Microbial antagonists against plant pathogens in Iran: A review
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Open Agriculture 2020; 5: 404–440 Review Mehrdad Alizadeh, Yalda Vasebi, Naser Safaie* Microbial antagonists against plant pathogens in Iran: A review https://doi.org/10.1515/opag-2020-0031 (Guo et al. 2013). Therefore, growers have generally received October 27, 2019; accepted May 18, 2020 concentrated on the intensive use of chemicals for the Abstract: The purpose of this article was to give a management of pests and diseases which induce several comprehensive review of the published research works on problems, including resistance to pesticides, hazardous biological control of different fungal, bacterial, and effects on human health, loss of beneficial soil microorgan- nematode plant diseases in Iran from 1992 to 2018. Plant isms, entrance of residual toxic material in the food chain, pathogens cause economical loss in many agricultural and reduction in macro–microorganism biodiversity products in Iran. In an attempt to prevent these serious (Sindhu et al. 2016). These problems make enhanced losses, chemical control measures have usually been attempts for developing ecofriendly microbe-based pesti- applied to reduce diseases in farms, gardens, and green- cides or biopesticides which use biological control agents houses. In recent decades, using the biological control (BCAs) as active ingredients and basically act different from against plant diseases has been considered as a beneficial common chemical pesticides (Sindhu et al. 2009). and alternative method to chemical control due to its Biological control, which attracted broad considerations potential in integrated plant disease management as well as in the past few decades, is defined as a bioeffector strategy the increasing yield in an eco-friendly manner. Based on that uses other living organisms for controlling insects, the reported studies, various species of Trichoderma, mites, weeds, and phytopathogens (Flint et al. 1998). Pseudomonas, and Bacillus were the most common Biocontrol agents either with antagonistic activities, or biocontrol agents with the ability to control the wide range modifying effects on plant physiology and anatomy, mostly of plant pathogens in Iran from lab to the greenhouse and reduce the negative effects of pathogens. The advantages of field conditions. beneficial microbes for associated plants are establishment of antagonistic microorganisms, prevention of phytopatho- Keywords: biological control, Trichoderma, Pseudomonas, gens, overall improvement of plant health, plant growth Bacillus promotion, enhanced nutrient availability and uptake, and increased resistance to both biotic and abiotic stresses in the hosts (Vinale et al. 2014). The first published studies on biological control of plant 1 Introduction pathogens in Iran were presented in 1992. Trichoderma spp. and Gliocladium spp. were the first biocontrol agents applied Increasing human population in the world demands more against Athelia rolfsii (Sclerotium rolfsii), Rhizoctonia solani, food (70 to 100%) by 2050 to supply human needs (Godfray and Fusarium solani, the causal agents of diseases on et al. 2010). Furthermore, different pests and diseases cause groundnut, bean, and apple, respectively (Asghari and Myee annual economic losses (20 to 40%) in agricultural 1992; Bazgir et al. 1992; Karampour and Okhovat 1992). In the products by decreasing the crop yield, destroying the twenty-first century, with the improvement of biological quality, and pollution of products with toxic chemicals control of plant pathogens throughout Iran, different biocontrol agents have been applied against the various pathogens in vitro, in greenhouse and field conditions. A * Corresponding author: Naser Safaie, Department of Plant large number of fungal and bacterial biocontrol agents have Pathology, Faculty of Agriculture, Tarbiat Modares University, been found as the most important agents for plant disease Tehran, Iran, e-mail: nsafaie@modares.ac.ir management with identification of their role in plant Mehrdad Alizadeh: Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran pathogen management (Ramadan et al. 2016). Trichoderma, Yalda Vasebi: Department of Plant Protection, Faculty of Pseudomonas, and Bacillus species have mostly been used Agriculture, Tabriz University, Tabriz, Iran. for biological control of phytopathogens in Iran (Peyghami Open Access. © 2020 Mehrdad Alizadeh et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License.
Microbial antagonists against plant pathogens in Iran 405 and Nishabouri 1998; Shahiri Tabarestani et al. 2000; performing a successful biological control strategy in a Mostofizadeh-Ghalamfarsa et al. 2002; Niknejad-Kazempour specific pathosystem (Handelsman and Stabb 1996). The et al. 2004a,b; Golzary et al. 2008b; Peighami-Ashnaei et al. microorganisms operating for biocontrol of phytopathogens 2009a,b; Ojaghian et al. 2010; Khalighi and Khodakaramian have different modes of action (Nega 2014). In the present 2012; Naeimi and Zare 2013; Azizpour and Rouhrazi 2016; study, the most common mechanisms of interspecies Karimi et al. 2016; Khaledi and Taheri 2016; Abdoli et al. antagonisms include direct antagonism, mixed-path antag- 2018; Hosini et al. 2018; Zeynadini-Riseh et al. 2018). onism, and indirect antagonism (Pal and McSpadden 2006; Furthermore, because of increasing the stability of biological Parveen et al. 2016), which lead to biological control of agents, the bioformulation progress has recently been plant pathogens, have been addressed. Microbial biocontrol evaluated in Iran (Karimi and Sadeghi 2015). The current agents take care of plants against pathogens via different study is a comprehensive review of applying fungal and modes. These agents could induce resistance or initial bacterial antagonists for biological control of various plant enhanced resistance against pathogens without direct diseases caused by fungal, bacterial, and nematodes in Iran confrontation with the phytopathogen. Also, competitions during a period of 26 years. for nutrients and spaces are additional indirect interactions with phytopathogens (Köhl et al. 2019). These agents might directly interact with the pathogens using hyperparasitism 2 Mechanisms of biocontrol (Ghorbanpour et al. 2018) or antibiosis (Raaijmakers and Mazzola 2012). Without these agents in soil and tissues of agents for the management of plants, the pathogens easily attack plants and could phytopathogens weaken or kill considered hosts (Figure 1). These modes will be discussed in the following sentences. A key factor for attaining an effective prevention of phytopathogens in their hosts is the knowledge about their mechanism of action. Understanding the mechanisms in 2.1 Parasitism the biological control process can allow the establishment of favorable conditions in the interaction between phyto- Mycoparasitism, direct parasitism or hyperparasitism, is the pathogen and biocontrol agent that is important in ability of fungal antagonistic agents to parasite other fungi Figure 1: Left: in the absence of antagonists, different pathogens especially fungi, bacteria, and nematodes can cause losses in plants. Over time, affected plants will show the weakness in the development and symptoms of diseases. Right: in the presence of antagonists with different biocontrol mechanisms, such as competition, parasitism, and antibiosis, the pathogens will not be able to progress in the host, and thus, the plant can grow and develop well rather than the absence of antagonists in soil and tissues of hosts.
