Module descriptions Bachelor degree course: Mechatronics / Precision Engineering (B-MF) - Please be aware of the fact that all subjects are taught ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Module descriptions Bachelor degree course: Mechatronics / Precision Engineering (B-MF) Please be aware of the fact that all subjects are taught in German Version C – 1st October 2009
Modules 1a Engineering Mathematics 1 .......................................................................................................... 3 1b Engineering Mathematics 2 .......................................................................................................... 4 2a Informatics 1 ................................................................................................................................. 5 2b Informatics 2 ................................................................................................................................. 6 3 Physics .......................................................................................................................................... 7 4 Engineering Mechanics 1+2 ....................................................................................................... 8 5 Electrical Engineering 1+2 ............................................................................................................ 9 6 Design 1 ...................................................................................................................................... 10 7 Design 2 * ................................................................................................................................... 11 8 Technical and Business English ................................................................................................. 12 9 Material Engineering * ................................................................................................................ 13 10 Product Engineering ................................................................................................................... 14 11 Electrical Metrology..................................................................................................................... 15 12 Mechatronic components ............................................................................................................ 16 13 Microcomputers * ........................................................................................................................ 17 14 System Theory ............................................................................................................................ 18 15 Electronic Components / Electronics 1+2 ................................................................................... 19 16 Electronic Packaging Technology* ............................................................................................. 21 17a Internship semester ................................................................................................................... 22 17b Internship Seminar ..................................................................................................................... 23 17c Ergonomics ................................................................................................................................ 24 17d Business Administration ............................................................................................................ 25 18 Technical Optics ......................................................................................................................... 26 19 Feedback Control Systems ......................................................................................................... 27 20 Microtechnics .............................................................................................................................. 28 21 Project ......................................................................................................................................... 29 21a Project work................................................................................................................... 29 21b Project seminar ........................................................................................................... 30 22 Specialised elective Module (Subject of Specialisation)............................................................. 31 PRE1/1 Design for Manufacturing ....................................................................................... 31 MPE2 FEM in mechanical design ..................................................................................... 32 MPE3 Materials for Mechatronics * .................................................................................. 33 PRA1/1 Business Organisation / Environmental Management ............................................ 34 MPA2 Mechatronic Systems .............................................................................................. 35 MPA4 Quality Management ............................................................................................... 36 MMV1 Cost Accounting and Controlling ............................................................................. 37 MMV2 Technical / International Sales ................................................................................ 38 MMV3 Technical Marketing ............................................................................................... 39 23 Subject-related electives (group 2) ............................................................................................ 40 24 Bachelor Thesis and Bachelor Seminar ..................................................................................... 41
1a Engineering Mathematics 1 Weekly hours: 6 Credits: 6 Lectures: 5 SU, 1 Ü Assessment: See Study Plan Aim: In-depth knowledge and deepened understanding of mathematical concepts, laws, way of thinking and methods relevant for electrical engineering and information technology; ability to apply mathematics to electrical engineering and information technology problems. Content: x Fundamentals: sets, transformations, real and complex numbers; functions and relations: elementary functions and relations, differential and integral calculus, important numeric methods; functions and relations of a complex variable: fundamentals; series: convergence, power series, Taylor series, real and complex Fourier series; exercises with the aid of a mathematical simulation system Reading List: x Lothar Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 1 und 2, x Vieweg-Verlag, 2001 x Peter Stingl, Mathematik für Fachhochschulen, Hanser-Verlag, 1996 x Thomas Westermann, Mathematik für Ingenieure mit Maple, Band 1 und 2, Springer- x Verlag, 2000 x Kurt Meyberg und Peter Vachenauer, Höhere Mathematik, Band 1 und 2, Springer- x Verlag, 1997 x Walter Müller, Vorlesungsunterlagen x Lothar Papula, Mathematische Formelsammlung, Vieweg-Verlag, 2001 x Lennart Rade und Bertil Westergren, Springers Mathematische Formeln, Springer, 2000 Workload: It is expected that the average student will require 180 hours of study to acquire the neces- sary knowledge and abilities. These hours can be divided as follows: 68 hours presence in lectures and practices 28 hours regular study of the syllabus 20 hours calculation of exercises 14 hours reading and private study 50 hours exam preparation This is worth 6 credits.
1b Engineering Mathematics 2 Weekly hours: 6 Credits: 6 Lectures: 5 SU, 1 Ü Assessment: See Study Plan Aim: In-depth knowledge and deepened understanding of mathematical concepts, laws, way of thinking and methods relevant for electrical engineering and information technology; ability to apply mathematics on electrical engineering and information technology problems. Content: Linear algebra: vectors, matrices, determinants, systems of linear equations; functions and relations of multiple variables: differential and integral calculus; differential equations: ordina-ry differential equations of 1st and 2nd order, systems of differential equations; integral trans-forms: fundamentals of Laplace transforms. Reading List: x Lothar Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 1 und 2, x Vieweg-Verlag, 2001 x Peter Stingl, Mathematik für Fachhochschulen, Hanser-Verlag, 1996 x Thomas Westermann, Mathematik für Ingenieure mit Maple, Band 1 und 2, Springer- x Verlag, 2000 x Kurt Meyberg und Peter Vachenauer, Höhere Mathematik, Band 1 und 2, Springer- x Verlag, 1997 x Walter Müller, Vorlesungsunterlagen x Lothar Papula, Mathematische Formelsammlung, Vieweg-Verlag, 2001 x Lennart Rade und Bertil Westergren, Springers Mathematische Formeln, Springer, 2000 Workload: It is expected that the average student will require 180 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 68 hours attendance of lectures and practices 28 hours regular study of the syllabus 20 hours development and elaboration of solutions 14 hours reading and private study 50 hours exam preparation This is worth 6 credits.
