Risk Structures: Concepts, Purpose, and the Causality Problem - Mario Gleirscher University of York, UK June 26, 2019

Page created by Jimmy Adkins
 
CONTINUE READING
Risk Structures: Concepts, Purpose, and the Causality Problem - Mario Gleirscher University of York, UK June 26, 2019
Risk Structures: Concepts, Purpose,
and the Causality Problem

Mario Gleirscher
University of York, UK
June 26, 2019
Shonan, JP
Part I

                    Risk-aware Systems:
                   Abstraction by Example

4.0 / Gleirscher / Shonan, JP/ June 26, 2019            52
Example: Air-traffic Collision Avoidance System (TCAS)

Example: Safe Autonomous Vehicle (SAV)

  4.0 / Gleirscher / Shonan, JP/ June 26, 2019           53
Risk Mitigation / Intervention / Enforcement
                                                                                             Test
                                                       Risk                           Active model
                                                    Structure       synthesised      Monitor
                                                                       from

                                                        abstracts

                                                                                  conforms
                                                          from

                                                                                     to
 Approach: Active
 safety monitors,                                System/
                                           MDP,                                       Active Implemen
 enforcement                                     Process
                                         LTS, HA                                     Monitor tation
                                                  Model
 monitors

                                                                            pr orce s/
                                                        ab om

                                                                              en nise
                                                                                      s
                                                          str

                                                                                    y
                                                                                  og
                                                            fr

                                                                                 ert
                                                             ac

                                                                              rec

                                                                                f
                                                                ts

                                                                              op
                                                                    Monitored
                                                                     Process

   RQ: How to build a mitigation monitor? / Which model to use?
   / Which abstraction? / What do we need to verify?

     4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                       56
Example: Air-traffic Collision
Avoidance System (TCAS)
Example: Traffic Collision Avoidance System (TCAS)                                                                                                   Ego

                                                                       21Risk
                                                                          RiskSpace
                                                                          Risk Factors
                                                                               Factor
                              near-collision                           before
                                                              ncoll, coll            collision
                                                  tmo v{el ncoll u                                                            mov
                                                 t
                                                                                  e                                            {ecoll u
                                                    
                                                                                                                            t
                                                          l                            nc
                                     0ncoll            co                                ol
                                                                                           l
    Risk Model R start              tp1 , p3 ,
                                                         e            ncoll
                                                                                                    start
                                                                                                                  0 coll
                                                                                                                                                   coll
                                                                     tp2 , p5 u                                 tp1 , p6 u                         tp4 u
                                    p4 , p6 u
                                                coll
                                       ncoll,t0
                                              tmov{finu ěm                            0ncoll , coll                                  t?u
                                                   e nc                   ll
                                                               ol       co                                                                   Σztmov{finu
      abstracts                                                  l
                                                                              e
                                                                                  
                                     m v {fin
                                                               Σzttmov{finu                                  Σztmov{ecoll u

                                      nc
                                      tm     ncoll
        from                    Σzttmov{e            u

                                         oll “
                                                                                                       m“                             a4
                                           o
                                                              0ncoll , 0coll
                                                                                                       
                                                                                                    mov{fin
                                                                                                                           l          p4        rl4 , u4 q
                                                                                                                       col
                                                                                                              1`severity
   Process Model P                                                                     e.g. red
                                                                                     (TCAS  move)
                                                                                                ”                   : e ą
                                                                                                              1`benefit
                                                                                                                                  c          p4 rl, uq
                                                                                                               Λ  4

                                                                                  p2     tmov                  Λ5 : e ncoll oll
                                                                                                                          : c p5
                                                                     ll
                                                                 nco
                                                                e                                                                                 rl5 , u5 q
                                                         Λ2 :                                                     Λ Λ
                           p1        mov                                                       p1           mov 6 :
              start                                                                                         a3        fin
                                                         1´

                                                                                                                             1´
                                                              Λ2 :
                                                                      fin

                                                                                                                               Λ
                           a2                     a1                              p3

                                                                                                                                      : fi
                                                                                                                                        n
                                                                                                                                      p6
                                                                                                                                             p6
                                                                            a5
     4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                                                                              57
Example: Traffic Collision Avoidance System (TCAS)                                                                                                   Ego

                                                                       21Risk
                                                                          RiskSpace
                                                                          Risk Factors
                                                                               Factor
                              near-collision                           before
                                                              ncoll, coll            collision
                                                  tmo v{el ncoll u                                                            mov
                                                 t
                                                                                  e                                            {ecoll u
                                                    
                                                                                                                            t
                                                          l                            nc
                                     0ncoll            co                                ol
                                                                                           l
    Risk Model R start              tp1 , p3 ,
                                                         e            ncoll
                                                                                                    start
                                                                                                                  0 coll
                                                                                                                                                   coll
                                                                     tp2 , p5 u                                 tp1 , p6 u                         tp4 u
                                    p4 , p6 u
                                                coll
                                       ncoll,t0
                                              tmov{finu ěm                            0ncoll , coll                                  t?u
                                                   e nc                   ll
                                                               ol       co                                                                   Σztmov{finu
      abstracts                                                  l
                                                                              e
                                                                                  
                                     m v {fin
                                                               Σzttmov{finu                                  Σztmov{ecoll u

                                      nc
                                      tm     ncoll
        from                    Σzttmov{e            u

                                         oll “
                                                                                                       m“                             a4
                                           o
                                                              0ncoll , 0coll
                                                                                                       
