MALARIA EPIDEMICS UNDER CLIMATE CHANGE SCENARIOS IN THAILAND - THAISCIENCE
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
J. Environ. Res. 35 (2): 1-11 J. Environ. Res. 35 (2): 1-11 Malaria epidemics under climate change scenarios in Thailand โรคระบาดของมาลาเรียภายใต้สภาวะภูมิอากาศเปลี่ยนแปลงในประเทศไทย Chayut Pinichka1*, Kampanad Bhaktikul1, Saranya Sucharitakul1 and Kanitta Bundhamcharoen2 1 Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170 Thailand. 2 International Health Policy Program, Ministry of Public Health, Nonthaburi 11000, Thailand ชยุตม์ พินิจค้า1* กัมปนาท ภักดีกุล1 ศรัณยา สุจริตกุล1 และ กนิษฐา บุญธรรมเจริญ2 1 คณะสิ่งแวดล้อมและทรัพยากรศาสตร์ มหาวิทยาลัยมหิดล, นครปฐม 73170, ประเทศไทย 2 สำ�นักงานพัฒนานโยบายสุขภาพระหว่างประเทศ กระทรวงสาธารณสุข, นนทบุรี 11000, ประเทศไทย received : February 14, 2013 accepted : April 5, 2013 Abstract B2 = 1,301 DALYs/yr. The compared model with The objective of this study was to estimate actual climate data to predict the incidence of avoidable burden on disease of malaria in Thailand malaria in 2012-2020 found malaria incidence has under climate conditions in the future. The study increased the incidence with trend line equation was based on climate projection under 2 different Y = 312.55X + 2480.1, R2 = 0.74 average incidences situations which included the regionally economic 79,703 persons/yr or 4,042.9 DALYs/yr. The scenario development (A2) and the local environmental B2 has been decreased incidence of malaria with sustainability (B2). 1991-2011 climate data collection trend line equation Y = 20.223X3 – 363X2 + 1801.4X was used to create nonlinear mixed regression – 19.483, R2 = 0.57, Average incidence 40,407 model. The variables in monthly time step, which persons/ yr, or 2,042.8 DALYs/yrs. Scenarios B2 included maximum temperature, minimum could have been avoided by A2 = 1,119.5 DALYs/yrs temperature, precipitation, humidity, average wind or 49.3 %. speed. Keyword: Malaria, nonlinear mixed regression, The results were found the best fitting model, climate change projection data, DALYs model 2, which adjusted R-Square = 0.818 and RMSE = 763.27. The average disease incidence in the year of 2003-2011 on B2 = 26,869 persons/yr, บทคัดย่อ baseline = 28,521 persons/yr, and A2 = 30,734 การศึกษานีม้ วี ตั ถุประสงค์เพือ่ คาดการณ์ภาระโรค persons/yr. These burdens converted to DALYs ทีส่ ามารถหลีกเลีย่ งได้ (Avoidable burden of diseases) for international comparison which were, baseline ของโรคมาลาเรีย ภายใต้สภาวะภูมิอากาศในอนาคต = 1,391 DALYs/yr, A2 = 1,500 DALYs/yr, and โดยน�ำข้ อ มู ล ของสภาพภู มิ อ ากาศของประเทศไทย * corresponding author E-mail : yut_emblaze@yahoo.com Phone : +668 3996 2558 1
Pinichka et al., 2013 พ.ศ.2534-2554 มาคาดการณ์ ภ ายใต้ ส ถานการณ์ worldwide today. Climate changes in our การเปลี่ยนแปลงสภาพภูมิอากาศ (A2) และ (B2) ใน region are important impact on human ประเทศไทยของศูนย์เครือข่ายงานวิเคราะห์วิจัยและ health (1). Especially, malaria, an infection การฝึกอบรมการเปลี่ยนแปลงของโลก แห่งภูมิภาคเอเชีย ตะวันออกเฉียงใต้ (SEA START RC)ได้ใช้การน�ำเข้า disease that is sensitive to the climate. The ข้อมูลสภาพภูมิอากาศของประเทศไทยในปี พ.ศ.2534- infection diseases that are dependent on 2554 ของกรมอุ ตุ นิ ย มวิ ท ยาจ�ำนวน 5 ตั ว แปรได้ แ ก่ several factors, but the factor of temperature เดือน อุณหภูมิสูงสุด อุณหภูมิต�่ำสุด ค่าความชื้นสัมพันธ์ and humidity are extremely important and ความเร็วลมเฉลี่ย และ ปริมาณนํ้าฝน เพื่อสร้างแบบ the climate can affect human behavior and จ�ำลองถดถอยไม่เป็นเส้นตรงแบบผสมพบว่าแบบจ�ำลอง social impact on the spread of infectious ที่ให้ค่า ความแม่นย�ำสูงสุดคือแบบจ�ำลองที่ 2 โดยมีค่า adjusted R-Square 0.818 ด้วยค่า RMSE 763.27 diseases as well, so a minimal climate change impact on human tolerance levels การศึกษาในปี พ.