406 Mehrdad Alizadeh et al. for utilizing them as food. Mycoparasitism causes either of these species are able to promote plant growth complete death of fungal propagules or destruction and and development as well as the disease prevention lysis of their structure (Maloy 1993). Mycoparasitism (Fernando et al. 2006; Arseneault and Filion 2017). The depends upon the sequential occurrence of the following antibiotics at subinhibitory concentrations may inhibit the events: coming into close contact with fungal pathogen, release of extracellular virulence factors and adherence mutual recognition between antagonist and pathogen, lytic mechanisms in bacteria (Kumar et al. 2008). Secondary enzyme secretion by antagonist, penetration into the host, metabolites can impress the community of soil microbial active growth of antagonist into the host, and exit (Spadaro ecosystems in a variety of ways and levels (Abawi and and Gullino 2004; Talibi et al. 2014). Various chemical Widmer 2000). The antibiotic production has been confirmed compounds can be implicated in these processes, such as to be an important mechanism applied by microorganisms to lectins, during the initial contact and recognition and cell manage a wide range of plant pathogens (McSpadden and wall-degrading enzymes (CWDEs), such as β-1,3-gluca- Fravel 2002). Even at subinhibitory concentrations, anti- nases, chitinases, proteinases, and lipases, during the biotics can create physiological changes in organisms. For penetration process (Vos et al. 2015). Wisniewski et al. instance, in Pseudomonas aeruginosa quinolone and macro- (1991) who studied biological control of Botrytis cinerea by lide antibiotics can block cell signaling and production of yeast antagonist Meyerozyma guilliermondii (Pichia guillier- virulence factors (Ulloa-Ogaz et al. 2015). Bacillus spp. mondii) demonstrated that lectin-like interaction resulted in produce enzymes, exotoxins, and metabolites with nemati- firm attachment of antagonist’s cell to B. cinerea. Lysis of cidal activity (Engelbrecht et al. 2018). Although several fungal cell wall also occurred due to the action of rhizobacteria such as Pasteuria, Pseudomonas, and Strepto- extracellular β-1,3-glucanase enzyme secreted by the myces have nematicidal efficacy, the largest decrease in the antagonistic yeast. Trichoderma species are specific myco- hatching of Meloidogyne javanica eggs was found in Bacillus parasitic fungi with the species of T. atroviride, T. virens, (74%) and Pseudomonas (54.77%) (Turatto et al. 2017). and T. reesei confirming that mycoparasitism is their Furthermore, Bacillus spp. with antibiotic production are ancestral lifestyle (Kubicek et al. 2011). applied as antifungal antagonists for controlling postharvest One of the main components in mycoparasitism event diseases. Pyrrolnitrin antibiotic produced by Burkholderia is CWDEs including endochitinases, β-1,3-glucanases, and cepacia has been used against Penicillium digitatum, B. proteases that are extracellular enzymes secreted by cinerea, and Penicillium expansum pathogens. Similarly, Trichoderma (Vos et al. 2015). After initial pathogen syringomycin produced by Pseudomonas syringae was recognition by Trichoderma, hyphae wind around the utilized to prevent citrus green mold and apple grey mold pathogen’s hyphae by forming hook, the appressorium (Dukare et al. 2019). Alongside these beneficial microorgan- permeates into the pathogen cell, and chitin is broken isms, Streptomyces spp. can help plants with antibiotic down by enzymes such as chitinase and glucanase production against phytopathogens (Olanrewaju and Baba- (Ghorbanpour et al. 2018). Subsequently, mycoparasitic’s lola 2019). hyphae release antibiotic compounds which penetrate the affected pathogen’s hyphae and resynthesize the host cell wall inhibited by these compounds (Toghueoa et al. 2016). 2.3 Cell wall degradation enzymes Microorganisms which produce enzymes are able to hydro- 2.2 Antibiotic lyze chitin, proteins, cellulose, and hemicellulose and also may play a role in the suppression of plant pathogens. Chitin Antibiotic is a secreting secondary metabolite with low and β-1,3-glucans are major constituents of many fungal cell molecular weight that is deleterious to the other micro- walls (Lam and Gaffney 1993). Trichoderma strains with organisms at low concentrations (Fravel 1988). The antibiotic antagonistic potential have been mainly characterized by produced by biocontrol agents decreases the disease their ability to secrete enzymes such as chitinases, gluca- symptoms as a main contributing mechanism particularly nases, and proteases that hydrolyze the cell walls of under soil conditions (Haas and Défago 2005). Some pathogens (López-Mondéjar et al. 2011). Geraldine et al. soilborne microorganisms, such as different strains of (2013) reported that N-β-acetylglucosaminidase and β-1,3- fluorescent Pseudomonas and Bacillus (Weller 1988) and glucanase are the key components of Trichoderma species Trichoderma species (Benítez et al. 2004), have appropriate action in biocontrol of Sclerotinia sclerotiorum in the field. features for biocontrol abilities. Furthermore, several strains Serratia marcescens which produces chitinases was found to
Microbial antagonists against plant pathogens in Iran 407 suppress the growth of Botrytis spp., R. solani, and Fusarium microbial growth and development (Leong and Expert oxysporum (Ningaraju 2006). 1989). Siderophores produced by some bacteria, such as fluorescent pseudomonads, have very high dependency for iron, as a result, sequestering these limited resources from other microflora can inhibit their growth and 2.4 Competition for available resources development (Loper and Buyer 1991). In several studies, it has been reported that Pseudomonas fluorescens with Microorganisms’ challenge for available resources is named siderophore biosynthesis plays an important role in the competition. For instance, when pine stumps were inocu- prevention of pathogen (Costa and Loper 1994). Rahnella lated by spores Phlebiopsis gigantea (Phlebia gigantea), the aquatilis with siderophore production can inhibit B. spores prevent from Heterobasidion annosum infections. cinerea and P. expansum postharvest pathogens (Calvo Considering that the pathogen is non-established on the et al. 2007). The siderophore pulcherrimin produced by pine, the severity of root rot disease could be decreased by Metschnikowia pulcherrima and Monilinia fructicola yeasts the biocontrol agent (Cook and Baker 1983). Despite the was applied for biological control of postharvest apple possibility of existing antagonistic relationship (e.g., anti- pathogens B. cinerea, Alternaria alternata, and P. ex- biosis) between the two fungi, the achievement of available pansum (Saravanakumar et al. 2008). In particular, several resource sites may be the first mechanism in competition species of Streptomyces detach iron by siderophore (Maloy 1993). Carbon sources such as glucose and fructose production in a way that some pathogens, owing to a are one of the important action modes in yeasts Papilio- lack of siderophore production, cannot take these ions for trema laurentii (Cryptococcus laurentii) and Sporobolomyces growth (Kloepper et al. 1980). roseus, which can control B. cinerea in decreasing its colonization and sporulation (Ghorbanpour et al. 2018). In the biological