                                                                                                    mov{fin
                                                                                                                           l          p4        rl4 , u4 q
                                                                                                                       col
                                                                                                              1`severity
   Process Model P                                                                     e.g. red
                                                                                     (TCAS  move)
                                                                                                ”                   : e ą
                                                                                                              1`benefit
                                                                                                                                  c          p4 rl, uq
                                                                                                               Λ  4

                                                                                  p2     tmov                  Λ5 : e ncoll oll
                                                                                                                          : c p5
                                                                     ll
                                                                 nco
                                                                e                                                                                 rl5 , u5 q
                                                         Λ2 :                                                     Λ Λ
                           p1        mov                                                       p1           mov 6 :
              start                                                                                         a3        fin
                                                         1´

                                                                                                                             1´
                                                              Λ2 :
                                                                      fin

                                                                                                                               Λ
                           a2                     a1                              p3

                                                                                                                                      : fi
                                                                                                                                        n
                                                                                                                                      p6
                                                                                                                                             p6
                                                                            a5
     4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                                                                          58
Example: Traffic Collision Avoidance System (TCAS)                                                                                                   Ego

                                                                       21Risk
                                                                          RiskSpace
                                                                          Risk Factors
                                                                               Factor
                              near-collision                           before
                                                              ncoll, coll            collision
                                                  tmo v{el ncoll u                                                            mov
                                                 t
                                                                                  e                                            {ecoll u
                                                    
                                                                                                                            t
                                                          l                            nc
                                     0ncoll            co                                ol
                                                                                           l
    Risk Model R start              tp1 , p3 ,
                                                         e            ncoll
                                                                                                    start
                                                                                                                  0 coll
                                                                                                                                                   coll
                                                                     tp2 , p5 u                                 tp1 , p6 u                         tp4 u
                                    p4 , p6 u
                                                coll
                                       ncoll,t0
                                              tmov{finu ěm                            0ncoll , coll                                  t?u
                                                   e nc                   ll
                                                               ol       co                                                                   Σztmov{finu
      abstracts                                                  l
                                                                              e
                                                                                  
                                     m v {fin
                                                               Σzttmov{finu                                  Σztmov{ecoll u

                                      nc
                                      tm     ncoll
        from                    Σzttmov{e            u

                                         oll “
                                                                                                       m“                             a4
                                           o
                                                              0ncoll , 0coll
                                                                                                       
                                                                                                    mov{fin
                                                                                                                           l          p4        rl4 , u4 q
                                                                                                                       col
                                                                                                              1`severity
   Process Model P                                                                     e.g. red
                                                                                     (TCAS  move)
                                                                                                ”                   : e ą
                                                                                                              1`benefit
                                                                                                                                  c          p4 rl, uq
                                                                                                               Λ  4

                                                                                  p2     tmov                  Λ5 : e ncoll oll
                                                                                                                          : c p5
                                                                     ll
                                                                 nco
                                                                e                                                                                 rl5 , u5 q
                                                         Λ2 :                                                     Λ Λ
                           p1        mov                                                       p1           mov 6 :
              start                                                                                         a3        fin
                                                         1´

                                                                                                                             1´
                                                              Λ2 :
                                                                      fin

                                                                                                                               Λ
                           a2                     a1                              p3

                                                                                                                                      : fi
                                                                                                                                        n
                                                                                                                                      p6
                                                                                                                                             p6
                                                                            a5
     4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                                                                          58
Example: Safe Autonomous Vehicle
(SAV)
Risk Mitigation / Intervention / Enforcement
                                                                                             Test
                                                       Risk                           Active model
                                                    Structure       synthesised      Monitor
                                                                       from

                                                        abstracts

                                                                                  conforms
                                                          from

                                                                                     to
 Approach: Active
 safety monitors,                                System/
                                           MDP,                                       Active Implemen
 enforcement                                     Process
                                         LTS, HA                                     Monitor tation
                                                  Model
 monitors

                                                                            pr orce s/
                                                        ab om

                                                                              en nise
                                                                                      s
                                                          str

                                                                                    y
                                                                                  og
                                                            fr

                                                                                 ert
                                                             ac

                                                                              rec

                                                                                f
                                                                ts

                                                                              op
                                                                     Process

     4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                       62
SAV: Low Level Vehicle Dynamics
                                                                                                                                  turn
                     rp9 “ v,                           rp9 “ v,      drive at                                  rα9 “ f s          left
                                                                     max speed                                 0ăyă5

                                                                                                                                    yą |ą
                                                                                                       |v| 0
       accel                            v=l

                                                                                                                                    ^
                                                                                                            0
                     v9 “ as                            v9 “ 0s

                                                                                                         yą

                                                                                                          ą

                                                                                                                                      |v

                                                                                                                                        0
                    0ăvăl                                 v“l

                                                                                                                         α9
                                                                                                        0

                                                                                                                           ^
                                                                                                       0
                                                                                                 ^ “

                                                                                                                            “
                                                                                                  ^

                                                                                                     “
                    ^aą0                    a           ^a“0

                                                                                                                                          0
                                                                                                                             α
                                                                                      neutral                                                     move

                                                                                                                              0
                                                                                                   α9
                                                                                                  α

                                                                                                                               ‰
                                                ą
                                                    0

                                                            aă0
                         aą0
                                                                                                                                                 straight

                                                                                                                                 0
                                                                                                 rα9 “ 0s                             rα9 “ 0s
           halt
                                a                                                    start
                                    ď                                                             α“0                                  α‰0
                                        0
                     rp9 “ 0,                            rp9 “ v,

