Non-linear bayesian inference of cosmic felds in SDSS3 and 2M++ - Guilhem Lavaux (IAP/CNRS) Cosmo21 - Valencia 2018 Aquila consortium ...

 
CONTINUE READING
Non-linear bayesian inference of cosmic felds in SDSS3 and 2M++ - Guilhem Lavaux (IAP/CNRS) Cosmo21 - Valencia 2018 Aquila consortium ...
Non-linear bayesian inference
of cosmic felds in SDSS3 and 2M++

          Guilhem Lavaux (IAP/CNRS)
              and Aquila Consortium

           Cosmo21 – Valencia 2018

                        Aquila consortium (https://aquila-consortium.org)
Non-linear bayesian inference of cosmic felds in SDSS3 and 2M++ - Guilhem Lavaux (IAP/CNRS) Cosmo21 - Valencia 2018 Aquila consortium ...
Outline

    The statistical framework

    The 2M++ compilation
    (presentation, clusters, velocity felds, applications)

    SDSS3 BOSS
    (more modeling challenges, density feld)

    Conclusion
Non-linear bayesian inference of cosmic felds in SDSS3 and 2M++ - Guilhem Lavaux (IAP/CNRS) Cosmo21 - Valencia 2018 Aquila consortium ...
From theory to observations...
     Model                                                  Observations

   Perfect                                         Great but messy
   Complete description                            We do not understand the physics
   Full knowledge of physics                       Systematics not fully known
   Did I say perfect ?                             Good attempt by observers to
                                                   seemingly make our life easier
                                                   end up bad

                    Various hacking to make sense of data
Non-linear bayesian inference of cosmic felds in SDSS3 and 2M++ - Guilhem Lavaux (IAP/CNRS) Cosmo21 - Valencia 2018 Aquila consortium ...
From theory to observations...
     Model                                                       Observations

   Perfect                                             Great but messy
   Complete description                                We do not understand the physics
   Full knowledge of physics                           Systematics not fully known
   Did I say perfect ?                                 Good attempt by observers to
                                                       seemingly make our life easier
                                                       end up bad

                                   BORG3
                     Still far too perfect though… (see later)

                                                            Another perspective to automatically solve
                                                            this problem: see Tom Charnock’s talk
Non-linear bayesian inference of cosmic felds in SDSS3 and 2M++ - Guilhem Lavaux (IAP/CNRS) Cosmo21 - Valencia 2018 Aquila consortium ...
The BORG3 inference framework

                     Initial conditions

Jasche et al. (2010), Jasche & Wandelt (2013), Lavaux & Jasche (2016), Jasche & Lavaux (2017, 2018)
Non-linear bayesian inference of cosmic felds in SDSS3 and 2M++ - Guilhem Lavaux (IAP/CNRS) Cosmo21 - Valencia 2018 Aquila consortium ...
The BORG3 inference framework

                     Initial conditions

           Total evolved matter density

Jasche et al. (2010), Jasche & Wandelt (2013), Lavaux & Jasche (2016), Jasche & Lavaux (2017, 2018)
Non-linear bayesian inference of cosmic felds in SDSS3 and 2M++ - Guilhem Lavaux (IAP/CNRS) Cosmo21 - Valencia 2018 Aquila consortium ...
The BORG3 inference framework

                     Initial conditions

           Total evolved matter density

           Biased galaxy distribution

           Selected/contaminated sample

           Random extraction                                            (Poisson, Negative binomial, ...)

Jasche et al. (2010), Jasche & Wandelt (2013), Lavaux & Jasche (2016), Jasche & Lavaux (2017, 2018)
Non-linear bayesian inference of cosmic felds in SDSS3 and 2M++ - Guilhem Lavaux (IAP/CNRS) Cosmo21 - Valencia 2018 Aquila consortium ...
The BORG3 inference framework

                                                                         Forwa
                                                                              rd and
                     Initial conditions                                                  adjoin
                                                                                               t m od
                                                                                                     el

           Total evolved matter density

           Biased galaxy distribution

           Selected/contaminated sample

           Random extraction                                            (Poisson, Negative binomial, ...)

