Nouveaux designs pour les ailes d'avion du futur bioinspirées
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Académie de l'Air et de l'Espace Nouveaux designs pour les ailes d’avion du futur bioinspirées Marianna Braza IMFT* Coordonnatrice du projet EU- H2020 SMS** Collaboration: Jean-François Rouchon LAPLACE***, Directeur de l’ENSEEIHT ** Smart Morphing & Sensing for aeronautical configurations www.smartwing.org/SMS/EU *Institut de Mécanique des Fluides de Toulouse ***Laboratoire Plasma et Conversion d’Energie Unités Mixtes de Recherche : CNRS INPT UT3 30/03/2021
De l’avion de Clément Ader, 1890 Vers de nouveaux designs des ailes du futur Voir film dédié par le CNRS à nostre thématique: https://lejournal.cnrs.fr/videos/the- wings-of-the-future 2
Augmentation des performances aérodynamiques: • Augmentation de la portance (Beginner’s Guide to Aviation Efficiency, ATAG) • Réduction de la traînée • Réduction du bruit
Contexte de la thématique depuis 2010 RTRA 6 post-doc, 4 PhD theses DGA, ANR, ENS Rennes, 1 post-doc MIT 2009-2016: STAE-RTRA1 research projects EMMAV and DYNAMORPH Platform www.smartwing.org 2 2014-2017: AIRBUS ETCT2 2017-2020: H2020 European Research Project SMS: Smart Morphing and Sensing for aeronautical configurations www.smartwing.org/SMS/EU 3 1Science et Technologies pour l’Aéronautique et de l’Espace – Réseau Thématique de Recherche Avancée 3 H2020 EU Project 2017 - 2020 endorser : Airbus Emerging Technologies and Concepts Toulouse : ETCT 5
Problématique: Comment on peut implémenter différents actionnements à plusieurs échelles de longueur et de temps sur une aile d’avion Reduced Scale (RS) prototype: chord of 70 cm, span: 70 cm - Adaptation of embedded solutions with electroactive actuators in wind tunnel Large Scale laboratory prototype: chord of 2,4 m, span : 4m - Preuve de portage des concepts du morphing en échelle réelle 6
Dynamique tourbillonaire autour d’une aile d’avion: Problématique: Global scale : large amplitudes Comment on peut at low frequencies implementer différents Lift, Drag, Von Karman vortices actionnements à Smaller scale - shear layers… : plusieurs échelles de small amplitudes at higher frequencies longueur et de temps sur une aile d’avion Drag, Noise, Kelvin Helmhotz vortices 7
Airflow around an airfoil Different electroactive materials Global scale : large amplitudes Shape Memory Alloys at low frequencies Thermo-mechanical behavioural Lift, Drag, Von Karman vortices Smaller scale - shear layers… : Piezoelectric composite patches smaller amplitudes at higher Electro-mechanical behaviour frequencies Drag, Noise, Kelvin Helmhotz vortices Shape memory alloys G. Jodin et al, J. Fluids & 8 Structures 2017
Prototype électroactif d’une aile Airbus A320 en echelle réduite (corde de 70cm) PhD G. Jodin Realization: large amplitude – low frequency Actuated length 200mm Tip displacement over than +/- 20mm (+/-10% of actuated length) 9
ACTIVATION A PLUS HAUTE FREQUENCE et à DE FAIBLES AMPLITUDES - Piezoactuators MFC et HYBRIDIZATION : SMA - MFC piezoelectric fiber composites (pfc) macro fiber composite (mfc) PhD Thesis Johannes Scheller. The Royal Society annual exhibition 31 June-6 July 2014
ACTIVATION A PLUS HAUTE FREQUENCE DU BORD DE FUITE – A320 “Higher Frequency Vibrating Trailing Edge (HFVTE) “ 35mm 11
Mechatronics Pressure sensors for turbulence control Thermocouples Strain gauges for Macro fiber close loop control composites Shape memory alloys 12
Comment on peut manipuler la turbulence pour créer un système interactif fluide- structure electroactive pour accroître les performances aérodynamiques. I. Régimes subsoniques correspondant aux phases de vol du décollage et d’atterrissage 13