2a Informatics 1 Weekly hours: 4 Credits: 4 Lectures: 2 SU + 2 Pr Assessment: See Study Plan Aim: x Knowledge about typical data types and structures of a procedural programming language x Knowledge about control structures in a higher procedural programming language x Knowledge about basic tools for program development (compiler, linker, interpreter, debugger) x Ability to solve and realize given problems in a programming language Content: x Basic structure of a c-program x Basic data types, variables, expressions und operators x In- and Output x Conditional branches (if, switch) x Loops (for, while, do..while) x Functions x Preprocessor directives Reading list: Script: P. Jesorsky, ANSI-C Programmierung Workload: It is expected that the average student will require 120 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 40 hours attendance of lectures and seminars 20 hours regular study of the syllabus 20 hours development of exercise programs and software solutions 12 hours reading and private study 28 hours exam preparation This is worth 4 credits.
2b Informatics 2 Weekly Hours: 6 Credits: 8 Lectures: 4 SU + 2 Pr Assessment: See Study Plan Aim: Finalizing procedural programming knowledge, 2.Part: x Knowledge about arrays and pointers x Knowledge about complex data types, structures and unions x Knowledge about control structures x Ability to transform and solve problems in a higher programming language x Ability to design and test software Basics of computer science: x Knowledge about the representation of information within a digital computing machine x Basic knowledge about the execution of programs on computers Content: Programming 2. Part: x Arrays and pointers x Structures, data types, storage classes x Dynamic memory allocation and deallocation x File handling Basics of computer science: x Arrays and pointers x Historical development of computer science, binary digits x Binary arithmetics and binary codes x Components of digital computing systems x Symbolic / binary machine language, algorithms Reading list: x Script: P. Jesorsky, ANSI-C Programmierung x Buch: H. Herold, B. Lurz, J. Wohlrab, Grundlagen der Informatik Workload: It is expected that the average student will require 240 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 65 hours attendance of lectures and seminars 48 hours regular study of the syllabus 60 hours development and elaboration of solutions 20 hours reading and private study 47 hours exam preparation This is worth 8 credits
3 Physics Weekly hours: 6 Credits: 7 Lectures: 4 SU + 2 Pr Assessment: See Study Plan Aim: Knowledge of important physical laws relevant to electrical engineering and information technology Content: x Fundamentals of thermodynamics; x undamped oscillations, interference and beat; x mechanical waves, Doppler effect; x fundamentals of geometric optics; x wave optics; fundamentals of relativity; x thermal radiation, Photons; x hydrogen atom Reading List: Workload: It is expected that the average student will require 210 hours of study to acquire the neces-sary knowledge and abilities. These hours can be divided as follows: 68 hours presence in lectures and practices 34 hours regular study of the syllabus 34 hours development of exercises and solutions 32 hours reading and private study 42 hours exam preparation This is worth 7 credits.
4 Engineering Mechanics 1+2 Weekly Hours: 10 Credits: 12 Lectures: 8 SU, 2 Ü Assessment: See Study Plan Aim: x ability to create models of real mechanical structures and to design components by the use of abstraction; x ability to scale complex mechanical loading cases of components and assemblies down to fundamental variables, e.g. stress, tension, compression, bending and torsion and calculation of load parameters; x ability to describe the course of movements in terms of formulas and to determine the effect of dynamic strengths on mechanical components and constructions as well as to solve mechanical oscillation problems; Content: x force, central and general system of forces x determination of reaction forces and internal forces as a result of external loads friction x moments of grade n: centre of gravity and area moment second grade x calculation of tensile-, compressive-, bending- and torsional stress x introduction to the mechanics of materials: Hooke's law, dimensioning and deformation of elastic bodies x bending load of straight beams: deflection and elastic curve x fundamentals of kinematics; equations of motion; x kinetics of the mass-points and stiff bodies (impulse -, spin - and energy conservation) x impact-processes; non damped and damped oscillations Reading list: x Lecture notes x Holzmann/Meyer/Schumpich, Technische Mechanik Teil 1, 2 und 3, Teubner, 2004 x Wriggers u.a., Technische Mechanik kompakt, Teubner, 2005 x Dankert/Dankert, Technische Mechanik, Teubner, 2004 x Müller/Ferber, Technische Mechanik für Ingenieure, Fachbuchverlag Leipzig, 2005 x Henning/Jahr/Mrowka, Technische Mechanik mit Mathcad, Matlab u. Maple, Vieweg, 2004 Workload: It is expected that the average student will require 360 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 110 hours attendance of lectures and seminars 80 hours regular study of the syllabus 90 hours reading and individual study 80 hours exam preparation This is worth 12 credits.
5 Electrical Engineering 1+2 Weekly hours: 10 Credits: 12 Lectures: SU 8, Ü 2 Assessment: See Study Plan Aim: x Electrical Engineering 1: Knowledge and understanding of electric variables. Ability to analyze and calculate electrical networks. Charasteristics of electrostatic fields and calculation of electrostatic fields for basic geometrical structures. x Electrical Engineering 2: Application of the steady-state sinusoidal analysis in order to analyze and calculate electrical networks. Knowledge of characteristics for three phase systems. Understanding of the concepts of transient response and steady-state response. Calculation of first order circuits. Characteristics and calculation of magnetic fields Content: x Electric variables, Ohm’s law, Kirchoff’s laws x Electric circuit, Electrical Networks x Complex calculation, Vector representation x Techniques for network analysis x Energy and power in electrical networks x Resonant Circuits, Reactive Compensation x Characteristics and power in three phase systems x Transient Analysis of first order circuits x Electrostatic field, capacitance, dielectric fluid x Magnetic field, law of induction, inductance, mutual inductance, transformer Reading list: • Albach, M.: Grundlagen der Elektrotechnik, Bd. 1. Bd. 2 und Bd. 3, Pearson Studium • Skriptum und Übungen zur Vorlesung Workload: It is expected that the average student will require 360 hours of study to learn the material and acquire the necessary abilities. These hours can be divided as follows: 110 hours attendance of lectures and seminars 68 hours regular study of the syllabus 50 hours construction of practice programms and solutions 68 hours reading and private study 64 hours exam preparation This is worth 12 credits.
