Precision Medicine for Blood Cancer Patients

Page created by Maurice Gill
 
CONTINUE READING
Precision Medicine for Blood Cancer Patients
Precision Medicine for Blood
         Cancer Patients
How to Improve Outcome for Patients with
             Blood Cancer
            Professor Stefan K Bohlander, MD
          Marijana Kumerich Chair in Leukaemia and Lymphoma Research
                    Leukaemia & Blood Cancer Research Unit
                Department of Molecular Medicine and Pathology
                     Faculty of Medical and Health Sciences
                           The University of Auckland
                             Auckland, New Zealand

                     NEXT Federation Webinar
                       Auckland, 23/6/2020
Precision Medicine for Blood Cancer Patients
In 1847, Rudolf Virchow coined the term “weißes Blut”

                       white blood
                                            leukaemia
            Normal
             Blood    Leukemia           λευκος   αίμα

             Plasma
                                 >30%
White                            white
Precision Medicine for Blood Cancer Patients
Blood Cancer: Acute Myeloid Leukemia
                       (AML)
    AML-M0: Blast cells in peripheral blood                                                  AML:
                                                                        extremely aggressive disease of myeloid cells.

                                                                        Usually fatal within a few days to weeks after
                                                                        diagnosis without treatment.

                                                                        Case History:
                                                                        •   35 year old woman
                                                                        •   Intractable back pain
                                                                        •   Diagnosis of AML after 6 weeks
                                                                        •   Chemotherapy -> remission
                                                                        •   Bone marrow transplant 4 months later
                                                                        •   Recovery
                                                                        •   Relapse after 11 months
ACUTE MYELOID LEUKEMIA, M0, BLOOD. Acute minimally
differentiated myeloid leukemia (AML-M0) is characterized by lack of    •   Chemotherapy with 2nd BMT (14 months)
obvious myeloid differentiation by routine histologic examination and
presence of myeloperoxidase in
Precision Medicine for Blood Cancer Patients
Survival of Patients with AML
Percent Survival

                                 AMLCG 86 < 60YRS :N=725 (Cens .279)

                    Years since Start of Therapy
Precision Medicine for Blood Cancer Patients
Only Incremental Progress in AML
              Treatment Outcome in the Last 30 Years!

Sauerland, AMLCG study group, July 2014
Precision Medicine for Blood Cancer Patients
Origin of Blood Cancer
Bone marrow cell                                                 Blood Cancer
                      Spelling Mistakes
                       in Genetic Code

  Well behaved cell                       Misbehaving Cell    Daughter Cells inherit
                                          Blood Cancer Cell   spelling mistake and
                                                                 bad behaviour

     It takes about 3 to 6 one letter spelling mistakes
     among billions of letters to initiate blood cancer
Precision Medicine for Blood Cancer Patients
Survival of AML Patients:
      According to Cytogenetic Subgroups

100

                                                     t(8;21)
                            Favourable N=278
                                                     t(15;17)
 75
                                                     inv(16)

 50

                       Intermediate N=725

 25                                                 Normal and other abnormalities

          Unfavourable N=222
  0
      0     1     2     3      4    5       6   7   Years from diagnosis

Complex aberrant, other unfavourable, 11q/MLL

                                                                           (From Schoch et al., 2004)
Precision Medicine for Blood Cancer Patients
Genetics of AML
                Translocations

Cytogenetics

               PCR, Sequencing

Molecular
Genetics
Precision Medicine for Blood Cancer Patients
Routine Molecular Testing in AML only for
       FLT3, NPM1 and CEBPA Mutations

Two kinds of mutation testing
                                            NPM1
•        Hotspot testing         ATG   STOP FLT3

•        Whole gene sequencing                CEBPA
                                 ATG   STOP
Precision Medicine for Blood Cancer Patients
Next Generation Sequencing
(NGS) Technology Allows for More
Comprehensive Molecular Testing
The Next-Generation
                                       Sequencing Revolution    1 human
                                                               genome in
                                                                 1 day!
Log 10 scale daily machine output

                                                                  1 billion
                                                                     fold
                                                                 difference

                                                               1000 base pairs

                                    Year
1990                                                  2014

                                   200 million fold

        http://www.ocf.berkeley.
        edu/~edy/genome/sanger
        .jpg

      600 bases per day                               120,000,000,000 bases per day

270 000 years per human genome                            1 day per human genome
Progress in Genome Analysis Technologies in the
                   last 10 Years
In 1817, Karl Drais invented the “bicycle”
(called “Laufmaschine”)

                                                         10 fold increase in
                                                               speed