                                                                                                          α

                                                                                                                                      0
                                                                                                           ^

                                                                                                                                     0
                                                                                                                                    “
                                                                                                            “
                     v9 “ 0s                             v9 “ as     decel

                                                                                                                                   ‰
                                                                                                             α9
   start

                                                                                                yă |ą

                                                                                                               0

                                                                                                                            |v| 0
                                                                                                                                 α9
                                                                                 k

                                                                                                ^

                                                                                                                                 0
                                                                                                                                α
                                                                                                                “
                                                        0ăvăl

                                                                                                                              yă
                      v“0               v=0

                                                                                                                               ą
                                                                                                  |v

                                                                                                                              ^
                                                                                                                  0
                                                                                                               rα9 “ f s

                                                                                                    0
                     ^a“0                               ^aď0
                                                                                                              ´5 ă y ă 0 turn

                                                                                                                          ^
                                                                                                      0
                                                                                                                         right

           Longitudinal dynamics LoD                                                            Lateral dynamics LaD
                               drive
                                                                                             (relative to route segment)
                                    accel
                                                                                                                      turn
                                                                                                                       left

                                                                     drive
                                                                    at max
                  halt
                                                                    speed                                                              move
                                                                                                neutral
                                                                                                                                      straight

                                    decel
                                                                                                                      turn
                                                                                                                      right

                                            Overall low-level dynamics:                        drive k LaD

     4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                                                                           63
SAV: Situational Perspective of Urban Driving

 Mode model of the driving activity:                                                                   Integration with
                                       basic || supplyPower
                                                                                                       low level
                                               drive                                                   dynamics:
                 driveAtL4 || requestTakeOverByDr                        driveAtL1 || operateVehicle

                                                                                                       In each mode,
    driveThroughCrossing                               exitTunnel                 manuallyOvertake

                            driveAtL4Generic
                                                                                                       verify contract:
                                     halt
                                                    autoOvertake                   driveAtL1Generic    inv ^ pre ñ
                                                                                                       wppdrive k LaD,
                                                    driveAtLowSpeed
                                                                                                       inv ^ postq
   steerThroughTrafficJam           parkWithRemote                     manuallyPark

                                   autoLeaveParkingLot                leaveParkingLot

                                                            start

      4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                                        64
SAV: Risk Identification and Assessment

   Knowledge sources for risk/hazard identification, e.g.

      • accident reports
      • domain experts
      • situation/activity model
      • local dynamics model
      • control system architecture
      • control software

   Analysis techniques, e.g.

      • hazard identification: FHA, PHL, …
      • process/scenario analysis: HazOp, LOPA, BA, STPA, …
      • causal reasoning: ETA, FMEA, FTA, Bowties, …

     4.0 / Gleirscher / Shonan, JP/ June 26, 2019             65
SAV: Situational Perspective of Urban Driving

 Mode model of the driving activity:                                                                     Risk factors
                                       basic || supplyPower
                                                                                                         (Yap script):
                                               drive                                                    1 HazardModel for "drive"
                                                                                                          {
                 driveAtL4 || requestTakeOverByDr                        driveAtL1 || operateVehicle
                                                                                                        3    OC alias "on occupied
    driveThroughCrossing                               exitTunnel                 manuallyOvertake                 course"
                                                                                                                ;
                            driveAtL4Generic                                                            5    CR alias "increased
                                                                                                                   collision risk"
                                                    autoOvertake                   driveAtL1Generic             ;
                                     halt                                                               7    CC alias "on collision
                                                                                                                    course"
                                                                                                                ;
                                                    driveAtLowSpeed                                     9    ICS alias "inevitable
   steerThroughTrafficJam           parkWithRemote                     manuallyPark                                collision state"
                                                                                                                ;
                                                                                                       11    Coll alias "actual
                                   autoLeaveParkingLot                leaveParkingLot                              collision"
                                                                                                                ;
                                                                                                       13    ES alias "perception
                                                                                                                   system fault"
                                                            start
                                                                                                                ;
                                                                                                       15 }

      4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                                                    66
Risk Structures: Tool Support and Recent Publications

                                                Coll                                                                                                                                             1 OperationalSituation "generic" {}

                                                                                                                                                                                                3 ControlLoop "Robot" for "generic" {
                                                                         eColl                                                                                                                      emgBr alias "Emergency Brake";
                                                                                                                                                                                                5 }

                                                                                                                                                                                          7 HazardModel for "generic" {
                                           nColl                                                                                                                                              nColl alias "near-collision"
                                                                                                                                                                                          9      mitigatedBy (PREVENT_CRASH.emgBr)
                                                                                                                                                                                                 direct;
                             enColl prvcnColl                                                                                                                                            11   Coll alias "collision"
                                                                                                                                                                                                 requires (nColl)
                                                                                                                                                                                         13      mishap;
                                                            0                                                                                                                               }

        From Hazard Analysis to Hazard Mitigation
          Planning: The Automated Driving Case