6 Design 1 Weekly hours: 4 Credits: 5 Lectures: 2 SU, 2 Ü Assessment: See Study Plan Aim: x Getting to know the character of national and international engineering standards, Understanding of and working using engineering standards x Getting to know basics defining the fields development and design, what is done during design, what can be expected of it x Ability to design precision mechanical and mechatronical base elements, and to dimension and illustrate them graphically x Ability to apply above-mentioned base elements adequately and to assess their use in consideration of production, function, and cost effectiveness for existing products Content: x Character of engineering standards, standardisation x Standards for technical drawing x Exercises for this x Standard parts x All substantial standards for tolerances and fits x Selection of fits, calculations of fits, calculations of tolerances, shape tolerances and position tolerances, and their usage in technical documents x Surfaces, roughness, depth of roughness, and their usage in technical documents Reading List: x Standard sheets and standard books x Klein, M.: Einführung in die DIN-Normen, B.G. Teubner, Stuttgart, Beuth Verlag Berlin x Böttcher, P.; Forberg, R.: Technisches Zeichnen, B.G. Teubner, Stuttgart, Beuth Verlag Berlin Workload: It is expected that the average student will require 150 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 44 hours attendance of lectures and practical courses 30 hours regular study of the syllabus 50 hours preparation of exercises and individual study 26 hours exam preparation This is worth 5 credits.
7 Design 2 * Weekly Hours: 6 Credits: 6 Lectures: 4 SU, 2Ü Assessment: See Study Plan Aim: x Knowledge of mechatronical constructional elements fundamental for mechatronics / precision engineering x Knowledge of approach to dimensioning and strength proof of mechatronical constructional elements x Knowledge of essential design rules for mechatronical constructional elements x Knowledge in using a 3D-CAD-system for modelling of parts and assemblies and for creation of drawings x Ability to select mechatronical constructional elements according to the intended application, to design and apply them within assemblies, and to create documents for production Content: x Basics of dimensioning of mechatronical constructional elements x Substance-bonding, form-fit, and force-fit connecting elements x Essential mechatronical constructional elements as axes/ shafts, bearings/ guides, springs, or gearings x Introduction into the application of a 3D-DAD-system x Self-dependent work on design exercises using the acquired knowledges Reading List: x Schönherr, E.: Konstruktionstechnik-Arbeitsblätter (own script) x Schönherr, E.: Arbeitsblätter Einführung in ein 3D-CAD-System (own script) x Krause, W.: Konstruktionselemente der Feinmechanik, actual edition, Carl Hanser Verlag München Wien x Klein, M.: Einführung in die DIN-Normen, B.G. Teubner Stuttgart, Beuth Verlag Berlin Workload: It is expected that the average student will require 180 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 68 hours attendance of lectures and practical courses 40 hours regular study of the syllabus 46 hours preparation of exercises and private study 26 hours exam preparation This is worth 6 credits.
8 Technical and Business English Weekly Hours: 4 Credits: 4 Lectures: 4 SU Assessment: See Study Plan Aim: The aim of the course is to provide students with an overview of how English is actually used in multinational companies in Germany or in any business enterprise in which English requirements form an integral part of the job description. All work done in class is supplemented with current and practical examples of situations and text types – both written and spoken – that are commonly used in the relevant industries. Content: Course materials consist of lecture notes and two supplementary reading documents covering the essentials of English grammar and vocabulary. Reading and listening comprehension exercises as well as job related writing tasks are presented, giving students ample opportunity to practice in situations simulating some of the more important ways English is used in EE relevant industries. Both active and passive writing skills are included in the final assessment of the student’s abilities. Spoken language competence is excluded in the final assessment. However, all meetings are conducted in English to give students the opportunity to practice their listening comprehension. Workload: The average student is expected to require approximately 120 hours of study to acquire the necessary concepts and abilities. These hours can be divided as follows: 44 hours of attending lectures and practical courses 26 hours of regular study per the syllabus 20 hours of exercise preparation and private study 30 hours of exam preparation This course is worth 4 credits.
9 Material Engineering * Weekly hours: 6 Credits: 7 Lectures: 4 SU, 2 Pr Assessment: See Study Plan Aim: x Knowledge of fundamental relations between structures, properties and technologies of materials x Ability to choose materials for the development of precision engineering products with proper decision criteria x Overview of properties of important functional materials including testing x Ability to realise future trends in material science Content: x Properties of 4 main material classes including examples x Materials and energy; terms of balance and non-balance x Material properties derived from atomic- and micro-structures x Main material properties including test procedures from the application point of view x Materials in equilibrium: phase equilibria and phase diagrams x Seeding and material transport mechanisms x Phase non-equilibria: grain segregation, precipitations, thermal treatment of steel and other dedicated materials x Phase boundary non-equilibration: recreation, recristallisation, Ostwald ripening x Selected modern functional materials for applications in precision engineering: structure, properties and application examples Reading List: x Lecture notes (approx. 350 pages) x Bergmann, Werkstofftechnik, Vol1+2,Hanser, 2002 x Schatt/Worch, Wekstoffwissenschaft, Deutscher Verlag für Grundstoffindustrie, 1996 x Ilschner/Singer, Werkstoffwissenschaften und Fertigungstechnik, Springer Verlag, 2002 x Heine, Werkstoffprüfung, Fachbuchverlag Leipzig, 2003 Workload: It is expected that the average student will require 210 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 68 hours attendance of lectures and practical courses 48 hours regular study of the syllabus 48 hours preparation of exercises and private study 46 hours exam preparation This is worth 7 credits.