ศ.2546-2554 พบว่าสถานการณ์ เปลี่ยนแปลงสภาพภูมิอากาศ B2 เป็นสถานการณ์ที่มี can have a direct impact on human health อุ บั ติ ก ารณ์ เ กิ ด โรคมาลาเรี ย น้ อ ยที่ สุ ด กล่ า วคื อ มี อุ บั ติ immediately (2). การณ์เกิดขึ้น 26,869 คนต่อปี หรือคิดเป็น 1,301 DALYS Malaria is an extremely climate- ต่อปี A2 = 30,734 คนต่อปี หรือคิดเป็น 1,500 DALYS sensitive tropical disease, making the ต่อปี เมื่อน�ำแบบจ�ำลองถดถอยไม่เป็นเส้นตรงแบบผสม ไปท�ำนายอุบตั กิ ารณ์เกิดโรคทีจ่ ะเกิดขึน้ ในอนาคต ปี พ.ศ. assessment of the potential change in 2555-2563 พบว่าอุบัติการณ์มาลาเรียในแบบจ�ำลอง A2 malarial risk, caused by past or projected มีแนวโน้มทีส่ งู ขึน้ ด้วยสมการแนวโน้มคือ Y = 312.55X + global warming, one of the most important 2480.1, R2 = 0.74 มีอุบัติการณ์เฉลี่ย 79,703 คนต่อปี topics in the field of climate change and หรือคิดเป็น 4,042.9 DALYS ต่อปี ในขณะที่แบบจ�ำลอง health (3). The incidence of malaria varies B2 ส่งผลให้อุบัติการณ์ของมาลาเรียมีแนวโน้มที่เพิ่มขึ้น seasonally in highly endemic areas, and จากนั้นจึงลดลงอย่างต่อเนื่อง ด้วยรูปแบบชองสมการ ก�ำลังสามคือ Y = 20.223X3 – 363X2 + 1801.4 X malaria transmission has been associated –19.483, R2 = 0.57 โดยมีอุบัติการณ์ 40,407 คนต่อปี with temperature anomalies in some African หรือคิดเป็น 2,042.8 DALYS ต่อปีซึ่งน้อยกว่า แบบ highlands (4). จ�ำลอง A2 อยู่ 1,119.5 DALYS ต่อปี หรือคิดเป็น 49.3% The WHO has estimated the global ค�ำส�ำคัญ: มาลาเรีย, การถดถอยไม่เป็นเส้นตรง burden of disease (GBD) that could be due แบบผสม, ข้อมูลคาดการณ์การเปลี่ยนแปลง to climate change in terms of disability ภูมิอากาศ, DALYS adjusted life years (DALYS). This measure makes it possible to take into account Introduction impacts that do not necessarily lead to death Climate change is an emerging risk but cause disability. Climate scenarios are factor for human health. It is now clear derived from the output of global climate the global climate has been changed in models that are, in turn, driven by scenarios 2
J. Environ. Res. 35 (2): 1-11 of future greenhouse gas emissions and 1. Selecting the scenarios and time epidemiological models. These scenarios period were used to estimate the degree to which 2. Climate change modeling these climatic changes are likely to affect a 3. Health impact model limited series of health outcomes (malaria, 4. Conversion to a single health diarrheal disease, malnutrition, flood deaths, measure DALY (Disability adjusted life year) direct effects of heat and cold). These This research follows guidelines of the measures of proportional change can be WHO and set the study’s purpose to create applied to projections of the burden of each a Statistical Climate health model of Thailand of these diseases in the future, to calculate to predict and compare incidences under the possible impacts of climate change on climate scenarios projected with the actual the overall disease burden (5). incidence of the disease under real climate Prediction malaria incidence facilitates conditions and improve the results by convert early public health responses to minimize to DALYs to enable international comparison morbidity and mortality. Climate variables possible. such as temperature, precipitation, relative humidity and wind (6) are potential predictors Data Collection of malaria incidence have been examined 1. Climate data during 1991-2011 in time series studies. In this study, we used from the Department of Meteorology were adapted nonlinear time series analysis (7) to used including rainfall (Rainfall Intensity), determine the association between climatic average monthly temperature (Average variability and the number of monthly Ambient Temperature), average maximum malaria outpatients over the past 20 years temperature (Maximum Temperature), RH and predicted the next 10 years burden in (Relative Humidity), wind speed and time Thailand. (month). Methodology 2. Reports of malaria incidences in In this research, we used WHO Thailand during 1991-2011 were collected Environmental Burden of Disease Series, from the Bureau of Epidemiology. climate change guidance, estimating 3. The predicted climate data used attributable and avoidable burdens of dataset from Southeast Asia START Regional disease method (8, 9): The main step includes Center (SEA START RC) projected. These as following. data are daily climate data (transform to 3