control of P. digitatum by Debaryomyces hansenii, competition plays an important role in obtaining 2.6 Induction of host resistance nutrients in occupied sites (Droby et al. 1998). Furthermore, arbuscular mycorrhiza due to the creation of physiological Plant growth promoting rhizobacteria can protect plants and anatomical modifications can limit the progression of against pathogens using induction of systemic resistance pathogen. These changes involve root lignification, creation (ISR) (Sikora 1992). P. fluorescens with stimulating ISR can of a thick cell wall using pectin, chitinase activation, and prevent the early penetration of Heterodera schachtii to transfer of pathogenesis-related protein-1a to the infected roots (Oostendorp and Sikora 1989). The ISR stimulation by area of root (Malik et al. 2016). Bacillus subtilis leads to the protection of cotton plants against Meloidogyne incognita and Meloidogyne arenaria. The ISR stimulation by Pseudomonas putida and S. marcescens inhibited cucumber Fusarium wilt caused by 2.5 Siderophore F. oxysporum f.sp. cucumerinum. The application of Pseudomonas sp. in plants leads to systematic protection Low-molecular weight chelators with a very high and against F. oxysporum f.sp. dianthi (David et al. 2018). specific affinity for Fe(III) are called siderophores (Barbeau Flavimonas oryzihabitans, S. marcescens, and Bacillus et al. 2002). Aerobic and facultative anaerobic micro- pumilus have developed ISR against P. syringae pv. lachry- organisms with the ability of siderophore production may mans (David et al. 2018). have an important role in microorganism interactions The direct promotion of plant growth by plant growth (Haggag and Mohamed 2007). Siderophores have been promoting bacteria through the production of phytohor- known to play a significant role in phytopathogen mones has been called phytostimulation (Bloemberg and prevention by several bacteria as BCAs which prevent Lugtenberg 2001). The enzyme 1-aminocyclopropane-1- the growth, development, and metabolic activity of carboxylate (ACC) deaminase is a phytostimulation that is phytopathogens by iron chelation (Haggag Wafaa et al. the most studied one. Some bacterial endophytes producing 2000). Different species of Trichoderma as biocontrol ACC deaminase have been shown to enhance plant growth, antagonists release more effective siderophores that such as Arthrobacter spp., Bacillus spp., P. putida, chelate iron (Fe3+) and prevent growth and development Rhodococcus spp. (Belimov et al. 2001; Sziderics et al. of other fungal pathogens (Naher et al. 2014). Iron 2007), and Streptomyces spp. (Palaniyandi et al. 2014; competition can be a limiting factor in alkaline soils for Jaemsaeng et al. 2018). The bacterial strains producing
408 Mehrdad Alizadeh et al. other plant hormones, including indole-3-acetic acid (IAA), (Duffy and Weller 1995). Combined biocontrol jasmonates, and abscisic acid, may also contribute to plant agents with high level of biocontrol protection have growth stimulation (Patten and Glick 2002; Forchetti et al. been investigated for better efficacy and prevention of 2007). IAA is synthesized by different species of Strepto- several phytopathogens (Mihajlović et al. 2017). It has myces, such as S. violaceus, S. griseus, S. exfoliate, been confirmed that natural prevention of Fusarium wilt S. coelicolor, and S. lividans (Manulis et al. 1994). Also, in France (Châteaurenard soil) was related to the IAA in S. atrovirens activates growth promoting bacteria in different mechanisms in which multiple microorganisms groundnut and several crops (Reddy et al. 2016). singly or together restricted the pathogen activation (Alabouvette et al. 1998). However, given that the application of biological control against soilborne pathogens will not be a good replacement of methyl 3 Reduction in the population of bromide fumigation, these two methods could act together in integrated pest management (Akrami biocontrol agents et al. 2011). Phytopathogens may significantly alleviate the growth of biocontrol agents by using the nutrition resources within their occupied spaces more rapidly as well as by modifying their efficacy. This was found in several 5 Biological control in Iran fungal root pathogens which can colonize the wheat A complete list of all pathogens and the antagonists rhizosphere despite the presence of P. fluorescens used against them is provided in Table 1. Results showed biocontrol agent (Mazzola and Cook 1991). Decline in that most studies were conducted in vitro and in the population of P. fluorescens occurs in the existence of greenhouse conditions, and a few cases were carried some Pythium species. In this instance, infection by out in the farm condition in Iran. Bacterial strains Pythium species leads to the limitation of the root belonging to 24 genera, Achromobacter, Acinetobacter, surface which is available for P. fluorescens colonization Azotobacter, Bacillus, Beauveria, Bradyrhizobium, Bro- and to the reduction of population of potential antago- chothrix, Burkholderia, Enterobacter, Erwinia, Escheri- nists. Fedi et al. (1997) reported that a plant pathogenic chia, Flavobacterium, Lactobacillus, Mesorhizobium, Pae- P. ultimum with modification of gene expression of nibacillus, Pantoea, Pasteuria, Pseudomonas, Rhizobium, P. fluorescens tends to decrease biocontrol agent Serratia, Sphingomonas, Sporolactobacillus, Stenotropho- population. The competition in the rhizosphere for monas, and Streptomyces, have been used in various nutrients released from root wounds caused by studies. Also, fungal strains belonging to 27 genera, P. ultimum was limited by the reduction of population Acremonium, Alternaria, Arthrinium, Arthrobotrys, Asper- size. Because of the importance of microbial community gillus, Chaetomium, Cladobotryum, Coniothyrium, Embel- in number and diversity, competition and microorga- lisia, Fusarium, Gliocladium, Glomus, Hypsizygus, Lecytho- nism–microorganism interactions may also happen in phora, Metarhizium, Paecilomyces, Penicillium, Periconia, phyllosphere (Vorholt 2012). On the other hand, ex- Piriformospora, Pleurotus, Pythium, Scopulariopsis, Seba- istence of these microbial communities may also impress cina, Talaromyces, Trichoderma, Trichothecium, and the efficacy of BCAs. Understanding the rhizosphere, Verticillium, have been applied in Iranian studies phyllosphere, and endosphere microbial community against different plant pathogens. Also, strains of ten structure and their interactions in these niches genera, Candida, Galactomyces, Hanseniaspora, Metsch- can contribute to the betterment of biocontrol (Bardin nikowia, Meyerozyma, Pichia, Rhodotorula, Saccharo- et al. 2015). myces, Torulaspora, and Zygoascus, which belong to the yeast have been used for controlling the phytopathogens in Iran. The bacterial strains related to differ- ent species of Pseudomonas and Bacillus and fungal 4 Improving the biocontrol agent strains related to Trichoderma species had the greatest effects efficiency in biological control of different plant patho- gens in Iran. These antagonists have been mostly used for The use of combinations of BCAs may be a better biological control of fungi, bacteria, and nematodes, method for developing biocontrol positive effects respectively.