10 Product Engineering Weekly hours: 8 Credits: 8 Lectures: 6 SU, 2 Pr Assessment: See Study Plan Aim: Knowledge of production techniques according to DIN 8580, competency to evaluate the in-fluencing variables of different manufacturing technologies. evaluation of the cost aspect. Content: x Primary shaping of metal and plastics x Metal cutting with defined cutting edge and joining technology for production of precision mechanics. x Profitable production. x Measuring systems for distances, surfaces, shape and position. x Knowledge of NC-programming. x High speed cutting HSC x Plastic deformation of metallic parts. x Rapid prototyping techniques. Reading List: x Hallwig, W.: lecture notes „Fertigungstechnik 1, 2” x Westerkämper E., Warnecke H.-J. : Einführung in die Fertigungstechnik, Teubner-Verlag 2002 x Fritz H., Schulze G. : Fertigungstechnik. VDI-Verlag 1995 Workload: It is expected that the average student will require 240 hours of study to acquire the neces-sary knowledge and abilities. These hours can be divided as follows: 78 hours attendance of lectures and seminars 50 hours regular study of the syllabus 70 hours construction of practise programs and solutions 42 hours exam preparation This is worth 8 credits. Requirements: Basic knowledges of mathematics, physics and chemistry
11 Electrical Metrology Weekly hours: 6 Credits: 7 Lectures: 4 SU, 2 Pr Assessment: See Study Plan Aim: x The participants learn the basis of the electrical measuring technique and the applications of sensors as well as its integration into a system. x Ability to arrange and to evaluate the possibilities and limits of these measuring procedures. Content: x Fundamentals of electrical measurement technique: quantities, units, standards, measuring errors, x Sensitivity and worst case scenario x Selected examples of electromechanical instruments and digital meters x Analog and digital measuring procedures and their systematic and coincidental errors. x Analysis of electrical signals (current, voltage, power) x Possibilities and limits of the use of measuring and operational amplifiers x Principles from sensors to the electrical measurements of non electric quantities x Analog-digital converters and data acquisition Reading List: x Lecture script with task collection x Mühl, Thomas: Einführung in die elektrische Meßtechnik, Teubner Verlag. x Schrüfer, E.: Elektrische Meßtechnik, Carl Hanser Verlag. x Schmusch, W.:Elektronische Meßtechnik, Vogel Verlag. x Tränkler, H.-R.: Taschenbuch der Meßtechnik, Oldenbourg Verlag. Workload: It is expected that the average student will require 210 hours of study to acquire the neces-sary knowledge and abilities. These hours can be divided as follows: 68 hours attendance of lectures and seminars 50 hours reading and private study 42 hours construction of practise programms and solutions 50 hours exam preparation This is worth 7 credits Requirements: Basic knowledge of mathematics, physics, principles of electrical engineering and electron-ics.
12 Mechatronic components Weekly Hours: 4 Credits: 5 Lectures: 2 SU, 2 Pr Assessment: See Study Plan Aim: x Knowledge of design, basic principles, properties and fields of applications of sensors and actuators, which are important for mechatronic components, systems and production facilities x Ability to evaluate, select and dimension mechanical, electronic and optical sensors and actuators x Ability to combine mechanical, electronic and optical components to built adequate “mechatronic” components and systems Content: x physical and technological basics of sensor and actuator principles x design and application of sensors to measure nonelectrical physical values including e.g. resistive, capacitive, inductive or transforming elements; including also incremental sensors and active sensors such as charge, voltage and current supplying devices x physical and technological basics of generating motion, mechanical force and torque using actuators and drives (linear and rotating drives, pneumatic actuators) x safety aspects for product development x integration of mechanics, electronics, optics information techniques to mechatronic systems Reading list: x Schmusch, W.:Elektronische Meßtechnik, Vogel Verlag, 2002. x Herold, H.: Sensortechnik. Sensorwirkprinzipien und Systeme. Heidelberg: Hüthig-Verlag (1993) x Lemme, H.: Sensoren in der Praxis. Daten, Messverfahren und Applikationen. München (1993) x Heimann, B.; Gerth W. Popp, K.: Mechatronik. Fachbuchverlag Leipzig (2001) x Meins, J.: Elektromechanik. Teubner Verlag Stuttgart (1997) x Kallenbach, E.; Eick, L.; Quendt, L.: Elektromagnete. Teubner Verlag Stuttgart (1994) x Stölting, H.; Kallenbach, E.: Handbuch Elektrischer Kleinantriebe. Carl Hanser Verlag München (2001) x Jendritza, D. et al. Technischer Einsatz Neuer Aktoren. Expert Verlag Renningen-Malsmsheim (1998) Workload: It is expected that the average student will require 150 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 44 hours attendance of lectures and seminars 46 hours regular study of the syllabus 26 hours reading and individual study 34 hours exam preparation This is worth 5 credits.
13 Microcomputers * Weekly Hours: 4 Credits: 5 Lectures: 3 SU + 1 Pr Assessment: See Study Plan Aim: x Knowledge of the basic architecture of microcomputers x Knowledge of essential features of Motorola's 68k processor family x Ability of understanding microprocessor busses x Knowledge of little and big endian memory access x Knowledge of addressing memory and peripherals x Knowledge of important onchip memories x Knowledge of important I/O-Interfaces x Knowledge of a simple microcontroller x Knowledge of communication via CAN (Controller Area Network) Content: x Basics of a microcomputersystem: architecture, basic building blocks x Basics of a CPU: ALU, addresses, bus, opcode, format, RISC, CISC x Adressdecoder with Chip Select and address tables x Memory: ROM, EPROM, EEPROM, Flash EPROM, SRAM, DRAM, SDRAM, DDR, DDR2 x I/O: Serial and parallel ports, interrupt, direct memory access, SPI x Introduction to microcontrollers with an Atmel AVR 8 bit microcontroller x Introduction to CAN (Controller Area Network) x Computer design with AVR microcontroller and a CAN controller Reading list: x Peter Urbanek: Mikrocomputer, 2004, Eigenverlag Workload: It is expected that the average student will require 150 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 44 hours attendance of lectures and seminars 28 hours regular study of the syllabus 28 hours preparation of experiments and writing test reports 20 hours reading and individual study 30 hours exam preparation This is worth 5 credits.