Pinichka et al., 2013 monthly data) under two different GHG mixed- regression technique from Zhou (6) emission scenarios; scenarios A2 (regionally was used. This is due to the existence of economic development) and scenarios classification on the function type such as, B2 (local environmental sustainability). autocorrelation, climate variability function, Our goal is to f ind the malaria burden and seasonal function (10). difference between the environmental focus The number of malaria outpatients, (B2) and the economic focus (A2) in the Nt, at a given time is likely to be affected by heterogeneous world (regional development)(1). the previous number of malaria outpatients (autoregression), seasonality, and climate Statistical association between climate variability. Thus, the dynamics of the number variability and malaria incidence of monthly malaria outpatients (Nt) can be In this step, the adapted nonlinear modeled as in Equation (1). Nt (1) where f (Ni
J. Environ. Res. 35 (2): 1-11 And the model evaluation method the death of the life lost prematurely. used the Root Mean Square Error (RMSE) The basic formula for YLL (without including (also called the root mean square deviation, other social preferences), is the following RMSD) is a frequently used measure of the for a given cause, age and sex: difference between values predicted by a model and the values actually observed YLL = N x L from the environment that is being modelled. Where; N = number of deaths L = standard life expectancy at age of Where Xobs is observed values and death in years Xmodel is modelled values at time/place i. YLD = I x DW x L Estimate burden of disease Where; Disability-Adjusted Life Year (DALYs) I = number of incidence cases are calculated as the sum of the years of DW = disability weight life lost (YLL) due to premature mortality L = average duration of the case until in the population and the years lost due to remission or death (years) disability (YLD) for incidences cases of the health condition (11). Calculation is Results and discussion Correlation between variables with malaria DALY = YLL + YLD incidences The number of years lost due to The study showed that wind speed premature (Year of Life Lost - YLL) or has maximum lag period of 5 months with premature death is a component of the correlation of 0.282 while humidity and rainfall disease burden and mortality indicators. have maximum lag period of 0 month with The measurement is based on the time of correlations of 0.297 and 0.241 respectively. 5
Pinichka et al., 2013 Table 1 Correlation between variables with malaria incidences Variable Lag period, τ (Months) Correlation Significance Case 1 0.842 0.000 ** Maximum temperatures 0 0.046 0.469 Maximum temperatures 1 0.288 0.000** Maximum temperatures 2 0.427 0.000** Minimum temperatures 0 0.250 0.000** Minimum temperatures 1 0.297 0.000** Rainfall 0 0.241 0.000** RH 0 0.171 0.007** Wind speed 0 0.073 0.245 Wind speed 1 0.061 0.337 Wind speed 2 0.161 0.011* Wind speed 3 0.251 0.000** Wind speed 4 0.258 0.000** Wind speed 5 0.282 0.000** * Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed). Although spatial incidences data method. The model was tested in three in Thailand were not used, signif icant assumptions as following. relationship is found conforming to the results - Model No EV assuming the of Zhou (7), as well as some climate variables