Microbial antagonists against plant pathogens in Iran 409 Table 1: List of pathogens, hosts, and antagonists with procedures based on published research works in Iran from 1992 to 2018 Pathogens Host Antagonists Procedure Ref. Rhizoctonia solani Bean Gliocladium sp. In vitro and Bazgir et al. (1992) greenhouse Athelia rolfsii (Sclerotium rolfsii) Groundnut Trichoderma harzianum Greenhouse Asghari and Myee (1992) Fusarium solani Apple T. koningii, T. viride, Greenhouse Karampour and T. harzianum, and T. virens Okhovat (1992) (Gliocladium virens) Colletotrichum coccodes Potato Trichoderma spp. In vitro Okhovat et al. (1994) R. solani Rice T. koningii, T. viride, Field Izadyar and T. harzianum, and T. virens Padasht (1994) R. solani Rice Trichoderma sp. In vitro Pourabdullah and Binesh (1994) Phytophthora erythroseptica Potato T. harzianum, T. viride, and In vitro Zafari et al. (1994) T. koningii R. solani Bean T. viride, T. harzianum, and Greenhouse Bazgir et al. (1994a) T. virens R. solani Bean T. viride, T. harzianum, and Field Bazgir et al. (1994b) T. virens Scelotinia sclerotiorum Eggplant T. reesei, T. hamatum, In vitro Amir-Sadeghi et al. (1994) T. longibrachiatum, T. koningii, T. viride, T. virens, and Gliocladium sp. Macrophomina sp. and Soybean Bacillus subtilis In vitro and Sanei and Ghobadi (1995) Rhizoctonia sp. greenhouse Heterodera schachtii Sugar beet Paecilomyces farinosus In vitro Ahmadi et al. (1995a) H. schachtii Sugar beet F. solani In vitro Ahmadi et al. (1995b) H. schachtii Sugar beet Acremonium spp., Embellisia In vitro Hojjat Jalali and chlamydospora, Fusarium spp., Coosemans (1995) P. lilacinus, Scopulariopsis brevicaulis, Verticillium chlamydosporium, and Verticillium lecanii Tilletia laevis Cucumber T. viride Greenhouse Peyghami and Babadoost (1996) T. controversa Wheat T. viride Greenhouse Peyghami and Babadoost (1996) F. solani Chickpea T. koningii, T. viride, Greenhouse Okhowat and T. harzianum, and T. virens Karampour (1996) M. javanica — Pasteuria penetrans Greenhouse Damadzadeh et al. (1996) M. javanica, M. incognita, and — P. penetrans In vitro Ameri et al. (1996) M. arenaria Macrophomina phaseolina and Soybean B. subtilis In vitro Sanei and R. solani Ghobadi (1996) H. schachtii Sugar beet E. chlamydospora, Acremonium In vitro Hojjat-Jalali and spp., S. brevicaulis, P. lilacinus, Coosemans (1995) Fusarium spp., V. chlamydosporium, and V. lecanii Pythium ultimum Chickpea T. viride and T. virens Field Shahriary et al. (1996) M. javanica Tomato P. lilacinus Greenhouse Fatemy (1996) H. schachtii Sugar beet P. farinosus In vitro Ahmadi et al. (1996a) H. schachtii Sugar beet F. solani In vitro Ahmadi et al. (1996b) R. solani, Colletotrichum — Trichoderma spp. and In vitro Okhovat (1997) coccodes, and Phytophthora Gliocladium sp. drechsleri H. schachtii Beet Paecilomyces fumosoroseus Greenhouse Fatemy and Ahmadian Yazdi (1997) F. o. f.sp. cucumerinum Cucumber T. harzianum Greenhouse Peyghami and Nishabouri (1998)
410 Mehrdad Alizadeh et al. Table 1: continued Pathogens Host Antagonists Procedure Ref. A. rolfsii (S. rolfsii) Groundnut T. aureoviride, T. hamatum, In vitro Mirhosaini et al. (1998) T. longibrachiatum, T. harzianum, T. virens R. solani, Bipolaris sorokiniana, Wheat Penicillium polonicum Greenhouse Mansoori (1998) and Fusarium culmorum Ph. capsici Pepper Trichoderma sp. and In vitro Behboodi et al. (1998) Gliocladium sp. P. ultimum — Pythium oligandrum In vitro Rahnama and Cooke (1998) Pythium butleri — Aspergillus niger In vitro Rouhani and Safari 1998 Mauginiella scaettae Date palm T. koningii and T. viride Field Shetab-Booshehri et al. (1998) Xanthomonas translucens pv. Wheat Pantoea agglomerans and Greenhouse Marefat and Rand cerealis Pseudomonas fluorescens Rahimian (1998) F. o. f.sp. lycopersici Tomato T. harzianum and T. viride Greenhouse Niknejad et al. (2000) Erwinia amylovora Pear Erwinia herbicola and In vitro, Ahmadi et al. (2000) P. fluorescens greenhouse, and field S. sclerotiorum Aubergine T. harzianum, T. virens, In vitro and Omrani et al. (2000) T. koningii, Trichoderma greenhouse pseudokoningii, and Gliocladium deliquescens M. phaseolina Soybean T. viride, T. koningii, and In vitro Ghaffarian et al. (2000) T. harzianum R. solani Rice T. viride, T. koningii, and Field Izadyar et al. (2000a) T. harzianum Verticillium dahliae Cotton Talaromyces flavus In vitro and Naraghi et al. (2000) greenhouse V. dahliae Cotton Pseudomonas sp. and In vitro Azad Disfani et al. (2000) Bacillus sp. R. solani Sugar beet T. harzianum, T. viride, and In vitro and Shahiri Tabarestani T. virens greenhouse et al. (2000) R. solani Rice T. harzianum, T. viride, In vitro Izadyar et al. (2000b) T. koningii, and T. virens R. solani Rice T. harzianum, T. viride, and In vitro and Niknejad-Kazempour T. virens greenhouse et al. (2000) Neofusicoccum mangiferae Citrus T. harzianum, T. virens, In vitro Taheri et al. (2000) T. koningii, and T. longibrachiatum S. sclerotiorum Mulberry T. harzianum, T. viride, In vitro Merat et al. (2000) T. aureoviride, T. koningii, T. saturniporum, T. pseudokoningii, and T. longibrachiatum Fusarium spp., Sclerotium Onion T. harzianum and T. viride Greenhouse Peyghami (2001) cepivorum, Pythium spp., and R. solani R. solani Rice T. harzianum, T. viride, and In vitro and Niknejad Kazempour T. virens greenhouse et al. (2002) Gaeumannomyces graminis var. Wheat T. harzianum and T. viride Greenhouse Foroutan et al. (2002) tritici F. avenaceum, F. graminearum, Wheat P. fluorescens, P. syringae, In vitro Mostofizadeh- F. culmorum, F. moniliforme, P. putida, P. cichorii, Ghalamfarsa et al. (2002) F. oxysporum, F. solani, P. aeruginosa, P. aureofaciens, F. semitectum, F. sambucinum, and P. viridiflava F. proliferatum, and F. tricinctum
Microbial antagonists against plant pathogens in Iran 411 Table 1: continued Pathogens Host Antagonists Procedure Ref. G. graminis var. tritici Wheat Pseudomonas spp. In vitro and Sedaghatfar et al. (2002) greenhouse G. graminis var. tritici Wheat T. harzianum and T. viride In vitro and Foroutan et al. (2002) greenhouse F. graminearum, F. moniliforme, Wheat Pseudomonas spp. In vitro Mostofizadeh- F. nygamai, F. oxysporum, Ghalamfarsa et al. (2002) F. proliferatum, F. sambucinum, F. semitectum, F. solani, and F. tricinctum F. o. f.sp. melonis Melon Streptomyces sp., T. harzianum, In vitro and Ashrafizadeh et al. (2002) T. virens, and T. viride greenhouse M. javanica Tomato P. lilacinus Greenhouse Pakniat and Banihashemi (2002) Ph. drechsleri Cucurbit Streptomyces sp. In vitro Heidari Faroughi et al. (2002) F. graminearum Wheat Streptomyces sp., Pseudomonas In vitro Norouzian et al. (2002) sp., and Bacillus sp. Sclerotinia minor Sunflower T. harzianum, T. viride, and In vitro Abdollahzadeh T. virens et al. (2003) Ph. drechsleri Cantaloupe T. harzianum, T. viride, and Greenhouse Heidari Faroughi T. virens et al. (2004) Tilletia indica Wheat T. longibrachiatum, Greenhouse Beeazar and T. harzianum, and T. viride Torabi (2004) F. o. f.sp. ciceri Chickpea T. longibrachiatum Greenhouse Karimi et al. (2004a) F. o. f.sp. ciceri Chickpea Bacillus sp. In vitro Karimi et al. (2004b) F. o. f.sp. dianthi Carnation P. fluorescens and Bacillus sp. Greenhouse Karimi et al. (2004c) R. solani Chickpea T. harzianum, T. viride, and Greenhouse Mohammadi et al. (2004) T. virens B. sorokiniana Wheat B. subtilis, P. fluorescens, and Greenhouse Mohammadi et al. (2004) Bacillus pumilus M. phaseolina Soybean T. harzianum Greenhouse Barari et al. (2004) Armillaria mellea — Cladobotryum polypore, In vitro Asef and Mohammadi- C. varium, C. dendroides, and Gholtapeh (2004) C. verticillatum T. laevis Wheat B. subtilis Greenhouse Khodaygan et al. (2004) B. sorokiniana Wheat Trichoderma sp. and Greenhouse Salehpour et al. (2004) Streptomyces sp. R. solani Rice P. fluorescens Field and Niknejad- greenhouse Kazempour (2004) F. moniliforme Rice P. fluorescens In vitro Niknejad-Kazempour et al. (2004) R. solani Rice Bacillus cereus and In vitro Sajjadi et al. (2004) P. fluorescens Pyricularia grisea Rice Bacillus megaterium, B. subtilis, Field Padasht-Dehkaei Bacillus circulans, and et al. (2004) P. fluorescens F. oxysporum Onion B. cereus, B. subtilis, and Field Saberi-Riseh et al. (2004) P. fluorescens Ph. citrophthora Pistachio P. fluorescens Field Saberi-Riseh et al. (2004) P. ultimum Cucumber B. subtilis, Trichoderma sp., and Greenhouse Taghinasab et al. (2004) P. fluorescens F. oxysporum Basal B. cereus and P. fluorescens Greenhouse Ramezani-Baghmishezad and field et al. (2004)