                          Mario Gleirscher(B)         and Stefan Kugele

                      Technische Universität München, Munich, Germany
                         {mario.gleirscher,stefan.kugele}@tum.de
                                                                                                                                                                                                                  8.4	Strukturen für die Gefahren­                                        §§ Erfahrungen in der Architekturabsicherung komplexer einge-
                                                                                                     Run-Time Risk Mitigation in Automated Vehicles:                                                                   erkennung und -behandlung in                                           betteter Systeme1 und
                                                                                                                                                                                                                                                                                           §§ der Beobachtung, dass einige Empfehlungen für die Gewähr-                                                        R ISK S TRUCTURES : T OWARDS E NGINEERING R ISK - AWARE
           Abstract. Vehicle safety depends on (a) the range of identified hazards                        A Model for Studying Preparatory Steps                                                                        ­autonomen Maschinen                                                   leistung von AM-Sicherheit nicht eindeutig und vollständig                                                                      AUTONOMOUS S YSTEMS
           and (b) the operational situations for which mitigations of these hazards                                                                                                                                                                                                          sind.2
           are acceptably decreasing risk. Moreover, with an increasing degree of                                                          Mario Gleirscher                                                       Dr. Mario Gleirscher
           autonomy, risk ownership is likely to increase for vendors towards regula-                                                                                                                             Department of Computer Science, University of York und ­                                                                                                                                                                                        A P REPRINT
           tory certification. Hence, highly automated vehicles have to be equipped                                                        Faculty of Informatics                                                  Fakultät für Informatik, Technische Universität München                  2        Hintergrund
                                                                                                                                      Technical University of Munich