environment factors having no affect to the such as; RH and Rainfall are no lagged number of patients; (g(x) = 0). period (Table 1). However, these data are surveillance and spatial analysis was not - Model 1 assuming the environmental used. factors having an influence on the number of patients given g (x) ≠ 0 and assuming Nonlinear mixed regression analysis the interaction between all climate variables Variables were selected and tested = 0 due to no interaction with the environment. with time lag period climate variable - Model 2 assuming the environmental associated with malaria incidence. The next factors having an influence on the number step is regression analysis by stepwise of patients given g (x) ≠ 0 and assuming 6
J. Environ. Res. 35 (2): 1-11 the interaction between all climate variables The results are shown in Tables 2-4 below. ≠ 0 due to environmental factors related. Table 2 Nonlinear mixed regression analysis between time series data with malaria incidence Model Method R R square Adjusted R Square Significance No EV Stepwise 0.842 0.710 0.708 0.000** 1 Stepwise 0.908 0.825 0.821 0.000** 2 Stepwise 0.907 0.823 0.818 0.000** Table 3 Model fitting results and effects of autocorrelation and seasonality (f (Ni < t,t)) Model Type α d β b1 b2 No EV 596.37 1 0.84 - - 1 - 25,790.64 1 0.90 2,218.16 1,158.79 2 - 25,404.83 1 0.91 1,421.37 1,497.25 Table 4 Model fitting results and effect of climate variables (g(x)) Parameter Model 1 Significance Model 2 Significance Tmin (τ = 1) 511.411 0.000** - - Tmax (τ = 2) 201.81 0.004** - - RH (τ = 0) 107.39 0.000** - - Wind speed (τ = 5) - 0.000** - - Rainfall (τ = 0) - - - - SumTmax × RH - - 3.331 0.000** SumTmin × Wind speed - - 22.629 0.000** SumTmin × Wind speed × RH - - -0.263 0.000** * Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed). 7
Pinichka et al., 2013 Table 4 shows the fitting results Model 1. In fact, the regression model in and effect on climate variables including this study can represent and predict malaria parameter and significant value of Model burden with reasonable accuracy when 1 and Model 2. Significance on interaction there is sufficient malaria epidemiological effect between maximum or minimum data (non under reported province data) monthly temperature, RH and wind speed available for input to the model. In the with the number of malaria incidences prediction period, although there may be are concluded. some over estimated between the actual The results show that Model 2 has incidences and predicted, The RMSE the best accuracy, therefore the prediction (Table 5) is relatively small when compared process model 2 is used. Both models are with overall malaria burden (Figure 1). adapted by non linear mixed-regression technique; Model 2 used interaction of Table 5 Residual analysis climate variables, Model 1 only use Model Type RMSE climate variables at max lag period (τmax). No EV 1,258.14 As a result, Model 2 which combined the 1 767.24 interaction between climate variables 2 763.27 shows potential better prediction than Figure 1 Comparison models 1, 2 with actual incidence 8
J. Environ. Res. 35 (2): 1-11 Figure 2 Results estimate of malaria incidences under climate scenarios (monthly) Figure 3 DALYs of Malaria in Thailand (2) 2012-2020 The compared models with actual or 4,042.9 DALYs/ yr. The scenario B2 climate data to predict the incidence of predicted would decrease incidence of malaria in 2012-2020 found malaria malaria with trend line, Equation Y = 20.223X3 incidences would increase with trend line, – 363X2 + 1801.4 X – 19.483 R2 = 0.57, Equation Y = 312.55X + 2480.1 R2 = 0.74, average incidence 40,407 persons/ yr, or average incidences 79,703 persons/ yr 2,042.8 DALYs/ yr. 9