412 Mehrdad Alizadeh et al. Table 1: continued Pathogens Host Antagonists Procedure Ref. S. sclerotiorum Rapeseed Bacillus spp. In vitro Akbari-Kiarodi et al. (2004) R. solani Cotton Bacillus sp. and P. fluorescens In vitro and Heydari et al. (2004) greenhouse Gibberella fujikuroi Rice T. virens, T. harzianum, Bacillus In vitro and Padasht Dehkaei sp., B. subtilis, and B. circulans greenhouse et al. (2004) Xanthomonas axonopodis pv. citri Citrus P. fluorescens and P. putida In vitro and Khodakaramian (2004) greenhouse F. oxysporum Chickpea B. subtilis and P. fluorescens Greenhouse Jamali et al. (2004) and field R. solani Sugar beet B. subtilis In vitro and Shahiri et al. (2005) greenhouse B. sorokiniana Wheat B. subtilis and P. fluorescens In vitro and Mohammadi et al. (2005) greenhouse Ph. capsici Pepper T. viride, T. koningii, In vitro and Behboudi et al. (2005) T. harzianum, and T. virens greenhouse S. sclerotiorum Rapeseed B. cereus, B. subtilis, and In vitro Akbari et al. (2005a,b) P. fluorescens F. graminearum Wheat P. aeruginosa, B. subtilis, and Greenhouse Foroutan et al. (2005) P. fluorescens V. dahliae — Streptomyces plicatus and In vitro Shahidi Bonjar and Frankia sp. Aghighi (2005) Pseudomonas tolaasii Agaricus P. fluorescens In vitro and Khabbaz Jolfaei bisporus greenhouse et al. (2005) R. solani, F. oxysporum, F. solani, Potato T. harzianum Greenhouse Soltani et al. (2006) and C. coccodes and field S. sclerotiorum Sunflower T. harzianum, T. viride, and In vitro Abdollahzadeh T. virens et al. (2006) M. javanica and M. incognita Pistachio P. penetrans Greenhouse Karimipourfard and Damadzadeh (2006) R. solani, F. oxysporum, F. solani Mulberry P. fluorescens and Bacillus spp. In vitro Niknejad-Kazempour and Lasiodiplodia sp. et al. (2006) Ph. cactorum Apple P. fluorescens and B. subtilis Greenhouse Farzaneh et al. (2006) F. o. f.sp. tuberosi Potato P. fluorescens Greenhouse Khorasani-Aghazadeh et al. (2006) R. solani Common bean Burkholderia cepacia Greenhouse Ahmadzadeh et al. (2006b) Ascochyta rabiei Chickpea T. harzianum Greenhouse Bahrami et al. (2006) F. graminearum Wheat Streptomyces sp., P. fluorescens, In vitro and Nourozian et al. (2006) and B. subtilis greenhouse Bipolaris spicifera Wheat Bacillus sp. and P. fluorescens Greenhouse Behdani et al. (2006) R. solani Bean P. fluorescens Greenhouse Afsharmanesh et al. (2006) M. phaseolina, R. solani, Ph. Soybean, Pseudomonas spp. In vitro Ahmadzadeh et al. nicotianae var. parasitica, pistachio, bean, (2006a) Pythium sp., and Fusarium sp. pepper, and cucumber V. dahliae Cucumber B. subtilis, P. fluorescens, and Greenhouse Ahmadifar et al. (2006) B. pumilus R. solani Rice P. fluorescens In vitro Kazemzadeh et al. (2006) T. laevis Wheat P. putida and P. fluorescens Greenhouse Khodaygan et al. (2006) Ph. sojae Soybean Pseudomonas spp. Greenhouse Zebarjad et al. (2006) R. solani Rice B. cereus, B. subtilis, and Greenhouse Sajadi et al. (2006) P. fluorescens
Microbial antagonists against plant pathogens in Iran 413 Table 1: continued Pathogens Host Antagonists Procedure Ref. M. phaseolina Melon T. harzianum and T. virens In vitro and Etebarian (2006) glasshouse F. graminearum Wheat B. cereus, B. subtilis, Greenhouse Alimi et al. (2006) P. fluorescens, and E. herbicola and field Ralstonia solanacearum and Pistachio, olive, S. plicatus and Frankia sp. In vitro Shahidi Bonjar Pectobacterium carotovorum potato, and et al. (2006) subsp. carotovorum cotton V. dahliae Pistachio, olive, S. plicatus and Frankia sp. In vitro Aghighi et al. (2006) potato, and cotton Sclerotinia sclerotiorum Sunflower Coniothyrium minitans In vitro Pourmehdi Alamdarlou et al. (2006) Ustilago hordei Barley Bacillus licheniformis, B. cereus, Field Etebarian et al. (2007) and P. fluorescens S. sclerotiorum Canola P. fluorescens In vitro and Behnam et al. (2007) greenhouse Ophiostoma novo-ulmi Elm T. harzianum and T. virens In vitro Iraqi et al. (2007) G. graminis var. tritici Wheat T. virens, T. koningiopsis, In vitro and Mehrabi Koshki T. koningii, and T. viridescens greenhouse et al. (2007) R. solani Bean B. subtilis and P. fluorescens Greenhouse Peighamy-Ashnaei et al. (2007) R. solani Rape B. cepacia In vitro Sharifi-Tehrani et al. (2007) Ph. cactorum Apple P. fluorescens In vitro and Farzaneh et al. (2007) greenhouse P. grisea Rice B. circulans, B. megaterium, Field Padasht and B. subtilis, and P. fluorescens Izadyar (2007) F. o. f.sp. dianthi Carnation B. cereus, B. subtilis, and In vitro and Karimi et al. (2007) P. fluorescens greenhouse R. solani Colza P. fluorescens In vitro and Sarani et al. (2008b) greenhouse S. sclerotiorum Tobacco T. citrinoviride, T. harzianum, In vitro and Sajadi and Asemi (2008) T. atroviride, T. virens, greenhouse T. koningii, T. ghanense, and T. longibrachiatum M. phaseolina Eggplant T. hamatum, T. harzianum, In vitro and field Ramezani (2008) T. polysporum, and T. viride M. javanica Tomato T. harzianum In vitro Golzary et al. (2008b) A. mellea Fruit trees T. harzianum and T. virens In vitro Asef et al. (2008) Penicillium digitatum Orange Pseudomonas spp. In vitro Zamani et al. (2008a) P. digitatum Orange P. agglomerans Greenhouse Zamani et al. (2008b) F. o. f.sp. tuberose Potato Brevibacillus brevis, B. subtilis, Greenhouse Khorasani et al. (2008) and P. fluorescens Colletotrichum gloeosporioides Citrus B. subtilis In vitro Salari et al. (2008a) Penicillium expansum Apple T. virens Greenhouse Tabe-Bordbar et al. (2008b) Aspergillus flavus Pistachio B. subtilis, B. licheniformis, In vitro Haghdel et al. (2008a,b) B. cereus, and P. fluorescens M. javanica Tomato P. fluorescens Greenhouse Mokhtari et al. (2008) M. javanica Tomato P. fluorescens In vitro Golzary et al. (2008a) Magnaporthe salvini Rice P. fluorescens In vitro Ahmaddeh et al. (2008) F. oxysporum Potato P. putida, P. fluorescens, and Field Ommati et al. (2008) P. aeruginosa P. digitatum Citrus T. viride, P. fluorescens, and In vitro Zamani et al. (2008c) B. subtilis