14 System Theory Weekly Hours: 6 Credits: 7 Lectures: 4 SU, 2 Ü Assessment: See Study Plan Aim: x Fähigkeit, technische Systeme bezüglich ihres stati¬schen und dynamischen Verhal-tens unter Einbeziehung von rechnergestützten Hilfsmitteln aufgabenbezogen zu modellieren und zu optimieren x Fähigkeit, numerische Methoden für die Lösung mathematischer Probleme anwen-den zu können. Content: x Signalbeschreibung im Zeit- und Frequenzbereich x Fourierreihe, Fourier, Laplace- und z-Transformation x Modellierung technischer Systeme x Systemeigenschaften, Linearisierung x Beschreibung von LTI-Systemen x Übertragungsfunktion, Frequenzgang, Zustandsraumbe¬schreibung x Zeitdiskrete lineare Systeme x Bilineare Transformation, Invariante Transformationen x Simulation von kontinuierlichen und diskontinuierli¬chen Systemen x Numerische Methoden Reading list: x Eigenes Skript (etwa 200 Seiten) x Girod/Rabenstein/Stenger: Einführung in die Systemtheorie. 2. Aufl., Teubner, 2003. x Karrenberg; U.: Signale, Prozesse, Systeme. Springer, 2004. x Mildenberger, O.: System und Signaltheorie. Vieweg, 1996 Workload: It is expected that the average student will require 210 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 68 hours attendance of lectures and seminars 36 hours regular study of the syllabus 60 hours preparation of assignments individual study 46 hours exam preparation This is worth 7 credits.
15 Electronic Components / Electronics 1+2 Weekly hours: 6 Credits: 7 Lectures: 6 SU Assessment: See Study Plan Aim: x Knowledge of properties and parameters of important passive electronic components. x Insight into the physical fundamentals of electric fields and motions of charge carriers in semi- conductor materials. x Knowledge of the properties and parameters of important active electronic components. Ability to select appropriate components and evaluate their parameters by means of data sheets. x Basic knowledge about methods and models for simulation of analog electronic circuits. x Understanding of the fundamentals of the Boolean algebra and important digital components. x Ability to understand and analyze the function of digital circuits of medium complexity and simple digital automata. x Ability to simulate digital circuits of limited complexity by means of basic simulation software. Contents: x Properties of passive components (including frequency dependent impedance) and important applications. x Conductivity in metals and semiconducting materials. x Physical fundamentals of electric fields and motions of charge carriers in semiconductors. x Properties of the p-n-junction and important types of diodes. x Properties of bipolar and field effect transistors. x The 3 basic transistor circuits. x Choice of appropriate operating points, evaluation of small signal parameters. x Linearization in the operating point, formula for characterization of small signal behaviour. x Overview on large signal behaviour of transistors and modeling methods for simulations. x Overview on important applications. x Number system and codes (recapitulation). x Boolean algebra, design and minimization of logic circuits. x Overview on important logic families and basic standardized digital circuits (e.g. gates, flip-flops, counters, registers, decoders). x Design of sequential logic circuits (controllers, simple automata). x Simulation of simple logic circuits. Reading List: Own scripts with detailed Reading liste index: x Electronic components: XY pages. x Analog Electronics: about. 205 pages x Digital Electronics: about 130 pages.
Workload: It is expected that the average student will require 210 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 68 hours attendance of lectures and seminars 52 hours regular study of the syllabus 44 hours reading and private study 48 hours exam preparation This is worth 7 credits. Requirements: Basics in infinitesimal calculus, physics, network theory.
16 Electronic Packaging Technology* Weekly hours: 4 Credits: 4 Lectures: 2 SU + 2 Pr Assessment: See Study Plan Aim: x Understanding of bare board PCB, hybrid circuit and IC manufacturing, assembly and soldering x Knowledge of fundamental design rules for leaded components and SMDs x Knowledge of fundamental plating techniques x Ability to evaluate the optimum packaging technology for various applications Content: x Design methods and rules for PCB layouts x Properties of substrate materials and their impact on packaging technology x Manufacturing of PCBs in subtractive, semi-additive and full-additive technology x Fundamentals of IC manufacturing technology x Component types and their assembly x Solders and soldering methods including lead-free x Test methods x Reliability aspects x Workshop: manufacturing of a FM radio in SMD technology (4 sessions), laser trimming of a thick- film hybrid circuit (1 session) Reading list: x W. Jillek, G. Keller, Handbuch der Leiterplattentechnik, Bd. 4, Leuze Verlag, 2003 x D. Raasch, Technologie bipolarer integrierter Schaltungen, Hüthig Verlag x H. Reichl, Hybridintegration, Hüthig Verlag Workload: It is expected that the average student will require 120 hours of study to acquire the neces-sary knowledge and abilities. These hours can be divided as follows: 40 hours attendance of lectures and seminars 20 hours regular study of the syllabus 20 hours reading and individual work 40 hours exam preparation This is worth 4 credits. Requirements: Basic knowledge of physics
17a Internship semester Weekly Hours: Internship 20 weeks (36 work hours each) Credits: 24 Lectures: Projekt work Assessment: See Study Plan Aim: Collecting experience and knowledge of the tasks and the working methods of an engineer in the industrial field and in all areas of Mechatronics and Precision Engineering Content: On the basis of a project, students learn different problem solving approaches in fundamental areas of engineering. In teamwork the students are expected to find the solution to a specific problem within the project. The following engineering areas can be listed as examples: x Product engineering x Project planning x Putting into operation x Service x Quality management Workload: The Internship Semester, including some private study, comprises an average workload of 720 hours. Upon successful completion of the internship semester, students are awarded 24 credits.
17b Internship Seminar Weekly Hours: 2 Credits: 2 Lectures: 2S Assessment: See Study Plan Aim: x Ability to analyse company processes competently und independently; x Ability to make decisions founded on technical, economical and ecological aspects; x Ability to hold presentations on the work results. Content: x Exchange of experiences x Guidance and advice x Short presentations of the own work during the Internship seminar Workload: It is expected that the average student will require 60 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 24 hours attendance of lectures and seminars 24 hours preparation of presentations 12 hours reading and private study This is worth 2 credits.