Vortex shedding in the wake of an airfoil Detachment Creation and mixing after the trailing edge VK KH Free stream Trailing edge shape control Energy introduction in shear layers 14
Experimental set up Subsonic wind tunnel S4 IMFT Uinf < 35m/s Wing chord C=0.7m Rec=500k and 1M Reynolds number relative to the chord Aerodynamic balance Embedded pressure sensors HS TR PIV measures(1) High Speed Time Resolved Particle Image Velocimetry From 6000 to 9500 fps Software DAVIS7 and CPIV(2) 15 (1)S. Cazin, M. Marchal (2)CPIV by P. Elyakime IMFT
Turbulent-Non-Turbulent Interface (TNT) Turbulent-Turbulent Simiriotis et al, J. Fluids & Structures 2019 Interface (TT) Optimal manipulation of the TNT and TT Interfaces Feedback towards the structure 16 G. Jodin - N. Simiriotis
Morphing effects on airflow Instantaneous fields Vortex breakdown Trailing edge vibrations chop wake vortices Eddy blocking effect Energy introduction causes wake thinning Static (no morphing) Morphing HFVTE Fa=220Hz A=0.6mm G. Jodin, V. Motta, J. Scheller, E. Duhayon, C. Döll, J.F. Rouchon, M. Braza. ``Dynamics of a hybrid morphing wing with active open loop vibrating trailing edge by Time-Resolved PIV and force measures'', Journal of Fluid and Structures, 2017 17
PIEZO-ACTUATION: Breakdown of the trailing edge vortices and loss of coherence. Decrease of the amplitudes regarding the corresponding predominent frequencies Trailing- Actuation Attenuation edge instability of the mode trailing- edge shear-layer instability Vortex breakdown
HFVTE effect (Higher Frequency Vibrating Trailing Edge, low amplitude ~0.1%Chord) HFVTE adds 2% more lift Voltage (%) Lift Lift improvement limited by actuation amplitude is measured constant (measure accuracy) 19 Worst case is +0.4% at +2%
Analyse physique des effets du morphing à l’aide de simulation numérique et comparaison expérmentale • Low amplitude – Higher frequency trailing edge vibration with piezoelectric actuation. • Polynomial deformation (ALE for deformable grid) of the trailing edge to mimic experiments. Multiple frequencies tested for 2D case . Figure: Higher frequency Figure: Polynomial deformation trailing edge vibration on the of trailing edge. small scale prototype 25
Structure de l’écoulement 3D: RS Reduced scale A320 wing- SMS Reynolds = 1M (based on chord), Ma = 0,06 at inlet, AoA 10 degrees. Iso-rotationnel wz coloré par la composante du rotationnel longitudinale, wx Simulations Hi-Fi par le code NSMB - Navier Stokes Multi-Block Modélisation Turbulence avancée Lignes de courant illustrant la région de recirculation PhD A.Marouf : Collaboration IMFT - LAPLACE - ICUBE Univ. Strasbourg
22 Effects on the Aerodynamic Forces Fig: Variation of lift (top) and drag (bottom) coefficients with the actuation temperature. Zero frequency corresponds to no-actuation (Static). Table: Effect of vibrating actuation on the averaged aerodynamic performance. CL CD CL/CD Static 1.5646 0.0219 71.5 60 Hz 1.5894 0.0214 74.4 (4.1%) 300 Hz 1.6147 0.0217 74.5 (4.2%) 26 PhD N. Simiriotis
23 Effect on Wake Dynamics alternating sheading ≈ 210Hz low shear layer > 300Hz No Morphing Applied (Static) = – amplitude 0.35mm = – amplitude 0.35mm • Effect of vibrations on flow field ; lock-in leading to reinforcement of the lower shear layer leading to suppression of the von Kármán alternating vortex shedding. 27 Simiriotis et al, J. Fluids & Structures 2019