414 Mehrdad Alizadeh et al. Table 1: continued Pathogens Host Antagonists Procedure Ref. F. solani and P. ultimum — B. subtilis In vitro Selselehzakeri et al. (2008) R. solani Sugar beet T. harzianum and T. viride Field Safaee et al. (2008) R. solani Sugar beet P. oligandrum In vitro and Salari et al. (2008b) greenhouse R. solani Canola P. fluorescens, B. cepacia, In vitro and Sarani et al. (2008a) B. subtilis, and Streptomyces sp. greenhouse Penicillium solitum Apple T. viride and T. virens Greenhouse Tabe Bordbar et al. (2008a) O. novo-ulmi Elm B. subtilis In vitro Iragi et al. 2008 R. solani Rice T. atroviride, T. harzianum, and In vitro Khalili and T. virens Sadravi (2008) Botrytis mali Apple Candida membranifaciens Greenhouse Alavifard et al. (2008a) Botrytis cinerea Apple C. membranifaciens, Rhodotorula In vitro and Alavifard et al. (2008b) mucilaginosa, and Meyerozyma greenhouse guilliermondii (Pichia guilliermondii) P. expansum Apple C. membranifaciens In vitro and Gholamnejad greenhouse et al. (2008) S. sclerotiorum Potato T. ceramicum , T. koningii, In vitro and Ojaghian et al. (2008) T. koningiopsis, T. virens, greenhouse T. viridescens, T. orientalis, and T. atroviride G. graminis and M. phaseolina — Piriformospora indica and In vitro Abbaszadeh and Sebacina vermifera Mohammadi Goltapeh (2008a) M. phaseolina Soybean T. harzianum, T. viride, P. indica, In vitro and Abbaszadeh and and S. vermifera greenhouse Mohammadi Goltapeh and field (2008b) Pyricularia oryzae Rice Streptomyces spp. In vitro and Ebrahimi-Zarandi greenhouse et al. (2008) P. expansum Apple P. fluorescens In vitro and Khazaee et al. (2008) greenhouse Ph. nicotianae — P. fluorescens In vitro and Nazerian et al. (2008) greenhouse S. sclerotiorum Canola B. subtilis In vitro Nasrolah Nejad and Rahnama (2008) P. syringae pv. tomato Tomato P. fluorescens In vitro Mousavi et al. (2008a) Clavibacter michiganensis subsp. Tomato P. fluorescens In vitro Mousavi et al. (2008b) michiganensis E. amylovora Pear P. fluorescens and Pantoea sp. In vitro Mirzaie et al. (2008) M. phaseolina Soybean T. harzianum In vitro Montazernia et al. (2008) S. sclerotiorum Canola P. fluorescens and B. subtilis In vitro and Mansouripour greenhouse et al. (2008) G. graminis var. tritici Wheat Azotobacter isolates In vitro Maghsodloo et al. (2008) B. cinerea Apple B. subtilis, Pichia In vitro and Zangoie et al. (2008) membraniciens, and Candida greenhouse guilliermondii X. axonopodis pv. citri Citrus P. fluorescens Greenhouse Khodakaramian et al. (2008)
Microbial antagonists against plant pathogens in Iran 415 Table 1: continued Pathogens Host Antagonists Procedure Ref. F. graminearum, R. solani AG4, Wheat, sugar T. hamatum, T. harzianum, In vitro Hajieghrari et al. (2008) R. solani AG5, M. phaseolina, and beet, potato, T. virens, and Trichoderma sp. Ph. cactorum soyabean, and apple G. graminis var. tritici Wheat T. koningiopsis, Greenhouse Zafari et al. (2008) T. brevicompactum, and T. viridescens M. javanica Tomato T. harzianum In vitro and Maleki Ziyarati greenhouse et al. (2009) M. phaseolina Melon P. fluorescens and P. putida In vitro and Kheiri et al. (2009) greenhouse H. schachtii Sugar beet T. harzianum and T. virens In vitro and Mahdikhani Moghadam greenhouse et al. (2009) S. sclerotiorum Canola T. harzianum and T. virens In vitro Nasrolah Nejad et al. (2009) M. javanica Tomato T. harzianum Greenhouse Ziarati et al. (2009) T. laevis Wheat T. koningii, T. brevicompactum, Field Mehrabi Koshki T. harzianum, and T. virens et al. (2009) R. solani Common bean P. fluorescens Greenhouse Ahmadzadeh and Tehrani (2009) B. cinerea Apple P. fluorescens and B. subtilis Greenhouse Peighami-Ashnaei et al. (2009a) S. sclerotiorum Sunflower P. fluorescens Greenhouse Ashofteh et al. (2009) Xanthomonas campestris pv. Cotton P. aeruginosa Greenhouse Fallahzadeh-Mamaghani malvacearum et al. (2009) R. solani Bean B. subtilis and P. fluorescens In vitro Peighami-Ashnaei et al. (2009b) R. solani Common bean B. cepacia In vitro and Ahmadzadeh greenhouse et al. (2009) P. expansum Apple Saccharomyces cerevisiae In vitro Gholamnejad et al. (2009) H. schachtii Sugar beet Pleurotus ostreatus, P. sajor- In vitro and Palizi et al. (2009) caju, P. florida, P. flabellatus, greenhouse P. eryngii, and Hypsizygus ulmarius P. expansum Apple R. mucilaginosa and In vitro Gholamnejad M. guilliermondii et al. (2009) V. dahliae Cotton Glomus etunicatum, Greenhouse Norouzi et al. (2009) G. intraradices, and G. versiforme Meloidogyne spp. — Paecilomyces lilacinus Greenhouse Boromand et al. (2010) F. oxysporum, R. solani, M. Faba bean Pseudomonas sp. In vitro and Golpayegani et al. (2010) phaseolina, and Pythium sp. greenhouse R. solani Rice T. harzianum, T. atroviride, and In vitro, Naeimi et al. (2010) T. virens greenhouse, and field Phytophthora sojae — T. virens, T. orientalis, In vitro Ayoubi et al. (2010) T. brevicompactum, T. atroviride, T. ceramicum and T. asperellum B. sorokiniana Wheat P. fluorescens In vitro and Ranjbar Sistani greenhouse et al. (2010) G. fujikuroi Rice T. harzianum and T. virens In vitro and Roodgar et al. (2010) greenhouse Pythium aphanidermatum Cucumber B. subtilis and B. licheniformis In vitro and Safari Asl et al. (2010) greenhouse
416 Mehrdad Alizadeh et al. Table 1: continued Pathogens Host Antagonists Procedure Ref. B. cinerea Tomato T. harzianum, T. arundinaceum, In vitro and Eivazi et al. (2010) T. viridescens, T. atroviride, and greenhouse T. koningii P. expansum Apple B. subtilis In vitro and Emadi et al. (2010) greenhouse Phytophthora drechsleri Cantaloupe Pseudomonas fluorescens, In vitro and Tabarraie et al. (2010) P. putida and P. aeruginosa greenhouse P. expansum Apple R. mucilaginosa In vitro and Golamnejad et al. (2010) greenhouse Penicillium italicum Orange M. guilliermondii In vitro and Ghasemi Sardareh greenhouse et al. (2010) Verticillium albo-atrum Tomato T. flavus In vitro and Naraghi et al. (2010) greenhouse F. o. f.sp. ciceri Chickpea B. subtilis, P. aeruginosa, and In vitro Karimik Amini P. putida et al. (2010) B. sorokiniana Wheat Glomus fasciculatum and Greenhouse Hashemi Alizade B. subtilis et al. (2010) F. o. f.sp. radicis-cucumerinum Cucumber B. subtilis Greenhouse Yousefi et al. (2010) S. sclerotiorum Potato T. ceramicum, T. koningii, In vitro Ojaghian et al. (2010) T. koningiopsis, T. viridescens, T. virens, and Coniothyrium minitans Sclerotinia sclerotiorum Sunflower Pseudomonas fluorescens In vitro and Khezri et al. (2010) greenhouse Sclerotium cepivorum Garlic Bacillus spp. In vitro Babaei Nasir et al. (2010) Fusarium oxysporum f.sp. gladioli Garlic Trichoderma spp. In vitro Bagheri et al. (2010) Gladiolus F. oxysporum and F. solani Chickpea T. harzianum and T. asprellum In vitro and Akrami and greenhouse Ibrahime (2010) M. phaseolina Sunflower B. subtilis In vitro and Iraqi and Rahnama (2011) greenhouse R. solani Canola B. cepacia In vitro and Sarani et al. (2010) greenhouse P. carotovorum Potato P. putida, P. aeruginosa, and Field Khodakaramian and P. fluorescens Zafari (2010) X. axonopodis pv. citri Citrus P. fluorescens, P. viridiflava, and In vitro Montakhabi et al. (2010) P. syringae G. graminis var. tritici Wheat B. subtilis, B. pumilus, In vitro and Babaeipoor et al. (2011) P. fluorescens, P. putida, greenhouse P. aeruginosa, and Chromobacteria sp. Phoma lingam Rapeseed B. subtilis and T. koningii In vitro and Panjehkeh et al. (2011) greenhouse H. schachtii Sugar beet T. harzianum, T. virens, and Field Mahdikhani Moghadam B. subtilis and Rouhani (2011) F. oxysporum Lentil P. fluorescens Greenhouse Akrami et al. (2011) F. culmorum — B. subtilis Greenhouse Khezri et al. (2011) S. sclerotiorum Sunflower P. fluorescens Greenhouse Heidari-Tajabadi et al. (2011) P. italicum and P. digitatum Citrus P. syringae and Candida famata Greenhouse Nasrollahi Omran et al. (2011) G. graminis var. tritici Wheat P. fluorescens Greenhouse Bagheri et al. (2011) P. expansum Apple R. mucilaginosa In vitro Gholamnejad et al. (2011) Phytophthora parasitica and Ph. Pistachio Streptomyces sp. In vitro and Salari et al. (2011) citrophthora greenhouse