17c Ergonomics Weekly Hours: 2 Credits: 2 Lectures: 2 SU Assessment: See Study Plan Aim: x Vermittlung arbeitswissenschaftlicher Kenntnisse der Arbeitswirtschaft. x Hierzu zählt insbesondere der Zeitwirtschaft; Arbeitsdurchführung, Entlohnung und Produktgestaltung x Befähigung zur technischen, humanen, wirtschaftlichen und organisatorischen Ges-taltung der Arbeitsbedingungen und der Arbeitsabläufe. Content: x Grundlagen der Ergonomie x Voraussetzungen und Grenzen menschlicher Leistungsfä¬higkeit x Methoden der Zeitdatenermittlung, Arbeitsstudien, Arbeitsbewertung und Entlohnung x Arbeitsstrukturierung, Methodik der Arbeitsgestaltung x EDV Einsatz in Arbeitsstudien. Workload: It is expected that the average student will require 60 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 24 hours attendance of lectures 20 hours preparation of presentations 16 hours reading and private study This is worth 2 credits.
17d Business Administration Weekly Hours: 2 Credits: 2 Lectures: 2 SU Assessment: See Study Plan Aim: x Einblick in ausgewählte Teilbereiche der Betriebswirtschaftslehre. x Kenntnis der Grundzusammenhänge und Methoden der Betriebswirtschaftslehre so-wie Fähigkeit zu deren Anwendung bei technischen Entscheidungen und bei der Lösung von Führungsaufgaben in der Praxis. Content: x Einblick in die Grundtatbestände der Betriebswirtschaft x Gegenstand der Betriebswirtschaft und ihre Bedeutung für den Ingenieur (Abgrenzung), wirtschaftliches Prinzip, Zielsetzung der Betriebe. x Überblick über die betrieblichen Produktionsfaktoren: Menschliche Arbeitsleistung, Betriebsmittel, Werkstoffe, Betriebsführung. x Überblick über die betriebliche Leistungserstellung und -verwertung: Beschaffung, Lagerhaltung, Fertigung, Vertrieb. x Überblick über geeignete Unternehmensformen für eine un¬ternehmerische Betäti-gung: Einzelunternehmung, stille Gesellschaft, Gesellschaft des bürgerlichen Rechts, OHG, KG, AG, GmbH, Mischformen. Workload: It is expected that the average student will require 60 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 24 hours attendance of lectures 20 hours preparation of presentations 16 hours reading and private study This is worth 2 credits.
18 Technical Optics Weekly Hours: 6 Credits: 7 Lectures: 4 SU, 2 Pr Assessment: See Study Plan Aim: x Knowledge of the nature of electromagnetic radiation in the visible and in the adjacent IR and UV- regime x Knowledge of the basic propagation properties of light x Knowledge of the basics of optical imaging x Knowledge of the basics of radio- and photometry x Knowledge of the most important light-sources and detectors x Ability to select appropriate systems and components. Content: x Laws of reflection and refraction incl. total internal reflection x Optical materials suitable for reflection and refraction x Reduction of reflection by interference x Imaging with plane and spherical surfaces in the Gaussian regime x Calculation of a sequence of surfaces and lens systems incl. aberrations x Optical instruments: telescope, microscope, projector, spectral analyzing set-ups x Influence of boundaries for bundles of rays: apertures, pupils and stops x Characteristic properties of optical radiation x Function, properties and types of optical sources and detectors Reading list: x Lecture notes (work in progress) x Schröder/Treiber, Technische Optik, Vogel Verlag 2007. x Pedrotti, Optik für Ingenieure, Springer 2005 x Hecht, Optik, Oldenburg 2005 x Haferkorn, Optik, Wiley, 2001. x Poisel, lecture notes: http://www.pofac.de/poisel/vorlesungen.php Workload: It is expected that the average student will require 210 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 68 hours attendance of lectures and practical training 48 hours regular study of the syllabus 46 hours reading and private study 48 hours exam preparation This is worth 7 credits.
19 Feedback Control Systems Weekly Hours: 8 Credits: 9 Lectures: 4 SU + 4 Pr Assessment: See Study Plan Aim: x Kenntnis der Systemeigenschaften und Beschreibungsmethoden technischer Rege-lungs- und Steuerungssysteme. x Kenntnis der wichtigsten Entwurfs- und Optimierungsverfahren technischer Rege-lungssysteme. x Fähigkeit, das für eine Problemstellung geeignetste Entwurfsverfahren auszuwählen und anzuwenden. x Fähigkeit, technische Regelungssysteme zu modellieren, zu simulieren und zu reali-sieren. x Fähigkeit, industrielle Steuerungen auszuwählen und mit einer problemorientierten Programmiersprache zu programmieren. x SPS-Programmierung unter IEC 61131-3 Content: x Grundbegriffe der Regelungs- und Steuerungstechnik, Führungs- und Störverhalten. x Beschreibung von Regelkreisgliedern im Zeit- und Frequenzbereich: Frequenzgang, Bodediagramm, Übertragungsfunktion, Zustandsraumbeschreibung. x Modellbildung von Regelstrecken. x Eigenschaften und Realisierung kontinuierlicher und zeitdiskreter Regler. x Verfahren zur Untersuchung der Stabilität von Regelkreisen. x Entwurfs- und Optimierungsverfahren von Regelkreisen; Simulation von Regelkrei-sen. x Störgrößenaufschaltung, Kaskaden- und Zustandsregelung, Fuzzy-Control Reading list: x Schlitt: Regelungstechnik, Vogel-Verlag x Föllinger: Regelungstechnik, Eliteria-Verlag x Xander, Enders: Regelungstechnik mit elektronischen Bauelementen, Werner-Verlag x Eigenes Skriptum des Dozenten x Karl-Heinz John, Michael Tiegelkamp: /SPS-Programmierung mit IEC 61131-3, m. CD-ROM (inkl. OpenPCS, Step7)/, 3. Auflage, ISBN 3-5406-6445-9 x http://de.wikipedia.org/w/index.php?title=Spezial:ISBN-Suche&isbn=3540664459 Workload: It is expected that the average student will require 270 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 90 hours attendance of lectures and seminars 40 hours regular study of the syllabus 34 hours preparation of experiments and presentations 40 hours preparation of exercises and elaboration of the achieved results in written form 20 hours reading and individual study 46 hours exam preparation This is worth 9 credits.