                                                                                            http://1.bp.blogspot.com/-moSRSPtZ-
                                                                                            Gk/UT6kBGS-
                                                                                            DfI/AAAAAAAAARE/vjq_k5q1lwo/s1600/
                 25 km/h                                                                    Mercedes+Benz+cars10.jpg

                                              40 million fold
                                            increase in speed                                 250 km/h

              http://l.yimg.com/bt/api/res/1.2/E8PeVEXa.exSFcGmWs
              9iNA--/YXBwaWQ9eW5ld3M7cT04NQ--
              /http://media.zenfs.com/en/blogs/technews/fva-630-
              star-trek-warp-drive-enterprise-credit-nbc.jpg

                                                                               4 million fold increase in speed
                          1,079,252,849 km/h
How can we use Next Generation
   Sequencing Technology to
 Improve the Outcome for AML
           Patients?
Auckland AML Gene Panel
                                                                                                        70 gene Auckland AML panel
                                                                                                        (68 Metzeler genes plus CALR and RB1)

                                                                                                                   ABCB1         FBXW7    NT5C2
                                                                                                                   ABCG2         FLT3     PHF6
                                                                                                                   ADA           GATA1    PTEN
                                                                                                                   ASXL1         GATA2    PTPN11
                                                                                                                   BCOR          GATA3    PTPRT
                                                                                                                   BCORL1        HNRNPK   RAD21
                                                                                                                   BRAF          HRAS     RUNX1
                                                                                                                   BRINP3        IDH1     SETBP1
36 genes mutated in ≥1% of patients
                                                                                                                   CALR          IDH2     SF1
                                                                                                                   CBL           IL7R     SF3A1
                                                                                                                   CDA           JAK1     SF3B1
                                                                                                                   CDKN2A        JAK2     SMC1A
                                                                                                                   CEBPA         JAK3     SMC3
                                                                                                                   CSF1R         KDM6A    SRSF2
                                                                                                                   CSF3R         KIT      STAG2
                                                                                                                   DAXX          KMT2A    TERT
                                                                                                                   DCK           KRAS     TET2
                                                                                                                   DCLK1         MPL      TP53
                                                                                                                   DIS3          MYD88    U2AF1
                                                                                                                   DNMT3A        NOTCH1   U2AF2
                                                                                                                   ETV6           NPM1    WAC
                                                                                                                   EZH2          NRAS     WT1
                                                                                                                                          ZRSR2
                                                                                                                                          RB1

                                                                    • N=664 AML pts
                                                                    • Genes in panel: 68
                                      Metzeler et al., Blood 2016   • Identified at least 1 driver mutation in 97% of patients
Many Spelling Mistakes in Blood Cancer
                                                                                                                                                                                           LBCRU: Leukaemia & Blood Cancer Research Unit
                                                          Patients 1 to 22                                                                                                  Muts in gene          GCG: Grafton Clinical Genomics
                Gene    Sample ->   1     2       3       4        5     6       7       8       9       10   11   12   13   14     15   16   17   18   19   20   21   22
                    1   ABCB1                                                                                                                                                    0
                    2   ABCG2                                                                                                                                                    0
                    3   ADA                                                                                                                                                      0
                    4   ASXL1                                                                                                                                                    1
                    5   BCOR                                                                                                                                                     2
                    6   BCORL1                                                                                                                                                   2
                    7   BRAF                                                                                                                                                     0
                    8   BRINP3                                                                                                                                                   0
                    9   CALR                                                                                                                                                     0
                   10   CBL                                                                                                                                                      0
                   11   CDA                                                                                                                                                      0
                   12   CDKN2A                                                                                                                                                   1
                   13   CEBPA                                                                                                                                                    2
                   14   MIR-142                                                                                                                                                  0
                   15   TERC                                                                                                                                                     0
                   16   CSF1R                                                                                                                                                    0
                   17   CSF3R                                                                                                                                                    0
                   18   DAXX                                                                                                                                                     0
                   19   DCK                                                                                                                                                      0
                   20   DCLK1                                                                                                                                                    0