Suppression de la tridimensionnalité par vibrations optimales Optimal morphing frequency 300Hz, 0.70mm of deformation Suppression of three- dimensional character of the wake Formation of two-dimensional rows PhD A. Marouf, October 2020
REDUCTION de la largeur du sillage et des sources du bruit Légère inclinaison du sillage vers le bas Diminution du deficit de la vitesse (diminution du cisaillement) Réduction de la largeur du sillage Réduction des sources du bruit aérodynamique
DYNAMIC CAMBER EFFECTS ON THE RS Prototype of the SMS project: TIME-RESOLVED Particle - Image Velocimetry TRPIV S4 Wind Tunnel IMFT. PhD M. Carvalho ‘21. Collaboration S. Cazin, M. Marchal
27 Hybrid morphing effect HFVTE adds 2% more lift (%) +Noise sources reduction 27 G. Jodin - M. Carvalho
The Large-Scale LS Prototype of the SMS project: Aile de type A320 + volet hypersustentateur en morphing hybrid electroactive morphing at full scale Towards integration at scale 1: large scale prototype including synergy of wind tunnel experiments and simulations 28
Specifications Adaptive morphing flap No impact on high lift function Based on A320 geometry 1m chord, 2m span Camber control under realistic loads Aerodynamic forces about 1.5tons Trailing edge displacement +/- 10%C Shape tolerance
CAMBER EFFECTS ON THE MORPHING HIGH - LIFT FLAP EMBEDDED IN WING - FLAP CONFIGURATION IN TAKE-OFF
Articulated concept 5 articulations. Total Chord 1m Actuated chord 0,85 m cf. Reference profil Non-actuated from "LS (cambered geometry shapes) tab Span length 0,5m Elastic skin thickness 1,5mm Deformation amplitude 0,1m Actuation time constant 60s 100 Reference profile Shape Up 0 0 100 200 300 400 500 600 700 800 900 1000 1100 Shape Down -100
MORPHING FLAP FINAL DESIGN CAD • Skin • Actuators • Ribs • Longeron • Stringers 32
MORPHING FLAP MANUFACTURING AT IMFT WORKSHOP Collaboration : IMFT - LAPLACE 33
MORPHING FLAP STRUCTURE : INTEGRATION VERIFICATIONS AND SIMULATION Green curve : Baseline (0cm TE deflection) Violet curve: Camber 1 (3.3 cm TE deflection) Brown curve :Camber 1 (6.6 cm TE deflection) Blue-green curve:Camber 1 (10 cm TE deflection) IMFT S1 wind tunnel Full scale subsonic Morphing prototype of A320 type: flap’s chord of 1m The SMS LS Prototype Experimental set-up 34
LS Prototype – design par les simulations de Haute Fidélité Take-off configuration C=2.40 m, C(flap)=1m 2
LARGE SCALE A320 Morphing Prototype with high-lift flap Take-off Configuration α=8.2° Re = 2.25M Streaklines in the wake and the pressure field in the wing-flap : Simulations by the NSMB Code: Navier-Stokes MultiBlock of the EU Consortium
Coherent structures dynamics Optimal trailing-edge actuations : 300 Hz Streaklines visualization on the median section Smaller scale organized structures injected in the shear-layer Thinner wake developed Time-Resolved PIV Experiments PhD A. Marouf : IMFT-ICUBE - LAPLACE 37 Simulations
Influence de la fréquence des vibrations STATIC 30 Hz 60 Hz 100 Hz 200 Hz 300 Hz 38
Static configuration versus morphing fSL fSL fSL fact Static Morphing Amincissement du sillage démontré par analyse modale POD
Suppression de la tridimensionnalité et des dislocations des allées tourbillonnaires - source d’augmentation du rms des forces aérodynamiques Maillage de 50 : PRACE - EU Supercomputing Allocation Tier0 Voir article dédié: https://prace-ri.eu/future-aircraft-wings-will-be-able- to-adapt-their-shape-mid-flight/. PhD A. Marouf
Aerodynamic performances By the only effect of vibrations 41
Effets de cambrure LS prototype - Simulations
Aerodynamic performance by the cambering effect/optimal deformed shape Re = 7 million Position 1 Position 2 Position 3 Position 4 0° + 13.76 + 20.67 + 22.67 + 22.74 / − / X 100 2° + 7.97 + 10.35 + 10.79 + 10.41 / 4° + 3.26 + 2.63 +1.21 +0.21 43