Microbial antagonists against plant pathogens in Iran 417 Table 1: continued Pathogens Host Antagonists Procedure Ref. Ph. drechsleri Sugar beet T. asperellum, T. atroviride, Greenhouse Moayedi and T. harzianum, and T. virens Mostowfizadeh- Ghalamfarsa (2011) M. javanica Olive P. fluorescens and P. putida Greenhouse Khalighi and Khodakaramian (2012) Fusarium solani Potato T. brevicompactum, In vitro and Ommati and Zaker (2012) T. longibrachiatum greenhouse and T. asperellum M. javanica Tomato T. harzianum Greenhouse Naserinasab et al. (2012) P. carotovorum Potato Pseudomonas spp. In vitro and Ghods-Alavi et al. (2012) greenhouse P. grisea Rice T. harzianum Greenhouse Raeesi et al. (2012a) B. cinerea — T. harzianum In vitro and Raeesi et al. (2012b) greenhouse R. solani Rice P. fluorescens and P. aeruginosa In vitro and Kazemzadeh et al. (2012) greenhouse Ph. sojae Soybean Bradyrhizobium japonicum, In vitro and Ayoubi et al. (2012) T. spirale, T. orientale and greenhouse T. brevicompactum P. aphanidermatum Cucumber T. longibrachiatum and Greenhouse Ale Aghaee et al. (2012) T. atroviride Ph. parasitica Citrus Streptomyces sp. In vitro and Sadeghi (2012) greenhouse F. o. f.sp. lycopersici Tomato Streptomyces sp. In vitro Fadaei et al. (2012) F. solani f.sp. pisi Chickpea T. harzianum and T. viride In vitro and Afrousheh et al. (2012a) greenhouse Fusarium subglutinans Cucumber Streptomyces spp. In vitro Sadeghi and Hatami (2012) F. solani f.sp. pisi Pea T. harzianum and T. viride In vitro and Afrousheh et al. (2012b) greenhouse Phytophthora sojae Soybean T. orientals, T. brevicompactum In vitro and Najmeh et al. (2012) and T. spirale and greenhouse Bradyrhizobium japonicum Rosellinia necatrix — T. flavus In vitro Masudi and Shahidi (2012) P. aphanidermatum Cucumber T. virens, T. harzianum, and In vitro and Hosseyni et al. (2012a) T. atroviride greenhouse R. solani, M. phaseolina, — T. viride In vitro Soofi et al. (2012) F. graminearum, and S. sclerotiorum Bipolaris australiensis and B. Saffron T. virens, T. harzianum, and In vitro Roohabadi et al. (2012) cinerea T. koningii F. graminearum Wheat T. harzianum and T. virens Field Baghani et al. (2012) F. o. f.sp. radicis-cucumerinum Cucumber T. harzianum In vitro and Javanshir Javid greenhouse et al. (2012) Monosporascus cannonballus Muskmelon T. atroviride, T. harzianum, and In vitro and Keshavarzi et al. (2012a) T. virens greenhouse F. graminearum Wheat T. harzianum and T. virens Field Baghani et al. (2012) R. solani and F. solani f.sp. Sugar beet P. putida In vitro Nazari et al. (2012) tuberose Alternaria alternata Potato T. viride, T. orientalis, In vitro and Nasiri et al. (2012) T. arundinaceum, and greenhouse T. harzianum P. aphanidermatum Cucumber Bacillus sp. and B. subtilis Greenhouse Hosseyni et al. (2012b)
418 Mehrdad Alizadeh et al. Table 1: continued Pathogens Host Antagonists Procedure Ref. F. solani and R. solani — Streptomyces sp. In vitro Vasebi and Dehnad (2012) B. cinerea Apple Hanseniaspora occidentalis In vitro Azadrooh et al. (2012) A. flavus Pistachio T. harzianum and In vitro Chegini et al. (2012) T. longibrachiatum M. cannonballus Cucumis melon T. harzianum, T. virens, In vitro Keshavarzi et al. (2012b) T. atroviride, and Chaetomium globosum M. javanica — Penicillium griseofulvum, In vitro Karkhaneh et al. (2012) Penicillium chrysogenum, and Penicillium coprophilum V. albo-atrum, F. oxysporum, and Potato T. flavus In vitro Naraghi et al. (2012a) R. solani R. solani Common bean Streptomyces microflavus In vitro and Moazenian et al. (2012b) greenhouse A. flavus Pistachio T. harzianum and T. koningii In vitro Kahnooji et al. (2012) Ph. drechsleri Pistachio T. longibrachiatum and In vitro Mirkhani et al. (2012) T. harzianum Ph. drechsleri Pistachio T. harzianum Greenhouse Alipoor Moghadam et al. (2012) Paecilomyces variotii Pistachio Streptomyces spp. In vitro Ansari et al. (2012) P. tolaasii A. bisporus Pseudomonas reactants, Bacillus In vitro Tajalipour et al. (2012) sp., and P. fluorescens V. albo-atrum Potato T. flavus Greenhouse Naraghi et al. (2012b) B. oryzae Rice T. harzianum, T. atroviride, and Greenhouse Khalili et al. (2012) T. virens F. solani Bean T. harzianum and T. viride In vitro and Khodaei et al. (2012) greenhouse F. solani, R. solani, F. oxysporum, Citrus Streptomyces sp. In vitro Noorizadeh et al. (2012) Pestalotiopsis spp., C. gloeosporioides, and P. digitatum P. italicum Orange Pichia kluyveri In vitro Ghasemi Sardareh et al. (2012) R. solani Sugar beet T. harzianum In vitro Ghanbari et al. (2012) P. expansum Apple Torulaspora delbrueckii In vitro Ebrahimi et al. (2012a,b) Magnaporthe oryzae Rice T. harzianum, T. atroviride, and In vitro Javadi et al. (2012) T. virens F. graminearum Wheat P. fluorescens, E. herbicola, In vitro and Alimi et al. (2012) B. subtilis, and B. cereus greenhouse S. sclerotiorum Bean B. subtilis subsp. spizizenii and In vitro and Gholami et al. (2012) Streptomyces acrimycini greenhouse S. sclerotiorum Cucumber Bacillus sp. In vitro Rostami et al. (2012) G. graminis var. tritici Wheat P. fluorescens In vitro and Lagzian et al. (2012) greenhouse F. oxysporum Cucurbit T. harzianum and In vitro Abdolahy and T. longibrachiatum Parsaiyan (2012) F. solani Cucurbit T. koningii In vitro Abdolahy and Parsaiyan (2012) V. dahliae Pistachio T. harzianum and T. koningii In vitro Jamdar et al. (2012) Pratylenchus loosi Tea B. subtilis In vitro Rahanandeh et al. (2012) M. javanica Cucumber P. fluorescens, B. subtilis, and Greenhouse Majzoob et al. (2012) Pantoea sp. Meloidogyne javanica Tomato Arthrobotrys oligospora and Greenhouse Jamshidnejad Paecilomyces lilacinus et al. (2012) B. cinerea Strawberry Trichoderma spp. In vitro and Naeimi and Zare (2013) greenhouse
Microbial antagonists against plant pathogens in Iran 419 Table 1: continued Pathogens Host Antagonists Procedure Ref. P. aphanidermatum Sugar beet Trichoderma erinaceum, Greenhouse Abdollahi et al. (2013) T. koningii, T. longibrachiatum, and T. harzianum Fusarium oxysporum f. sp. Potato Trichoderma virens and In vitro and Ommati et al. (2013) tuberosi Trichoderma asperellum greenhouse B. sorokiniana Wheat G. fasciculatum and Greenhouse Hashemi Alizadeh P. fluorescens et al. (2013) Tylenchulus semipenetrans Citrus F. solani, F. oxysporum, Greenhouse Chavoshisani P. lilacinus, Cladosporium et al. (2013) cladosporioides, and Acremonium strictum Aspergillus flavus Pistachio Trichoderma harzianum and In vitro Chegini et al. (2013) Trichoderma longibrachiatum M. javanica Tomato Glomus mosseae and Greenhouse Golzari et al. (2013) G. intraradices A. flavus Pistachio B. subtilis In vitro Afsharmanesh et al. (2013) Colletotrichum lindemuthianum Bean B. subtilis subsp. subtilis, In vitro and Gholami et al. (2013) B. atrophaeus, B. tequilensis, greenhouse B. subtilis subsp. spizizenii, Streptomyces cyaneofuscatus, S. flavofuscus, S. parvus, and S. acrimycini P. aphanidermatum Tarragon