20 Microtechnics Weekly hours: 4 Credits: 4 Lectures: 2 SU 2 S Assessment: See Study Plan Aim: Fundamental knowledge in following areas: x Physical basics of microtechnologies x Essential materials and composites. x Fundamental technological processes and manufacturing procedures of micro components. Design and operation of micro components (sensors, actuators, functional elements etc.) x Fields of applications of micro components x Introduction to microsystems. Content: x Physics of single crystals; fundamental physical effects in microstructures and their mathematical description. x Important materials for microtechnologies; x Introduction into the technological basics of Microtechnology: x Vacuum technology; lithography; thin film technology; etching and micro molding; x Measurement techniques for thin films and microstructures; x Design and principles of micro sensors and micro actuators; mounting technology; x Fields of applications of micro components and Microsystems; Reading List: x R. Brück; N. Rizvi; A. Schmidt: Angewandte Mikrosystemtechnik; Hanser Verlag München Wien; 2001 x W. Menz; J.Mohr: Mikrosystemtechnik für Ingenieure; VCH Verlagsgesellschaft mbH, Weinheim; 1997 x U. Mescheder: Mikrosystemtechnik Konzepte und Anwendungen; Teubner Verlag Stuttgart; 2000 x W. Ehrfeld; Handbuch Mikrotechnik; Carl Hanser Verlag; München Wien; 2002 x S. Büttgenbach; Mikromechanik; Teubner Verlag; Stuttgart; 1994 Workload: It is expected that the average student will require 120 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 44 hours attendance of lectures and seminars 42 hours regular study of the syllabus 34 hours exam preparation This is worth 4 credits. Requirements: Basic understanding of engineering mechanics and electrical engineering. Basic understanding of sensor and actuator mechanisms and designs. Basic understanding of information technology
21 Project 21a Project work Weekly Hors: 6 Credits: 8 Lectures: 6 Pro Requirements:: Erfolgreiche Ableistung des Praxisteils des praktischen Studiensemesters Mechatronik-/ Feinwerktechnisches Basiswissen (Mechanik, Optik, Elektronik) Grundkenntnisse der Konstruktion (Technisches Zeichnen, CAD, Konstruktionselemente) Grundkenntnisse der Werkstofftechnik Aim: Üben der Fähigkeit zur Teamarbeit am konkreten Projekt in 2er bis 4er Gruppen (vorzugsweise in dreier Gruppen) Fähigkeit zur Anwendung der im projektbegleitenden Seminar vermittelten Kenntnisse zur Durchführung von Markt-, Patent- und Literaturrecherchen und zur Formulierung von Entwicklungsanforderungen durch praktische Anwendung Content: Umfassende schriftliche Darstellung sowie Vorbereiten von Präsentationen der erzielten Ergebnisse Vertiefen der im projektbegleitenden Seminar vermittelten Kenntnisse zur Organisation eines Projekts Anwenden der im projektbegleitenden Seminar vermittelten Kenntnisse zu Methoden und Techniken der Entscheidungsfindung Vorgehensweise nach VDI-Richtlinie 2221 Bearbeitung einer konkreten Aufgabe im Team, dabei Durchführung von Markt-, Patent- und Literaturrecherchen, Erarbeitung der Anforderungsliste, methodische Ermittlung des optimalen Lösungskonzepts sowie Entwurfsausarbeitung und - optimierung Reading list: Nach Bedarf Workload:: It is expected that the average student will require 240 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 50 Std. Stunden Planen 50 Std. Konzipieren 140 Std. Entwerfen/ Ausarbeiten This is worth 8 credits.
21b Project seminar Weekly Hors: 2 Credits: 2 Lectures: 2S Requirements: Erfolgreiche Ableistung des Praxisteils des praktischen Studiensemesters Mechatronik-/ Feinwerktechnisches Basiswissen (Mechanik, Optik, Elektronik) Grundkenntnisse der Konstruktion (Technisches Zeichnen, CAD, Konstruktionselemente) Grundkenntnisse der Werkstofftechnik Aim: Kenntnisse zur methodischen Vorgehensweise bei Entwicklung, Fertigung oder Vertrieb mechatronischer Geräte und Komponenten durch praktische Anwendung. Fähigkeit, relevante Dokumente (vorzugsweise in englischer Sprache) zu strukturieren und zu erstellen. Fähigkeit, das Entwicklungsergebnis (evtl. in englischer Sprache) überzeugend zu präsentieren und zu verteidigen. Content: Organisation eines Projekts Methoden und Techniken der Entscheidungsfindung Üben von Präsentationstechniken durch Bericht zum Projektstand zu bestimmten Meilensteinen Grundlagen zu Markt-, Patent- und Literaturrecherchen und zur Formulierung von Entwicklungsanforderungen methodische Vorgehensweise bei der Entwicklung Fertigung oder Vertrieb mechatronischer Geräte und Komponenten Erarbeitung der Funktionsgliederung und Erstellung des zugehörigen morphologischen Kastens Erarbeitung von Lösungskonzepten, Konzept-Bewertung und Ermittlung des optimalen Konzepts Reading list: VDI-guidelines 2221 et seqq. as well as technical literature related to the respective task Pahl/Beitz Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung. Methoden und Anwendung, Springer-Verlag, Berlin Heidelberg Workload: It is expected that the average student will require 60 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 24 hours attendance of introducing lectures 16 hours attestations and interim report of the actual status of work 20 Std. hours preparation and performance of the presentation This is worth 2 credits.