                                                                                                                                                                                                                                                                                                                                                                arXiv:submit/2663380 [cs.SE] 23 Apr 2019
           with verified controllers capable of reliably identifying and mitigating                                                          Munich, Germany                                                                                                                                                                                                                                                                                                Mario Gleirscher
                                                                                                                                                                                                                                                                                           In diesem Abschnitt werden einige Begriffe aus der Literatur und                                                                             Computer Science Department, University of York, York, UK∗
           hazards in all possible operational situations. To this end, available meth-                                                mario.gleirscher@tum.de
                                                                                                                                                                                                                  In diesem Abschnitt werden hochautomatisierte – insbesondere             Vorarbeiten des Autors dargestellt, auf denen die spätere Diskus-
           ods for the design and verification of automated vehicle controllers have                                                                                                                               autonom handelnde – Maschinen (AM) wie zum Beispiel autono-              sion aufbaut.
           to be supported by models for hazard analysis and mitigation.                                                                                                                                          me mobile Roboter betrachtet. Man erwartet von solchen Syste-                                                                                                                                                                                  April 23, 2019
                                                                                                 We assume that autonomous or highly automated driving (AD) will be accompanied by tough assur-
              In this paper, we describe (1) a framework for the analysis and design             ance obligations exceeding the requirements of even recent revisions of ISO 26262 or SOTIF. Hence,               men, dass deren Regelungen in Gefahrensituationen ebenso                 2.1      Allgemeine Grundlagen
           of planners (i.e., high-level controllers) capable of run-time hazard iden-           automotive control and safety engineers have to (i) comprehensively analyze the driving process and              nützliche Handlungsalternativen bieten wie im Normalbetrieb.                                                                                                                                                                                   A BSTRACT
           tification and mitigation, (2) an incremental algorithm for constructing               its control loop, (ii) identify relevant hazards stemming from this loop, (iii) establish feasible auto-         Ausgehend von dieser Problemstellung wird nun eine werkzeug-             In der Risikoanalyse wird bewertet, inwiefern eine Gefahrenquel-
                                                                                                 mated measures for the effective mitigation of these hazards or the alleviation of their consequences.           gestützte Herangehensweise                                               le (Aggressor) ein Risiko für ein Schutzziel (zum Beispiel Safety,                                                        Inspired by widely-used techniques of causal modelling in risk, failure, and accident analysis, this
           planning models from hazard analysis, and (3) an exemplary application                                                                                                                                                                                                                                                                                                                                    work discusses a com positional framework for risk modelling. Risk models capture fragments of
                                                                                                      By studying an example, this article investigates some achievements in the modeling for the                                                                                          Security, körperliche Unversehrtheit) eines Schutzobjekts (im
           to the design of a fail-operational controller based on a given control sys-                                                                                                                                                                                                                                                                                                                              the space of risky events likely to occur when operating a machine in a given environment. More-
                                                                                                 steps (i), (ii), and (iii), amenable to formal verification of desired properties derived from potential         i. für die Modellierung von Gefahrensituationen sowie                    Englischen: asset) darstellt und inwieweit ein Schutzmechanis-                                                            over, one can build such models into machines such as autonomous robots, to equip them with the
           tem architecture. Our approach equips the safety engineer with concepts               assurance obligations such as the global existence of an effective mitigation strategy. In addition, the                                                                                  mus (auch Beschützer, Sicherheitsfunktion) dieses Risiko wenigs-                                                          ability of risk-aware perception, monitoring, decision making, and control. With the notion of a
           and steps to (2a) elaborate scenarios of endangerment and (2b) design                 proposed approach is meant for step-wise refinement towards the automated synthesis of AD safety                                                                                                                                                                                                                    risk factor as the modelling primitive, the framework provides several means to construct and shape
                                                                                                                                                                                                                  ii. für die Bewertung der Plausibilität und Vollständigkeit              tens auf ein akzeptables Restrisiko3 reduzieren kann. Häufig wird
                                                                                                 controllers implementing such properties.                                                                                                                                                                                                                                                                           risk models. Relational and algebraic properties are investigated and proofs support the validity and
           operational strategies for mitigating such scenarios.                                                                                                                                                      solcher Modelle                                                      dazu eine Menge wahrscheinlicher Szenarien in Form von poten-
                                                                                                                                                                                                                                                                                                                                                                                                                     consistency of these properties over the corresponding models. Several examples throughout the
                                                                                                                                                                                                                                                                                           ziell unendlichen Ursache-Wirkungs-Ereignisketten betrachtet,                                                             discussion illustrate the applicability of the concepts. Overall, this work focuses on the qualitative
                                                                                          1     Introduction                                                                                                      anhand eines Beispiels aus dem Bereich des automatisierten               wobei die ultimativen und unerwünschten Auswirkungen als Un-                                                              treatment of risk with the outlook of transferring these results to probabilistic refinements of the
           Keywords: Risk analysis · Hazard mitigation · Safe state · Controller                                                                                                                                  Fahrens (AF) diskutiert.                                                 glücks-, Unfalls- oder Schadensereignis und alle Ereignisse auf                                                           discussed framework.
           design · Autonomous vehicle · Automotive system · Modeling · Planning          For many people, driving a car is a difficult task even after guided training and many years of driving                                                                                          diesem Wege als Zusammensetzung von potenziell verursachen-
                                                                                                                                                                                                                                                                                                                                                                                                           Keywords Causal modelling · risk · analysis · modelling · safety monitoring · risk mitigation · robots · autonomous
                                                                                          practice: This statement gets more tangible when driving in dense urban traffic, complex road settings,                                                                                          den Faktoren beschrieben werden. Hierzu wird weiter unten von                                                   systems
                                                                                          road construction zones, unknown areas, with hard-to-predict traffic co-participants (i.e., cars, trucks,               1       Motivation                                                       Kausalfaktoren und -strukturen gesprochen. Ein kompatibler Be-
                                                                                          cyclists, pedestrians), bothersome congestion, or driving a defective car. Consequently, hazards such as                                                                                         griffsrahmen wird in den Kapiteln 3/Schnieder und Schnieder,
    1    Challenges, Background, and Contribution                                         drivers misjudging situations and making poor decisions have had a long tradition. Hence, road vehicles                 Im Rahmen der gefahrenreduzierenden Absicherung von Syste-               5/Beyerer und Geisler sowie 7.1/Vieweg ausführlicher
                                                                                                                                                                                                                                                                                                                                                                                                           Contents
                                                                                          have been equipped with many sorts of safety mechanisms, most recently, with functions for “safety                      men ist es eine Herausforderung, möglichst starke Sicherheits­           behandelt.
                                                                                                                                                                                                                                                                                                                                                                                                           1   Introduction                                                                                                          2
    Automated and autonomous vehicles (AV) are responsible for avoiding mishaps           decision support” [7], driving assistance, and monitor-actuator designs, all aiming at reducing operational             eigenschaften für autonome, hochautomatisierte Maschinen
                                                                                                                                                                                                                  schon zum Entwurfszeitpunkt festzulegen und Regler solcher               Dieser vielfach diskutierte Begriffsrahmen lässt sich auf ganz un-                                                  1.1   Abstractions for Machine Safety and Risk Awareness . . . . . . . . . . . . . . . . . . . . . . . . . .          3
    and even for mitigating hazardous situations in as many operational situations        risk or making a driver’s role less critical. In AD, more highly automated mechanisms will have to
                                                                                          contribute to risk mitigation at run-time and, thus, constitute even stronger assurance obligations [7].                Maschinen für die Einhaltung dieser Eigenschaften zur Laufzeit           terschiedliche Bereiche anwenden, zum Beispiel technische An-                                                       1.2   Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      4
    as possible. Hence, AVs are examples of systems where the identification (2a)                                                                                                                                  zu entwerfen. Im Folgenden werden formale Strukturen, welche             lagen, IT-Systeme, in der Patientenbehandlung im Krankenhaus,
                                                                                              In Sec. 1.1, we introduce basic terms for risk analysis and (run-time) mitigation (RAM) for automated                                                                                                                                                                                                            1.3   Contributions and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        6
    and mitigation (2b) of hazards have to be highly automated. This circumstance         vehicles (AV) as discussed in this work. Sec. 1.2 elaborates some of these assurance obligations.                       für die Modellbildung und später für die detaillierte Entwicklung        im unternehmerischen Projektmanagement, in Arbeitsprozessen
    makes these systems even more complex and difficult to design. Thus, safety                                                                                                                                     von Reglern hilfreich sind, besprochen. Die Motivation, solche           im Hochbau oder an Flughäfen (siehe Kapitel 8.1/Wolf und                                                        2   Background                                                                                                            7
    engineers require specific models and methods for risk analysis and mitigation.                                                                                                                                Strukturen zu nutzen, resultiert aus                                     Lichte sowie 8.2/Deutschmann et al.). Je nach Art des Schutz-                                                       2.1   Notions of Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     7
                                                                                          1.1    Background and Terminology
                                                                                                                                                                                                                                                                                           ziels und -objekts gibt es spezifische Herangehensweisen zur RA
       As an example, we consider manned road vehicles in road traffic with an                                                                                                                                      §§ Bestrebungen, die Risikobewertung und den Verlässlich-
                                                                                                                                                                                                                                                                                                                                                                                                               2.2   The Risk of Undesired Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        7
                                                                                          According to control theory, a control loop L comprises a (physical) process P to be controlled and                                                                                              sowie verschiedene Bezeichnungen, wie zum Beispiel funktiona-
    autopilot (AP) feature. Such vehicles are able to automatically conduct a ride        a controller C, i.e., a system in charge of controlling this process according to some laws defined by                     keitsnachweis für allgemeine Systemklassen durch speziali-            le Sicherheit in der Mechatronik und Automatisierungstechnik4                                                       2.3   Formal Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      8
    only given some valid target and minimizing human intervention. The following         an application and an operator [20]. The engineering of safety-critical control loops typically involves                   sierte Modellbildung zu unterstützen (siehe Kapitel 4/                oder Cyber Security für stark vernetzte IT-Systeme.5 Regelmäßig
                                                                                                                                                                                                                     Bertsche­et al.),                                                     wird versucht, Erkenntnisse aus verschiedenen Arbeitsfeldern                                                    3   Risk Elements                                                                                                         9
    AV-level (S)afety (G)oal specifies the problem we want to focus on in this paper:      reducing hazards by making controllers safe in their intended function (SOTIF), resilient (i.e., tolerate
                                                                                                                                                                                                                                                                                                                                                                                                              ∗ Correspondence and offprint requests to: Mario Gleirscher, Univerity of York, Deramore Lane, Heslington, York YO10 5GH,
                                                                                          disturbances), dependable (i.e., tolerate faults), and secure (i.e., tolerate misuse).
                                                                                                                                                                                                                                                                                                                                                                                                           UK. e-mail: mario.gleirscher@york.ac.uk
        SG: The AV can always reach a safest possible state σ wrt. the hazards                In automated driving, the process under consideration is the driving process which we decompose                                                                                                                                                                                                              This work is supported by the Deutsche Forschungsgemeinschaft (DFG) under Grants no. GL 915/1-
                                                                                          into a set of driving situations S , see Sec. 2. Taxonomies of such situations have been published in, e.g.                                                                                                                                                                                                      1 and GL 915/1-2.           c 2019.         This manuscript is made available under the CC-BY-NC-ND 4.0 license
        identified and present in a specific operational situation os .                                                                                                                                             1|    Vgl. Kugele et al. 2017.                                                                                                                                                           http://creativecommons.org/licenses/by-nc-nd/4.0/.
                                                                                                                                                                                                                  2|    Vgl. Alexander et al. 2009.                                                                                                                                                        Reference Format: Gleirscher, M.. Risk Structures: Towards Engineering Risk-aware Autonomous Systems (April 23, 2019).
    