                                                                                                                                                                                           From March 2019 till July 2019:
Genes 1 to 70

                   21   DIS3                                                                                                                                                     0
                   22   DNMT3A                                                                                                                                                   6
                   23   ETV6                                                                                                                                                     1
                   24
                   25
                        EZH2
                        FBXW7
                                                                                                                                                                                 1
                                                                                                                                                                                 1         •   22 samples sequenced
                   26   FLT3                                                                                                                                                     1
                   27
                   28
                        GATA1
                        GATA2
                                                                                                                                                                                 0
                                                                                                                                                                                 1
                                                                                                                                                                                           •   Average of 3 somatic mutations per sample
                                                                                                                                                                                           •
                   29   GATA3                                                                                                                                                    0
                   30
                   31
                        HNRNPK
                        HRAS
                                                                                                                                                                                 0
                                                                                                                                                                                 0
                                                                                                                                                                                               (range 1 to 7)
                   32   IDH1                                                                                                                                                     3
                   33   IDH2                                                                                                                                                     2
                   34   IL7R                                                                                                                                                     0
                   35   JAK1                                                                                                                                                     0
                   36
                   37
                        JAK2
                        JAK3
                                                                                                                                                                                 3
                                                                                                                                                                                 0         Each patient has a unique combination
                   38   KDM6A                                                                                                                                                    0
                   39
                   40
                   41
                        KIT
                        KMT2A
                        KRAS
                                                                                                                                                                                 2
                                                                                                                                                                                 1
                                                                                                                                                                                 0
                                                                                                                                                                                           of spelling mistakes!
                   42   MPL                                                                                                                                                      1
                   43   MYD88                                                                                                                                                    0
                   44   NOTCH1                                                                                                                                                   1
                   45
                   46
                   47
                        NPM1
                        NRAS
                        NT5C2
                                                                                                                                                                                 5
                                                                                                                                                                                 2
                                                                                                                                                                                 0
                                                                                                                                                                                           Each patient has a unique blood cancer!
                   48   PHF6                                                                                                                                                     0
                   49   PTEN                                                                                                                                                     0
                   50   PTPN11                                                                                                                                                   2
                   51   PTPRT                                                                                                                                                    0
                   52   RAD21                                                                                                                                                    1
                   53   RB1                                                                                                                                                      0
                   54   RUNX1                                                                                                                                                    1
                   55   SETBP1                                                                                                                                                   1
                   56   SF1                                                                                                                                                      2
                   57   SF3A1                                                                                                                                                    0
                   58   SF3B1                                                                                                                                                    0
                   59   SMC1A                                                                                                                                                    2
                   60   SMC3                                                                                                                                                     0
                   61   SRSF2                                                                                                                                                    2
                   62   STAG2                                                                                                                                                    1
                   63   TERT                                                                                                                                                     0
                   64   TET2                                                                                                                                                     6
                   65   TP53                                                                                                                                                     1
                   66   U2AF1                                                                                                                                                    2
                   67   U2AF2                                                                                                                                                    2
                   68   WAC                                                                                                                                                      0
                   69   WT1                                                                                                                                                      2
                   70   ZRSR2                                                                                                                                                    1
                        Phenotype                                 APML                                                       APML                  MDS-MLD PMF MDS PMF
                        Number of Muts1       4       2       4     2        5       7       3       3    3    4    4    2     2     3    3    1     1   3   2   3   3
Each Patient’s Blood Cancer is
          Unique!
Auckland Myeloid Gene Panel
                      Newly diagnosed AML

                              78 Gene Panel
                                                                         Familial Predisposition is
                                                                         more frequent than
                            Spelling Mistake                             anticipated! About 8% in
                                                                         our patients.

What is it?
Diagnosis                                                     Is the disease running in the family?
                                                                     Familial Predisposition

      What will happen?                                 Is my treatment working?
         Prognosis                                 Minimal Residual Disease Monitoring

                             How can I treat?
                           Target Identification

                          Improved treatment of AML patients
Summary

• Each patient’s blood cancer is unique
• Next-Generation Sequencing (NGS) uncovers this uniqueness
• NGS analysis improves:
   o   Diagnosis
   o   Prognostication
   o   Identification of drug targets
   o   Monitoring of disease
   o   Uncovering familial cases (implication for bone marrow transplant donor
Thank you very much for your Support
   Leukaemia & Blood Cancer
   Research Unit,
   University of Auckland:
       Peter Browett
       Andrew Wood
       Purvi Kakadia
       Marjan Askarian Amiri
       Robyn Lints
       Rhea Desai
       Sarvanez Taghavi
       Mandy De Silva
       Leon Griner
       Omid Delfi
       Matthew Prouse
       Jenny Chien
       Alyona Oryshchuk
       Alix Coysh
       Maryam Saberi
       Niloofar Zandvakili
       Huimei Lee
       Lachlan Macdonald
       Jessica Chase
       Christina Walker
       Chloé Morin

Monash University              The Family of
The Alfred
   Andrew Wei
   Ing Soo Tiong
                               Marijana Kumerich
You can also read