Jasche et al. (2010), Jasche & Wandelt (2013), Lavaux & Jasche (2016), Jasche & Lavaux (2017, 2018)
Non-linear bayesian inference of cosmic felds in SDSS3 and 2M++ - Guilhem Lavaux (IAP/CNRS) Cosmo21 - Valencia 2018 Aquila consortium ...
The BORG3 inference framework

                     Initial conditions

           Total evolved matter density

           Biased galaxy distribution

           Selected/contaminated sample

           Random extraction                                            (Poisson, Negative binomial, ...)

                                                      Easily
                                                      Easilyexchangeable
                                                             exchangeableto   totry
                                                                                 try
                                                   your
                                                    yourfavorite
                                                         favoritedifferentiable
                                                                  differentiablemodel
                                                                                 model
Jasche et al. (2010), Jasche & Wandelt (2013), Lavaux & Jasche (2016), Jasche & Lavaux (2017, 2018)
Non-linear bayesian inference of cosmic felds in SDSS3 and 2M++ - Guilhem Lavaux (IAP/CNRS) Cosmo21 - Valencia 2018 Aquila consortium ...
The BORG3 inference framework

                     Initial conditions

           Total evolved matter density

           Biased galaxy distribution

           Selected/contaminated sample

           Random extraction                                            (Poisson, Negative binomial, ...)

       Encode
       Encodesurvey
              surveysystematic
                     systematiceffects
                                effectswith
                                       withexpansions:
                                            expansions:

Jasche et al. (2010), Jasche & Wandelt (2013), Lavaux & Jasche (2016), Jasche & Lavaux (2017, 2018)
Application to 2M++ galaxy compilation:
      Detailed dynamical modeling
The 2M++ galaxy compilation
                              SDSS     0 Mpc/h
Galaxy distribution

     2MRS

                                     250 Mpc/h
Redshift completeness       6dF

 ~70 000 galaxies        Lavaux & Hudson (MNRAS, 2011)
Inferred density fields

  Ensemble average density fields at z=0
                                           Clusters

                                                                                  Higher error
                                           Mean

                                           Void

                                                      Jasche & Lavaux (2018, in prep.)
Performance aspect (2): burnin

                            Jasche & Lavaux (2018, in prep.)
Initial condition powerspectrum
                           Initial conditions

                           Post PM simulation

                               Jasche & Lavaux (2018, in prep.)
Virgo cluster

                                     Virgo center

                                                     ~30 Mpc/h

                Jasche & Lavaux; Lavaux & Jasche; Peirani, Lavaux & Jasche (2018, in prep.)
Coma dynamical properties

                                 Coma center

             Jasche & Lavaux; Lavaux & Jasche; Peirani, Lavaux & Jasche (2018, in prep.)
Coma dynamical properties

                    Zoom simulation on Coma
                    (~250 Mpart in zoom)

             Jasche & Lavaux; Lavaux & Jasche; Peirani, Lavaux & Jasche (2018, in prep.)
Shapley concentration
                          Single realisation density

                    Shapley center

                                 ~60 Mpc/h

                                     Lavaux & Jasche (2018, in prep.)
Shapley concentration
                          Ensemble average density

                    Shapley center

                                 ~60 Mpc/h

                                     Lavaux & Jasche (2018, in prep.)
Inferred velocity fields

                  +400 km/s                         800 km/s
                     Outfall

                                                          Higher error
                     Infall
                  -400 km/s                           0 km/s

                               Jasche & Lavaux (2018, in prep.)
Velocity field and Hubble constant
     Mean error on Hubble measurement using tracers from observed large scale structures

TODO: Compare all the flow models
                                          Jasche & Lavaux (2018, in prep.), Lavaux & Jasche (2018, in prep.)
Application to Sloan Digital Sky Survey III:
      Deep cosmological application
SDSS3 data

                                       Panstarrs

  SDSS DR12 galaxy sample
           ~1.6 millions of galaxies
                                        SDSS
Forward model becomes more complex
              Cosmic expansion                                      Cosmic growth of structures

Non-linear density remapping:                              Implemented so far for (2)LPT:

