES Vehicle CC e ES e CC Vehicle Vehicle e ES Approach: LOPA/BA to CR create chain of possible Vehicle e Vehicle CR interventions OC e OC Vehicle 0 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 72
SAV: Situational Risk Space ES f opES fb Approach: LOPA/BA to ES Coll create chain of possible eES attColl alv interventions eES eES CC Coll eES prvcCC eCollICS Layered intervention rES eES CR CC pattern for SAV obstacle ES e prvcCR e CC mColl e avoidance CR mCC e mCR e eCR Nice side-effect: Use OC pattern as enhanced eOC prvcOC phase model for similar 0 risk factors 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 72
Taxonomy of Mitigations Overall Safety Safety Constraints Preventive Fail- Stabilization Safety Safe Passive Safety Pre-Crash Limp- Fail- Fail- Fault Fault Assistance Home Silent Secure Containment Avoidance Vigilance Non- Check Interference Obstacle Fail- Fault Shutdown Recovery Masking Redundancy Barrier Substitution Simplicity Avoidance Operational Detection Error- Checking Warning Comparison Repair Reconfiguration Degradation Filter Voting Override Correcting Replication Diversity Protection Separation Codes fully partially realizes realizes Condition Sanity Notification Rollback Limiter Interlocking Monitoring Check 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 73
Taxonomy of Mitigations Preventive Fail- Safety Safe Pre-Crash Limp- Fail- Fail- Fault Assistance Home Silent Secure Containment Vigilance Check Obstacle Fail- Fault Shutdown Recovery Masking Avoidance Operational Detection Checking Warning Comparison Repair Reconfiguration Degradation Filter Votin 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 73 Condition Sanity Notification Rollback
SAV: Situational Risk Space (Monitor Candidate) ES f opES Approach: LOPA/BA to fb ES Coll attColl create chain of possible eES alv eES eES CC Coll interventions eES prvcCC eCollICS = Specification of a valid rES eES CR CC safe system eES prvcCR eCC mColl e expected order violated CR mCC e mCR eCR Ñ lack of observability, e OC e OC prvcOC incomplete monitor, 0 context mismatch? 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 74
Risk Structures: Templates for Causal Reasoning A risk structure R is valid iff for s, s1 , s2 , s3 P RpFq, s3 P Mishaps, e, m, e1 P Σ˚ @s, s3 P RpFq, t P R Ds1 , s2 P RpFq, m P Σ˚ : t “ eme1 ^ e m e’ s s’ s” s”’ Definition (Mitigation from Counterfactual Perspective) m is mitigation of cause c ‰ s2 of a mishap s3 iff e1 gets unlikely. (s2 , e1 form the counterfactual.) Proof obligations for each t: Check that, from s, 1. s2 is actual cause of s3 , 2. s1 is recognisable, 3. from s1 , m reduces s2 . 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 75
Risk Mitigation / Intervention / Enforcement Test Risk Active model Structure synthesised Monitor from abstracts conforms from to Approach: Active safety monitors, System/ MDP, Active Implemen enforcement Process LTS, HA Monitor tation Model monitors pr orce s/ ab om en nise s str y og fr ert ac rec f ts op Monitored Process 4.0 / Gleirscher / Shonan, JP/ June 26, 2019 76
You can also read