    c Springer International Publishing AG 2017                                           L. Bulwahn, M. Kamali, S. Linker (Eds.): First Workshop on                      c M. Gleirscher                         3|    Vgl. McDermid 2001 und Kumamoto 2007 diskutieren „As Low As Reasonably Practicable“ (ALARP).                                                                                       Unpublished working paper. Department of Computer Science, University of York, United Kingdom.
    C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 310–326, 2017.                    Formal Verification of Autonomous Vehicles (FVAV 2017).                         This work is licensed under the         4|    Vgl. Schnieder/Schnieder 2009, Schnieder/Schnieder 2008, Schnieder/Drewes 2008.
    DOI: 10.1007/978-3-319-57288-8 23                                                     EPTCS 257, 2017, pp. 75–90, doi:10.4204/EPTCS.257.8                             Creative Commons Attribution License.   5|    Vgl. Lund et al. 2011.

                                                                                                                                                                                                                  154

              4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                67
Risk Factors                                                                 (Basic Phase Model)
                                             ofm …mitigated operation

                                                         f
                               recovery… mfr                        mf …mitigation
                                                    endanger-
                                                     ment … ef
                             ofn                                               ofe
                                                ef …endangerment
                       nominal          0f                              f      …endangered
                     operation…                                                operation
                                                                 mfd …direct mitigation

   Purposes:
      • Modelling primitive for risk space exploration
      • Semantics of basic events in DFTs or DFRTs
      • Synthesis of local enforcement monitors

     4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                              68
SAV: Situational Risk Space

                                                                                                                                                                                                                                                                                                    CCOCICSCollCR

                                                                                                                                                                                                                                                         e     OC                            e     ICS              e     Coll                               e     CR                                                    e     CC
                                                                                                                                                                                                                                                       Vehicle                             Vehicle                Vehicle                                  Vehicle                                                     Vehicle

                                                                                                                CCICSCollCR                                                                                                  CCOCCollCR                                                                  CCOCICSCR                                                      CCOCICSColl                                                                       OCICSCollCR

                                                                                    e     ICS                 e     Coll       e     CR                                e     CC                         e     OC       e     Coll               e     CR              e     CC         e     OC            e     ICS           e     CR         e     CC           e     OC         e     ICS                e     Coll            e     CC          e     OC          e     ICS         e     Coll                e     CR
                                                                                  Vehicle                   Vehicle          Vehicle                                 Vehicle                          Vehicle        Vehicle                  Vehicle               Vehicle          Vehicle             Vehicle             Vehicle          Vehicle            Vehicle          Vehicle                  Vehicle               Vehicle           Vehicle           Vehicle           Vehicle                   Vehicle

                           CCCollCR                                      CCICSCR                                    CCICSColl                                                 ICSCollCR                                                         CCOCCR                                                    CCOCColl                                                   OCCollCR                               CCOCICS                                                                OCICSCR                               OCICSColl

     e     Coll     e     CR       e     CC     e     ICS         e     CR              e     CC        e     ICS            e     Coll              e     CC             e     ICS      e     Coll            e     CR                   e     OC          e     CR            e     CC              e     OC      e     Coll          e     CC        e     OC          e     Coll            e     CR              e     OC         e     ICS             e     CC            e     OC       e     ICS     e     CR          e     OC     e     ICS     e     Coll
   Vehicle        Vehicle        Vehicle      Vehicle           Vehicle               Vehicle         Vehicle              Vehicle                 Vehicle              Vehicle        Vehicle               Vehicle                    Vehicle           Vehicle             Vehicle               Vehicle       Vehicle             Vehicle         Vehicle           Vehicle               Vehicle               Vehicle          Vehicle               Vehicle             Vehicle        Vehicle       Vehicle           Vehicle      Vehicle       Vehicle