Angle of 4° (morphing) compared to 8° (reference) • For a lower angle of incidence in the Take-off than the conventional: Higher aerodynamic performance obtained 10%
II. Morphing - phase de vol de croisière
Morphing par vibrations optimales et légères déformations de la région proche du bord de fuite: A320 type wing Increase of the aerodynamic performance in cruise by modifying the shock boundary layer interaction CL Instabilité du tremblement et Mach=0.78, Re=2.93 x 106 M, angles of incidence from interaction avec la turbulence 1.8 to 5° et tourbillons cohérents du sillage proche: von Kármán et Kelvin-Helmholtz PhD J.B. Tô
A=1.18, M=0.78 A320 Le tremblement du régime transsonique autour d’une aile supercritique
Exps TFAST EU Project The feedback interaction advances (green) event upstream and below the shock foot : separated region creating local thickening of the boundary layer and 48 secondary shock formation J.B. Tô et al, J. Fluids & Structures 2019
Morphing bord de fuite: Actionneurs: effet de rétroaction entre le bord de fuite et l’écoulement amont: Suppression de l’instabilité du tremblement - angle de déflection optimale Vitesse amont correspondant à la phase de vol de croisière réelle Augmentation de la finesse aérodynamique: rapport : portance/résistance au vent
ANALYSE DU COMPORTEMENT OPTIMAL - DYNAMIQUE DU SILLAGE ET EFFET DE RETROACTION (FEEDBACK) SUR LA REGION DU CHOC ET EN AMONT DE CELLE-CI STATIC 200 Hz 350 Hz
Effets du morphing - avion complet de type A320 • Projet SMS : Simulations PhD A. Marouf en collaboration : CFS - Engineering Lausanne - partenaire du projet SMS avec ICUBE - IMFT - LAPLACE
Conclusion: Electroactive hybrid morphing through turbulence manipulation: a multidisciplinary approach Bio-inspiration Reduced Scale prototype SMA – piezo: hybrid morphing Models – design Mechatronic system Camber Feather vibrations Experimental investigation in wind tunnel Approches couplées: Prototypage (actionneurs intelligents), Airflow physical analysis Expérimentale et numérique Turbulence manipulation fluid-structure-interaction Large Scale A320 wing/high-lift flap Morphing impact in take-off on Towards full scale the RS prototype (70 cm chord): Innovative technologies Camber +3.5% more CL/CD Optimized design Flapping: +2% more Lift Electroactive camber control In cruise: +5.5% CL/CD 52
Conclusion Cambering with optimal shape : Increase of 7% lift in Take-off after the experiments Polytech Milano Trailing-edge vibration in cruise: Decrease of drag by 4% - experiments of IMP-PAN - Gdansk and - 9% by simulations The hybrid morphing using optimal trailing-edge actuations and cambering results for the high-lift configuration results in : Drag decrease up to -0.78% using hybrid morphing compared to the only cambering control . Increase of CL/CD of +0.50% more with hybrid morphing than only cambered flaps
Current studies and outlook Morphing thanks to “live-skin” design on strategic parts of the wing Thanks to novel generation of actuators under study Multiple degrees of Freedom for deformations & vibrations Controller through Artificial Intelligence Intelligent manipulation of the TNT “Turbulent- Non-Turbulent and “Turbulent-Turbulent” Interfaces Enforced increase of the aerodynamic performances beyond current limits
Merci de votre attention Marianna Braza - groupe ASI - IMFT J.F. Rouchon - groupe GREM3 - LAPLACE et tous les collègues et étudiants participant à la thématique pluridisciplinaire du morphing électroactif bio-inspiré 55
56
You can also read