T. asperelloides In vitro Pakdaman et al. (2013) E. amylovora Apple, pear, and P. fluorescens, P. agglomerans, Field Gerami et al. (2013) quince P. putida, and Serratia marcescens F. culmorum Wheat Pseudomonas spp. Greenhouse Madloo et al. (2013) P. loosi Tea P. fluorescens In vitro Rahanandeh et al. (2013) V. dahliae Cotton B. subtilis, Bacillus coagulans, Greenhouse Mansoori et al. (2013) Bacillus polymyxa, and P. fluorescens F. graminearum Wheat T. harzianum and T. viride Field Foroutan (2013) M. phaseolina Soybean P. agglomerans, Bacillus sp., In vitro and Vasebi et al. (2013) and T. harzianum greenhouse Ph. drechsleri Cucumber P. fluorescens In vitro and Ghafelebashi et al. (2014) greenhouse B. cinerea Apple B. subtilis, C. membranifaciens In vitro and Zanguei et al. (2014) and M. guilliermondii greenhouse M. oryzae Rice T. harzianum, T. atroviride, and In vitro and Javadi et al. (2014) T. virens greenhouse F. solani f.sp. pisi Pea G. mosseae and G. intraradices Greenhouse Soharabi et al. (2014) F. o. f.sp. lycopersici Tomato T. harzianum and T. virens Greenhouse Jalali (2014) P. tolaasii Mushroom P. reactants, P. putida, Greenhouse Tajalipour et al. (2014) P. fluorescens, and B. subtilis M. javanica Tomato P. fluorescens In vitro Bagheri et al. (2014) A. flavus Pistachio B. subtilis In vitro Afsharmanesh et al. (2014) P. digitatum Citrus B. subtilis, Rhizobium rubi, and In vitro Mohammadi et al. (2014) P. digitatum Cercospora beticola Sugar beet Bacillus sp., Enterobacter sp., In vitro and Mousavi Mirak (2014) and Enterobacter sp. greenhouse
420 Mehrdad Alizadeh et al. Table 1: continued Pathogens Host Antagonists Procedure Ref. M. phaseolina Soybean T. harzianum In vitro and Khaledi and Taheri (2014) greenhouse R. solanacearum Potato Paenibacillus polymyxa In vitro and Dadjoo et al. (2014) greenhouse F. o. f.sp. melonis Cantaloupe B. subtilis In vitro Hosseini Haji Abdal et al. (2014b) F. o. f.sp. melonis Cantaloupe T. atroviride and T. harzianum In vitro and Hosseini Haji Abdal et al. greenhouse (2014a) M. incognita Tea P. aeruginosa and P. fluorescens In vitro Rahanandeh and Moshaiedy (2014) P. chrysogenum and B. cinerea — Streptomyces griseus In vitro Danaei et al. (2014) R. solani Cotton P. aureofaciens and Greenhouse Samavat et al. (2014) P. fluorescens M. phaseolina Soybean T. harzianum Field Barari et al. (2014) F. sambucinum, Fusarium Cucumber Streptomyces sp. In vitro Sadeghi and subglutinans, Phoma glomerata, Hatami (2014) and N. mangiferae M. phaseolina Soybean P. agglomerans In vitro and Vasebi et al. (2015) greenhouse M. javanica Tomato Trichoderma spp. In vitro and Kavari et al. (2015) greenhouse Ph. drechsleri Cucumber T. harzianum Greenhouse Delkhah and Behboudi (2015) M. javanica Tomato T. harzianum and P. fluorescens Greenhouse Mokhtari et al. (2015) M. javanica Tomato Metarhizium anisopliae and Greenhouse Khosravi et al. (2015) T. harzianum F. graminearum Wheat P. fluorescens Greenhouse Shahbazi et al. (2015) P. aphanidermatum Cucumber P. fluorescens Greenhouse Akbari-Moghadam et al. (2015) G. graminis var. tritici Wheat Trichoderma spp. and T. flavus In vitro Mohammadi and Ghanbari (2015) S. cepivorum Garlic T. asperellum, T. harzianum, and Greenhouse Mahdizadehnaraghi T. flavus et al. (2015) F. solani, R. solani, and Bean Pseudomonas sp. and In vitro and Faraji et al. (2015) F. oxysporum Bacillus sp. greenhouse R. solani Cotton P. fluorescens Greenhouse Abdollahipuor et al. (2015) F. o. f.sp. lycopersici Tomato B. pumilus Greenhouse Heidarzadeh and Baghaee-Ravari (2015) Meloidogyne spp. Kiwifruit Pseudomonas chlororaphis Greenhouse Bashiri et al. (2015) subsp. aureofaciens and P. fluorescens Fusarium solani, Rhizoctonia Bean Pseudomonas sp. and In vitro and Faraji et al. (2015) solani, and Fusarium oxysporum Bacillus sp. greenhouse V. dahliae Pistachio T. harzianum Greenhouse Fotoohiyan et al. (2015) P. aphanidermatum Cucumber G. mosseae Greenhouse Hosseini et al. (2016) F. oxysporum Tomato P. fluorescens Greenhouse Jamali et al. (2016) B. cinerea, C. cladosporioides, Grape T. harzianum and T. hamatum In vitro Davari and Ezazi (2016) and Aspergillus tubingensis B. cinerea Strawberry B. subtilis and B. licheniformis Greenhouse Amini et al. (2016) Mycosphaerella rabiei Chickpea T. atroviride, T. virens, and Greenhouse Naghed et al. (2016) T. atroviride A. alternata, Alternaria dumosa, Tomato T. harzianum and T. virens Greenhouse Beydaghi et al. (2016) Alternaria tenuissima, Alternaria mimicula, Alternaria tomaticola, and C. cladosporioides
Microbial antagonists against plant pathogens in Iran 421 Table 1: continued Pathogens Host Antagonists Procedure Ref. M. javanica Tomato G. mosseae Greenhouse Azami-Sardooie et al. (2016) F. o. f.sp. lycopersici Tomato T. harzianum In vitro and Barari (2016) greenhouse M. phaseolina, R. solani, Melon, melon, T. harzianum In vitro Abbasi et al. (2016) S. sclerotiorum, and canola, and F. graminearum wheat M. phaseolina Soybean T. harzianum Greenhouse Khalili et al. (2016) F. solani f.sp. pisi Chickpea Streptomyces antibioticus Greenhouse Soltanzadeh et al. (2016) A. rabiei Chickpea P. putida, P. fluorescens, In vitro Azizpour and Mesorhizobium ciceri, and Rouhrazi (2016) Burkholderia multivorans R. solani Sugar beet Bacillus amyloliquefaciens, Greenhouse Karimi et al. (2016) B. pumilus, and Bacillus siamensis F. o. f.sp. lycopersici Tomato B. subtilis and P. fluorescens In vitro and Jalali et al. (2016) greenhouse A. flavus Pistachio B. subtilis In vitro Farzaneh et al. (2016) Penicillium crustosum and Grape Pichia membranaefaciens In vitro and Ranjbar Chaharborj A. tubingensis greenhouse et al. (2016) S. sclerotiorum and Cucumber Pseudomonas spp., In vitro and Bagheri et al. (2016) P. aphanidermatum Stenotrophomonas spp., and greenhouse Flavobacterium spp. X. translucens pv. cerealis Wheat Pseudomonas spp. Greenhouse and Fallahzadeh-Mamaghani in vitro et al. (2016) F. o. f.sp. cucumerinum Cucumber T. flavus Greenhouse Shahriari et al. (2016) M. javanica Tomato T. harzianum Greenhouse Heidari and Olia (2016) Agrobacterium tumefaciens Tobacco B. subtilis Greenhouse Nazari et al. (2016) R. solanacearum Potato P. fluorescens In vitro and Hasani and greenhouse Khodakaramian (2016) G. graminis var. tritici Wheat B. subtilis In vitro and Khezri and Manafi greenhouse Shabestari (2016) F. solani f.sp. phaseoli Bean T. hamatum and P. fluorescens In vitro and Khosro-Anjom greenhouse et al. (2016) V. dahliae Tomato B. subtilis, B. pumilus, In vitro and Safdarpour and B. atrophaeus, and Bacillus greenhouse Khodakaramian (2016) thuringiensis E. amylovora Apple P. agglomerans In vitro Firouzian Bandpey and Rahimian (2016) F. oxysporum — T. harzianum, T. koningii, and In vitro Habibi and T. virens Rahnama (2016) F. oxysporum f.sp. lycopersici and Tomato G. mosseae Greenhouse Amirafzali et al. (2016) M. javanica Diplodia bulgarica Apple Arthrinium arundinis, Arthrinium In vitro Alijani et al. (2016) saccharicola, Periconia sp., Penicillium sp., Aspergillus persii, C. globosum, Chaetomium sp., Trichothecium roseum, A. tenuissima, and Alternaria infectoria R. necatrix Apple B. siamensis and B. pumilus In vitro Binandeh et al. (2016) F. oxysporum Cucumber T. harzianum In vitro Akhlaghi et al. (2016) P. aphanidermatum Cucumber B. cereus, B. licheniformis, and In vitro Rezaei et al. (2016) Bacillus endophyticus
You can also read