                                                 CCCR                                           CCColl                                             CollCR              CCICS                                  ICSCR                                        ICSColl                                          CCOC                                           OCCR                            OCColl                                                      OCICS

                                                         e     CR              e     CC      e     Coll               e     CC        e     Coll                  e     CR     e     ICS           e     CC          e     ICS                 e     CR           e     ICS         e     Coll             e     OC            e     CC              e     OC       e     CR             e     OC      e     Coll                  e     OC              e     ICS
                                                       Vehicle               Vehicle       Vehicle                  Vehicle         Vehicle                     Vehicle      Vehicle             Vehicle           Vehicle                   Vehicle            Vehicle           Vehicle                Vehicle             Vehicle               Vehicle        Vehicle              Vehicle       Vehicle                     Vehicle               Vehicle

                                                                                                                                                                         CC                                 CR                   Coll                    ICS                                                                                                    OC

                                                                                                                                                                                                   e     CC           e     CR            e     Coll          e     ICS                                                   e     OC
                                                                                                                                                                                                 Vehicle            Vehicle             Vehicle             Vehicle                                                     Vehicle

                                                                                                                                                                                                                                    0

                  4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          69
SAV: Situational Risk Space                                                                                                                          (zoomed)
                                                                                                             CCOCICSCollCR

                                                                  e     OC                            e     ICS              e     Coll                               e     CR
                                                                Vehicle                             Vehicle                Vehicle                                  Vehicle

                                      CCOCCollCR                                                                  CCOCICSCR                                                      CCOC

                 e     OC       e     Coll               e     CR              e     CC         e     OC            e     ICS           e     CR         e     CC           e     OC
               Vehicle        Vehicle                  Vehicle               Vehicle          Vehicle             Vehicle             Vehicle          Vehicle            Vehicle

lCR                                                      CCOCCR                                                    CCOCColl                                                   OCCollCR

  e     Coll            e     CR                   e     OC          e     CR            e     CC              e     OC      e     Coll          e     CC        e     OC          e     C
Vehicle               Vehicle                    Vehicle           Vehicle             Vehicle               Vehicle       Vehicle             Vehicle         Vehicle           Vehicle

                       ICSCR                                        ICSColl                                          CCOC                                           OCCR

            e     CC          e     ICS                 e     CR           e     ICS         e     Coll             e     OC            e     CC              e     OC       e     CR
          Vehicle           Vehicle                   Vehicle            Vehicle           Vehicle                Vehicle             Vehicle               Vehicle        Vehicle

                     CR                   Coll                    ICS                                                                                                    OC

            e     CC           e     CR            e     Coll          e     ICS                                                   e     OC
          Vehicle            Vehicle             Vehicle             Vehicle                                                     Vehicle

                                             0
                       4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                                                                              69
Causality                                                   (Lewis 1973)

   Definition (Counterfactual Conditional)
   A 2Ñ C is nonvacuously true iff C holds at all the closest
   A-worlds.

   What are the closest A-worlds?

     4.0 / Gleirscher / Shonan, JP/ June 26, 2019                      70
SAV: Risk Identification and Assessment                                                 Yap script

   OperationalSituation "drive"                                 excludes (OC)
 2 {                                                  26        mitigatedBy (PREVENT_CRASH.EB)
      include "envPerc";                                        ;
 4 }                                                  28     CC alias "on collision course"
                                                                requires (CR)
  6 ControlLoop "Vehicle" for "drive"        30                 deniesMit (CR,OC)
    {                                                           excludes (CR,OC)
  8    replan alias "Slow-down || re-plan     32                mitigatedBy (PREVENT_CRASH.swerve)
             route";                                            ;
       brake alias "Standard brake";          34             ICS alias "inevitable collision state"
 10    swerve alias "Short-term circumvention                   requires (CC)
              of obstacle";                  36                 excludes (CC,CR,OC)
       EB     alias "Emergency brake";                          causes (Coll)
 12    accel alias "Accelerate";             38                 mitigatedBy (PREVENT_CRASH.EB)
       airbag alias "Front airbag";                             ;
 14 }                                        40              Coll alias "actual collision"
                                                                requires (ICS)
 16 HazardModel for "drive"                           42        excludes (CC,CR,OC,ICS,ES)
    {                                                           mitigatedBy (ALLEVIATE.airbag)
 18    OC alias "on occupied course"                  44        mishap
            mitigatedBy (PREVENT_CRASH.replan)                  ;
 20         direct                                    46     ES alias "perception system fault"
            ;                                                   excludes (CC,CR,OC,ICS)
 22    CR alias "increased collision risk"            48        deniesMit (OC,CC)
            requires (OC)                                       ;
 24         deniesMit (OC)                            50 }
       4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                   71
SAV: Situational Risk Space
                            ES                               Coll

                                                  e     ES        e     CollICS
                                                Vehicle         Vehicle

                                     e     ES
                                   Vehicle              CC

                      e     ES                       e     CC
                    Vehicle                        Vehicle

    e     ES
                                                                                  Approach: LOPA/BA to
                                   CR
                                                                                  create chain of possible
  Vehicle