Pinichka et al., 2013 Conclusions fever diseases and other climate-health Climatic factor and seasonal pattern impact (3) would be reduced as well. are the most direct affect on malaria Acknowledgements transmission in Thailand. However, other factors are also influencing malaria I wish to express my sincere thanks epidemiology. For example, socioeconomic to Miss. Sineenat Thaiboonrod (Manchester condition, public health service, military University), Miss. Pensiri Duangpoonmat conflict, migration and water resources (Faculty of Medicine, Siriraj Hospital), the management may all modulate the suitability officers of BOD Thailand (http://www.thaibod. for malaria transmission. The changes in net/contact.html.), Mr. Watcharapong extreme climate such as extreme rainfall, an Noimunwai, and the officers of SEA START average temperature increase of result in RC (www.start.or.th). a greater incidence of malaria. Each factor References could vary with lagged period while rainfall (1) Intergovernmental Panel on Climate Change causing a direct effect on the incidence (IPCC). 2001. Climate Change 2001: The of malaria has lagged period = 0 month. Scientific Basis: Contribution of Working Therefore, quoted in the research(2) “a minimal Group I to the Third Assessment Report. climate change impact on human tolerance Cambridge University Press, Cambridge. levels can have a direct impact on human (2) McMichael, A., Woodruff, R., Whetton, P., health immediately” is reliable. Hennessy, K., Nicholls, N., Hales, S., Woodward, A. and Kjellstrom, T. 2003. Human Health and In fact, the national monthly malaria Climate Change in Oceania: A Risk Assessment cases can be modelled and predicted 2002. Commonwealth of Australia. using nonlinear mixed regression. Our (3) McMichael, A.J., Githeko, A., Akhtar, R., Carcavallo, R., Gubler,D., Haines, A., Kovats, results showed the global climate change R.S., Martens, P., Patz, J. and Sasaki, A. 2001. B2, The local environmental sustainability Human health. In: McCarthy, J.J., et al., (Eds.), scenarios can prevent disease burden Climate Change 2001: Impacts, Adaptation, around 49.3% from global climate change and Vulnerability. Press Syndicate of the as Model A2 in 2012-2020. However, University of Cambridge, Cambridge, UK, pp. reducing greenhouse gases emission by 451– 485. (4) Patz, J.A., Hulme, M., Rosenzweig, C., Mitchell, international agreement or national policy T.D., Goldberg, R.A., Githeko, A.K., Lele, S., can reduce or minimize amount of diseases. McMichael, A.J. and Le Sueur, D. 2002. There are the possibilities that those others Regional warming and malaria resurgence. mosquito-borne diseases such as dengue Nature. 420: 627-628. 10
J. Environ. Res. 35 (2): 1-11 (5) Haines, A., Kovats, R.S., Campbell-Lendrum, Environmental Burden of Disease Series No.14. D. and Corvalan, C. 2006. Climate change World Health Organization. and human health: impacts, vulnerability and (9) Campbell-Lendrum, C. and Woodruff, R. public health. Public Health. 120:585–596. 2006. Comparative Risk Assessment of the (6) Service, M.W. 1978. The effect of weather on Burden of Disease from Climate Change, mosquito activity. In: Weather and Parasitic Environ. Health Perspect. 114: 1935-1941. Animal Disease. T. E. Gibson (Ed.) Tech. World (10) Stolwijk, A.M. 1999. Studying seasonality by Meteor. Org. 159: 151-166. using sine and cosine functions in regression (7) Zhou, G., Minakawa, N., Githeko, A. K. and Yan, analysis. J Epidemiol Community Health. G. 2005. Climate variability and malaria 53(4): 235-8. epidemics in the highlands of East Africa. (11) Murray, C.J.L. and Lopez, A.D. 1996. The Trends in Parasitology, 21: 54-56. Global Burden of Disease. Geneva, World (8) Campbell-Lendrum, C. and Woodruff, R. 2007. Health Organization, Harvard School of Public Climate change: quantifying the health Health, World Bank. impacts at national and local levels. 11
You can also read