Precision Medicine for Blood Cancer Patients
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Precision Medicine for Blood Cancer Patients How to Improve Outcome for Patients with Blood Cancer Professor Stefan K Bohlander, MD Marijana Kumerich Chair in Leukaemia and Lymphoma Research Leukaemia & Blood Cancer Research Unit Department of Molecular Medicine and Pathology Faculty of Medical and Health Sciences The University of Auckland Auckland, New Zealand NEXT Federation Webinar Auckland, 23/6/2020
In 1847, Rudolf Virchow coined the term “weißes Blut” white blood leukaemia Normal Blood Leukemia λευκος αίμα Plasma >30% White white
Blood Cancer: Acute Myeloid Leukemia (AML) AML-M0: Blast cells in peripheral blood AML: extremely aggressive disease of myeloid cells. Usually fatal within a few days to weeks after diagnosis without treatment. Case History: • 35 year old woman • Intractable back pain • Diagnosis of AML after 6 weeks • Chemotherapy -> remission • Bone marrow transplant 4 months later • Recovery • Relapse after 11 months ACUTE MYELOID LEUKEMIA, M0, BLOOD. Acute minimally differentiated myeloid leukemia (AML-M0) is characterized by lack of • Chemotherapy with 2nd BMT (14 months) obvious myeloid differentiation by routine histologic examination and presence of myeloperoxidase in
Survival of Patients with AML Percent Survival AMLCG 86 < 60YRS :N=725 (Cens .279) Years since Start of Therapy
Only Incremental Progress in AML Treatment Outcome in the Last 30 Years! Sauerland, AMLCG study group, July 2014
Origin of Blood Cancer Bone marrow cell Blood Cancer Spelling Mistakes in Genetic Code Well behaved cell Misbehaving Cell Daughter Cells inherit Blood Cancer Cell spelling mistake and bad behaviour It takes about 3 to 6 one letter spelling mistakes among billions of letters to initiate blood cancer
Survival of AML Patients: According to Cytogenetic Subgroups 100 t(8;21) Favourable N=278 t(15;17) 75 inv(16) 50 Intermediate N=725 25 Normal and other abnormalities Unfavourable N=222 0 0 1 2 3 4 5 6 7 Years from diagnosis Complex aberrant, other unfavourable, 11q/MLL (From Schoch et al., 2004)
Routine Molecular Testing in AML only for FLT3, NPM1 and CEBPA Mutations Two kinds of mutation testing NPM1 • Hotspot testing ATG STOP FLT3 • Whole gene sequencing CEBPA ATG STOP
The Next-Generation Sequencing Revolution 1 human genome in 1 day! Log 10 scale daily machine output 1 billion fold difference 1000 base pairs Year
1990 2014 200 million fold http://www.ocf.berkeley. edu/~edy/genome/sanger .jpg 600 bases per day 120,000,000,000 bases per day 270 000 years per human genome 1 day per human genome
Progress in Genome Analysis Technologies in the last 10 Years In 1817, Karl Drais invented the “bicycle” (called “Laufmaschine”) 10 fold increase in speed http://1.bp.blogspot.com/-moSRSPtZ- Gk/UT6kBGS- DfI/AAAAAAAAARE/vjq_k5q1lwo/s1600/ 25 km/h Mercedes+Benz+cars10.jpg 40 million fold increase in speed 250 km/h http://l.yimg.com/bt/api/res/1.2/E8PeVEXa.exSFcGmWs 9iNA--/YXBwaWQ9eW5ld3M7cT04NQ-- /http://media.zenfs.com/en/blogs/technews/fva-630- star-trek-warp-drive-enterprise-credit-nbc.jpg 4 million fold increase in speed 1,079,252,849 km/h
How can we use Next Generation Sequencing Technology to Improve the Outcome for AML Patients?