                                   e
                                 Vehicle
                                         CR
                                                                                  interventions

                OC

                 e     OC
               Vehicle

   0

        4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                         72
SAV: Situational Risk Space
  ES

              f opES
                  fb                                                                          Approach: LOPA/BA to
                        ES                                                   Coll             create chain of possible
                                                         eES                attColl
                                                                               alv            interventions
                              eES                 eES     CC         Coll

                                        eES             prvcCC   eCollICS                     Layered intervention
 rES            eES           CR                   CC                                         pattern for SAV obstacle
        ES
        e                     prvcCR          e   CC                                  mColl
                                                                                       e      avoidance
                                    CR                                      mCC
                                                                             e

              mCR
               e                    eCR                                                       Nice side-effect: Use
                              OC                                                              pattern as enhanced
                        eOC    prvcOC
                                                                                              phase model for similar
                    0
                                                                                              risk factors

       4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                                      72
Taxonomy of Mitigations

                                                                                                                                                                                                        Overall
                                                                                                                                                                                                        Safety

                                                                                                                                                                                Safety
                                                                                                                                                                              Constraints

                                         Preventive                                                Fail-
                                                                                                                                                                                       Stabilization
                                           Safety                                                  Safe

                                                                                                                                                                             Passive
                                                                                                                                                                             Safety

                                         Pre-Crash        Limp-               Fail-                 Fail-              Fault                                                                                            Fault
                                         Assistance       Home                Silent               Secure           Containment                                                                                       Avoidance

                  Vigilance                                                                                                                                                                                Non-
                   Check                                                                                                                                                                               Interference

                                          Obstacle      Fail-                           Fault
                                                                        Shutdown                      Recovery            Masking                       Redundancy                          Barrier                   Substitution    Simplicity
                                         Avoidance    Operational                      Detection

                                                                                                                                                  Error-
                Checking       Warning       Comparison       Repair     Reconfiguration      Degradation        Filter      Voting   Override   Correcting    Replication      Diversity          Protection          Separation
                                                                                                                                                  Codes

                                                                                                                                                    fully                              partially
                                                                                                                                                  realizes                             realizes

   Condition     Sanity
                              Notification                   Rollback                                                                                Limiter                                                           Interlocking
   Monitoring    Check

          4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                                                                                                                                                             73
Taxonomy of Mitigations

                                         Preventive                                                   Fail-
                                           Safety                                                     Safe

                                         Pre-Crash         Limp-                 Fail-                 Fail-              Fault
                                         Assistance        Home                  Silent               Secure           Containment

                  Vigilance
                   Check

                                          Obstacle           Fail-                         Fault
                                                                           Shutdown                      Recovery            Masking
                                         Avoidance         Operational                    Detection

               Checking        Warning        Comparison         Repair     Reconfiguration      Degradation        Filter      Votin

            4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                                       73
Condition        Sanity
                              Notification                      Rollback
SAV: Situational Risk Space                                                                          (Monitor Candidate)
  ES

              f opES

                                                                                                 Approach: LOPA/BA to
                  fb

                        ES                                                      Coll

                                                                               attColl
                                                                                                 create chain of possible
                                                            eES                   alv

                                 eES
                                                     eES
                                                             CC         Coll
                                                                                                 interventions
                                              eES          prvcCC   eCollICS
                                                                                                 = Specification of a valid
 rES            eES              CR                   CC

                                                                                                 safe system
        eES                      prvcCR             eCC                                  mColl
                                                                                          e

                                                                                                 expected order violated
                                         CR                                    mCC
                                                                                e

              mCR                        eCR
                                                                                                 Ñ lack of observability,
               e

                                 OC

                        e   OC       prvcOC
                                                                                                 incomplete monitor,
                    0
                                                                                                 context mismatch?

       4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                                           74
Risk Structures: Templates for Causal Reasoning

   A risk structure R is valid iff for
                  s, s1 , s2 , s3 P RpFq,           s3 P Mishaps,   e, m, e1 P Σ˚
   @s, s3 P RpFq, t P R Ds1 , s2 P RpFq, m P Σ˚ : t “ eme1 ^

                                    e                 m             e’
                         s                     s’           s”           s”’

   Definition (Mitigation from Counterfactual Perspective)
   m is mitigation of cause c ‰ s2 of a mishap s3 iff e1 gets unlikely.
   (s2 , e1 form the counterfactual.)

   Proof obligations for each t: Check that, from s,

     1. s2 is actual cause of s3 ,
     2. s1 is recognisable,
     3. from s1 , m reduces s2 .
     4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                   75
Risk Mitigation / Intervention / Enforcement
                                                                                             Test
                                                       Risk                           Active model
                                                    Structure       synthesised      Monitor
                                                                       from

                                                        abstracts

                                                                                  conforms
                                                          from

                                                                                     to
 Approach: Active
 safety monitors,                                System/
                                           MDP,                                       Active Implemen
 enforcement                                     Process
                                         LTS, HA                                     Monitor tation
                                                  Model
 monitors

                                                                            pr orce s/
                                                        ab om

                                                                              en nise
                                                                                      s
                                                          str

                                                                                    y
                                                                                  og
                                                            fr

                                                                                 ert
                                                             ac

                                                                              rec

                                                                                f
                                                                ts

                                                                              op
                                                                    Monitored
                                                                     Process

     4.0 / Gleirscher / Shonan, JP/ June 26, 2019                                                       76
You can also read