Bachelor Mechatronics / Precision Engineering - Modules description 22 Specialised elective Module (Subject of Specialisation) PRE1/1 Design for Manufacturing Weekly hours: 2 Credits: 3 Lectures: 2 SU Assessment: See Study Plan Aim: x Introduction to principles and procedures of methodical work in development and design of technical products x Ability to apply these procedures, to differentiate objects from their function, to derive partial functions, and to perform search strategies for solutions x Getting to know modes of depiction if technical drawing is not applicable. Examples are free form surfaces and all elements which cannot be dimensioned classically e.g. as they are too small (elements in micro engineering and electronics) x Development of a sensitivity for dramatically increasing political influences on results of design related to environmental complex of problems and situation of resources (disassembling, recycling, etc.) x Getting to know basics relevant for design and application of high polymer materials, and, derived from that, their impact on development and design. Plastic materials do not only represent main function owners in micro and precision engineering but also offer highly differentiated characteristics. Content: x Basics of methodology of design and development, principles, requirements x Definition of function, partial function, structure of functions x Costs, tolerances, tolerating statistically x Depiction beyond technical drawing: Strak, flat assemblies, etc. x Life Cycle Engineering, legal basics, impact on design x Basics of high polymer materials and, derived from that, designing using plastic materials Reading list: x Standard specifications sheets and books x Krahn et al.: „1000 Konstruktionsbeispiele…“, Hanser-Verlag München, 2005 x VDI-guidelines 2221, 2222, 2422 x Klein et al.: Statistische Tolerierung“ Vieweg-Verlag Workload: It is expected that the average student will require 90 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 24 hours attendance of lectures 34 hours preparation of exercises and regular study of the syllabus 32 hours exam preparation This is worth 3 credits. 31
Bachelor Mechatronics / Precision Engineering - Modules description MPE2 FEM in mechanical design Weekly hours: 4 Credits: 4 Lectures: 2 Ü, 2 S Assessment: See Study Plan Aim: x Knowledge about fundamentals in Finite-Element-Method x Knowledge about applications of FEM and the relation between FEM and CAD x Knowledge about the functional structure of a FEM software and about effective application of FEM Software x Knowledge of how to conduct a reasonable interpretation of FEM Results and appropiate optimization of the developed product Content: x Theoretic fundamentals about important aspects of FEM x practical work with FEM-program x FEM-related modelling of mechatronic elements, net generation, contacts x illustration and evaluation of FEM-results with derivation of appropriate measures of construction Reading list: x Einführung in die FEM mit Übungsaufgaben (eigenes Skript) x Müller, G. u.a.: FEM für Praktiker, expert Verlag Renningen-Malmsheim x Benutzerhandbücher zu den verwendeten FEM- und CAD-Programmen Workload: It is expected that the average student will require 120 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 24 hours attendance of lectures and practical courses 20 hours regular study of the syllabus 26 hours guided introduction to software 30 hours preparation of seminar-work 20 hours exam preparation This is worth 4 credits. 32
Bachelor Mechatronics / Precision Engineering - Modules description MPE3 Materials for Mechatronics * Weekly hors: 2 Credits: 3 Lectures: 2 SU Assessment: See Study Plan Aim: x Acquirement of fundamental knowledge about materials used in mechatronics x Survey of actual material development in the area of structural and functional materials as well as novel material concepts x Developing the ability to evaluation opportunities of materials for the application in mechatronics Content: x Structural and functional materials x Polymers for mechatronic components, fabrication, machining, basic design principles and applications taking selected polymer materials as an example. x Structure and properties of composites x Multifunctional materials for then Adaptronic, materials for conversion of signals and energies x Powder metallurgical materials, powder injection moulding process, Functional surfaces x Surface treatment und coating procedures x Examples for coating technologies; laser beam, electron beam, thin film process, plating, thermo- chemical diffusion processes, surface hardening thermal treatment x Surface reaction, basic principles of corrosion and tribology mechanisms Reading List: x Lecture notes x Bach F.-W., Möhwald K., Laarmann A. Wenz T., Moderne Beschichtungs¬ver¬fahren, Wiley-VCH Verlag, 2004 x Ivers-Tiffée E., von Münch W., Werkstoffe der Elektrotechnik, Teubner, 2007 x Bergmann, Werkstofftechnik 1 und 2, Hanser, 2002 x Frühauf J., Werkstoffe der Mikrotechnik, Fachbuchverlag Leipzig Workload: It is expected that the average student will require 90 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 24 hours attendance of lectures and practical courses 24 hours regular study of the syllabus 20 hours preparation of exercises and individual study 22 hours exam preparation This is worth 3 credits. 33
Bachelor Mechatronics / Precision Engineering - Modules description PRA1/1 Business Organisation / Environmental Management Weekly hours: 2 Credits: 3 Lectures: 2 SU Assessment: See Study Plan Aim: x Knowledge and understanding of the different kinds of business organisation and of business management. To develop innovative organisation concepts. x Environmeltal technology in companies x To develop / design environmentally compatible products including waste removal management. Content: x Organisationsentwicklung; Unternehmenspolitik; Unternehmensstrategie; Unternehmensplanung. x Schwerpunkte in Strategie und Planung: Engpässe in der Organisation heute und morgen; x Fertigungsinseln; x Unternehmen im Unternehmen; x Umweltgerechtes Entwickeln, Fertigen, Lagern und Verteilen von Produkten; x Methoden, Werkzeuge; Verfahren des Umweltschutzes; x Entsorgungsplanung und -durchführung für elektronische und mechatronische Pro-dukte. Workload: It is expected that the average student will require 90 hours of study to acquire the necessary knowledge and abilities. These hours can be divided as follows: 22 hours attendance of lectures 34 hours preparation of exercises and individual study 34 hours exam preparation This is worth 3 credits. 34
You can also read