                (see Doogesh’ poster)
  Kodi Ramanah, Lavaux, Jasche, Wandelt (2018, in prep.)
Forward model becomes more complex
            Cosmic expansion

         Lo
           ok
             ba
               ck
                    tim
                       e

              (see Doogesh’ poster)
 Kodi Ramanah, Lavaux, Jasche, Wandelt (2018, in prep.)
Forward model becomes more complex
            Cosmic expansion

         Lo
           ok
             ba
               ck
                    tim
                       e

              (see Doogesh’ poster)
 Kodi Ramanah, Lavaux, Jasche, Wandelt (2018, in prep.)
Forward model becomes more complex
            Cosmic expansion                                     Cosmic growth of structures

         Lo
           ok
             ba
               ck
                    tim
                       e

                                                          Time

              (see Doogesh’ poster)
 Kodi Ramanah, Lavaux, Jasche, Wandelt (2018, in prep.)
… and systematic cleaning…
   11 foregrounds (here only 8)… still much less than Leistedt & Peiris (2014) but improving

                                     DUST

                                              psfWidth

Sky fluxes

                                                                                0

                                                                                               ...

Star densities

                                                                                               ...
Example fitted composite...
   11 foregrounds (here only 8)… still much less than Leistedt & Peiris (2014) but improving

                                     DUST

                                              psfWidth

Sky fluxes

                                                                                0

                                                                                               ...

Star densities

                                                                                       ...
                                                                               Preliminary
Inferred density of SDSS3
       Ensemble density average                 Error estimate from ensemble variance

 SGC

 NGC

                             Main galaxy sample limit
                                  (not included)
                   LOWZ limit
         CMASS limit                                                  Preliminary
Sky density

              Preliminary
Conclusion
The Aquila consortium
●
    Founded in 2016
●
    Gather people interested in working with each other on developing the Bayesian pipelines
    and run analysis on data.
                                  https://aquila-consortium.org/
The Aquila consortium
●
    Founded in 2016
●
    Gather people interested in working with each other on developing the Bayesian pipelines
    and run analysis on data.
                                  https://aquila-consortium.org/

    A biased list of Aquilians… check the website!

          Natalia Porqueres               Minh Nguyen              Doogesh Kodi Ramanah

               Tom Charnock                                        Florent Leclercq
Conclusion: great future
      2M++
       2M++                     SDSS
                                SDSS                     CosmicFlows
                                                         CosmicFlows                   LSST?
                                                                                        LSST?

                                            BORG3+
                                            BORG3+

              Predictive
              Predictivecosmology
                         cosmology                            Cosmological
                                                              Cosmologicalmeasurement
                                                                           measurement

  ●
      Velocity field (also VIRBIUS with F. Fuhrer)   ●
                                                         Cosmic expansion (see Doogesh’s talk)
  ●
      X-ray cluster emission                         ●
                                                         Power spectrum (and governing parameters)
  ●
      Kinetic Sunyaev Zel’dovich                     ●
                                                         Gaussianity tests of initial conditions
  ●
      Rees-Sciama                                    ●
                                                         Direct probe of dynamics
  ●
      Dark matter ?
Conclusion: great future and challenges
      2M++
       2M++                     SDSS
                                SDSS                     CosmicFlows
                                                         CosmicFlows                   LSST?
                                                                                        LSST?

                                            BORG3+
                                            BORG3+

              Predictive
              Predictivecosmology
                         cosmology                            Cosmological
                                                              Cosmologicalmeasurement
                                                                           measurement

  ●
      Velocity field (also VIRBIUS with F. Fuhrer)   ●
                                                         Cosmic expansion (see Doogesh’s talk)
  ●
      X-ray cluster emission                         ●
                                                         Power spectrum (and governing parameters)
  ●
      Kinetic Sunyaev Zel’dovich                     ●
                                                         Gaussianity tests of initial conditions
  ●
      Rees-Sciama                                    ●
                                                         Direct probe of dynamics
  ●
      Dark matter ?

                         Galaxy
                         Galaxyformation:
                                formation:bias
                                          biasand
                                               andlikelihood
                                                   likelihood

                                     Instrument
                                      Instrumentmodeling
                                                modeling
You can also read