Auckland AML Gene Panel 70 gene Auckland AML panel (68 Metzeler genes plus CALR and RB1) ABCB1 FBXW7 NT5C2 ABCG2 FLT3 PHF6 ADA GATA1 PTEN ASXL1 GATA2 PTPN11 BCOR GATA3 PTPRT BCORL1 HNRNPK RAD21 BRAF HRAS RUNX1 BRINP3 IDH1 SETBP1 36 genes mutated in ≥1% of patients CALR IDH2 SF1 CBL IL7R SF3A1 CDA JAK1 SF3B1 CDKN2A JAK2 SMC1A CEBPA JAK3 SMC3 CSF1R KDM6A SRSF2 CSF3R KIT STAG2 DAXX KMT2A TERT DCK KRAS TET2 DCLK1 MPL TP53 DIS3 MYD88 U2AF1 DNMT3A NOTCH1 U2AF2 ETV6 NPM1 WAC EZH2 NRAS WT1 ZRSR2 RB1 • N=664 AML pts • Genes in panel: 68 Metzeler et al., Blood 2016 • Identified at least 1 driver mutation in 97% of patients
Many Spelling Mistakes in Blood Cancer LBCRU: Leukaemia & Blood Cancer Research Unit Patients 1 to 22 Muts in gene GCG: Grafton Clinical Genomics Gene Sample -> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 ABCB1 0 2 ABCG2 0 3 ADA 0 4 ASXL1 1 5 BCOR 2 6 BCORL1 2 7 BRAF 0 8 BRINP3 0 9 CALR 0 10 CBL 0 11 CDA 0 12 CDKN2A 1 13 CEBPA 2 14 MIR-142 0 15 TERC 0 16 CSF1R 0 17 CSF3R 0 18 DAXX 0 19 DCK 0 20 DCLK1 0 From March 2019 till July 2019: Genes 1 to 70 21 DIS3 0 22 DNMT3A 6 23 ETV6 1 24 25 EZH2 FBXW7 1 1 • 22 samples sequenced 26 FLT3 1 27 28 GATA1 GATA2 0 1 • Average of 3 somatic mutations per sample • 29 GATA3 0 30 31 HNRNPK HRAS 0 0 (range 1 to 7) 32 IDH1 3 33 IDH2 2 34 IL7R 0 35 JAK1 0 36 37 JAK2 JAK3 3 0 Each patient has a unique combination 38 KDM6A 0 39 40 41 KIT KMT2A KRAS 2 1 0 of spelling mistakes! 42 MPL 1 43 MYD88 0 44 NOTCH1 1 45 46 47 NPM1 NRAS NT5C2 5 2 0 Each patient has a unique blood cancer! 48 PHF6 0 49 PTEN 0 50 PTPN11 2 51 PTPRT 0 52 RAD21 1 53 RB1 0 54 RUNX1 1 55 SETBP1 1 56 SF1 2 57 SF3A1 0 58 SF3B1 0 59 SMC1A 2 60 SMC3 0 61 SRSF2 2 62 STAG2 1 63 TERT 0 64 TET2 6 65 TP53 1 66 U2AF1 2 67 U2AF2 2 68 WAC 0 69 WT1 2 70 ZRSR2 1 Phenotype APML APML MDS-MLD PMF MDS PMF Number of Muts1 4 2 4 2 5 7 3 3 3 4 4 2 2 3 3 1 1 3 2 3 3
Each Patient’s Blood Cancer is Unique!
Auckland Myeloid Gene Panel Newly diagnosed AML 78 Gene Panel Familial Predisposition is more frequent than Spelling Mistake anticipated! About 8% in our patients. What is it? Diagnosis Is the disease running in the family? Familial Predisposition What will happen? Is my treatment working? Prognosis Minimal Residual Disease Monitoring How can I treat? Target Identification Improved treatment of AML patients
Summary • Each patient’s blood cancer is unique • Next-Generation Sequencing (NGS) uncovers this uniqueness • NGS analysis improves: o Diagnosis o Prognostication o Identification of drug targets o Monitoring of disease o Uncovering familial cases (implication for bone marrow transplant donor
Thank you very much for your Support Leukaemia & Blood Cancer Research Unit, University of Auckland: Peter Browett Andrew Wood Purvi Kakadia Marjan Askarian Amiri Robyn Lints Rhea Desai Sarvanez Taghavi Mandy De Silva Leon Griner Omid Delfi Matthew Prouse Jenny Chien Alyona Oryshchuk Alix Coysh Maryam Saberi Niloofar Zandvakili Huimei Lee Lachlan Macdonald Jessica Chase Christina Walker Chloé Morin Monash University The Family of The Alfred Andrew Wei Ing Soo Tiong Marijana Kumerich
You can also read