MALARIA EPIDEMICS UNDER CLIMATE CHANGE SCENARIOS IN THAILAND - THAISCIENCE

Page created by Keith Hart
 
CONTINUE READING
J. Environ. Res. 35 (2): 1-11          J. Environ. Res. 35 (2): 1-11

         Malaria epidemics under climate change scenarios in Thailand
            โรคระบาดของมาลาเรียภายใต้สภาวะภูมิอากาศเปลี่ยนแปลงในประเทศไทย

   Chayut Pinichka1*, Kampanad Bhaktikul1, Saranya Sucharitakul1 and Kanitta Bundhamcharoen2
1
  Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170 Thailand.
      2
       International Health Policy Program, Ministry of Public Health, Nonthaburi 11000, Thailand
              ชยุตม์ พินิจค้า1* กัมปนาท ภักดีกุล1 ศรัณยา สุจริตกุล1 และ กนิษฐา บุญธรรมเจริญ2
          1
            คณะสิ่งแวดล้อมและทรัพยากรศาสตร์ มหาวิทยาลัยมหิดล, นครปฐม 73170, ประเทศไทย
    2
      สำ�นักงานพัฒนานโยบายสุขภาพระหว่างประเทศ กระทรวงสาธารณสุข, นนทบุรี 11000, ประเทศไทย

received : February 14, 2013                                                               accepted : April 5, 2013

Abstract                                                     B2 = 1,301 DALYs/yr. The compared model with
        The objective of this study was to estimate          actual climate data to predict the incidence of
avoidable burden on disease of malaria in Thailand           malaria in 2012-2020 found malaria incidence has
under climate conditions in the future. The study            increased the incidence with trend line equation
was based on climate projection under 2 different            Y = 312.55X + 2480.1, R2 = 0.74 average incidences
situations which included the regionally economic            79,703 persons/yr or 4,042.9 DALYs/yr. The scenario
development (A2) and the local environmental                 B2 has been decreased incidence of malaria with
sustainability (B2). 1991-2011 climate data collection       trend line equation Y = 20.223X3 – 363X2 + 1801.4X
was used to create nonlinear mixed regression                – 19.483, R2 = 0.57, Average incidence 40,407
model. The variables in monthly time step, which             persons/ yr, or 2,042.8 DALYs/yrs. Scenarios B2
included maximum temperature, minimum                        could have been avoided by A2 = 1,119.5 DALYs/yrs
temperature, precipitation, humidity, average wind           or 49.3 %.
speed.
                                                             Keyword: Malaria, nonlinear mixed regression,
        The results were found the best fitting model,       climate change projection data, DALYs
model 2, which adjusted R-Square = 0.818 and
RMSE = 763.27. The average disease incidence
in the year of 2003-2011 on B2 = 26,869 persons/yr,          บทคัดย่อ
baseline = 28,521 persons/yr, and A2 = 30,734                        การศึกษานีม้ วี ตั ถุประสงค์เพือ่ คาดการณ์ภาระโรค
persons/yr. These burdens converted to DALYs                 ทีส่ ามารถหลีกเลีย่ งได้ (Avoidable burden of diseases)
for international comparison which were, baseline            ของโรคมาลาเรีย ภายใต้สภาวะภูมิอากาศในอนาคต
= 1,391 DALYs/yr, A2 = 1,500 DALYs/yr, and                   โดยน�ำข้ อ มู ล ของสภาพภู มิ อ ากาศของประเทศไทย
*
 corresponding author
	E-mail : yut_emblaze@yahoo.com
	Phone : +668 3996 2558

                                                         1
Pinichka et al., 2013

พ.ศ.2534-2554 มาคาดการณ์ ภ ายใต้ ส ถานการณ์                                      worldwide today. Climate changes in our
การเปลี่ยนแปลงสภาพภูมิอากาศ (A2) และ (B2) ใน                                     region are important impact on human
ประเทศไทยของศูนย์เครือข่ายงานวิเคราะห์วิจัยและ
                                                                                 health (1). Especially, malaria, an infection
การฝึกอบรมการเปลี่ยนแปลงของโลก แห่งภูมิภาคเอเชีย
ตะวันออกเฉียงใต้ (SEA START RC)ได้ใช้การน�ำเข้า                                  disease that is sensitive to the climate. The
ข้อมูลสภาพภูมิอากาศของประเทศไทยในปี พ.ศ.2534-                                    infection diseases that are dependent on
2554 ของกรมอุ ตุ นิ ย มวิ ท ยาจ�ำนวน 5 ตั ว แปรได้ แ ก่                          several factors, but the factor of temperature
เดือน อุณหภูมิสูงสุด อุณหภูมิต�่ำสุด ค่าความชื้นสัมพันธ์                         and humidity are extremely important and
ความเร็วลมเฉลี่ย และ ปริมาณนํ้าฝน เพื่อสร้างแบบ                                  the climate can affect human behavior and
จ�ำลองถดถอยไม่เป็นเส้นตรงแบบผสมพบว่าแบบจ�ำลอง
                                                                                 social impact on the spread of infectious
ที่ให้ค่า ความแม่นย�ำสูงสุดคือแบบจ�ำลองที่ 2 โดยมีค่า
adjusted R-Square 0.818 ด้วยค่า RMSE 763.27                                      diseases as well, so a minimal climate
                                                                                 change impact on human tolerance levels
            การศึกษาในปี พ.ศ.2546-2554 พบว่าสถานการณ์
เปลี่ยนแปลงสภาพภูมิอากาศ B2 เป็นสถานการณ์ที่มี
                                                                                 can have a direct impact on human health
อุ บั ติ ก ารณ์ เ กิ ด โรคมาลาเรี ย น้ อ ยที่ สุ ด กล่ า วคื อ มี อุ บั ติ       immediately (2).
การณ์เกิดขึ้น 26,869 คนต่อปี หรือคิดเป็น 1,301 DALYS                                   Malaria is an extremely climate-
ต่อปี A2 = 30,734 คนต่อปี หรือคิดเป็น 1,500 DALYS
                                                                                 sensitive tropical disease, making the
ต่อปี เมื่อน�ำแบบจ�ำลองถดถอยไม่เป็นเส้นตรงแบบผสม
ไปท�ำนายอุบตั กิ ารณ์เกิดโรคทีจ่ ะเกิดขึน้ ในอนาคต ปี พ.ศ.                       assessment of the potential change in
2555-2563 พบว่าอุบัติการณ์มาลาเรียในแบบจ�ำลอง A2                                 malarial risk, caused by past or projected
มีแนวโน้มทีส่ งู ขึน้ ด้วยสมการแนวโน้มคือ Y = 312.55X +                          global warming, one of the most important
2480.1, R2 = 0.74 มีอุบัติการณ์เฉลี่ย 79,703 คนต่อปี                             topics in the field of climate change and
หรือคิดเป็น 4,042.9 DALYS ต่อปี ในขณะที่แบบจ�ำลอง                                health (3). The incidence of malaria varies
B2 ส่งผลให้อุบัติการณ์ของมาลาเรียมีแนวโน้มที่เพิ่มขึ้น
                                                                                 seasonally in highly endemic areas, and
จากนั้นจึงลดลงอย่างต่อเนื่อง ด้วยรูปแบบชองสมการ
ก�ำลังสามคือ Y = 20.223X3 – 363X2 + 1801.4 X                                     malaria transmission has been associated
–19.483, R2 = 0.57 โดยมีอุบัติการณ์ 40,407 คนต่อปี                               with temperature anomalies in some African
หรือคิดเป็น 2,042.8 DALYS ต่อปีซึ่งน้อยกว่า แบบ                                  highlands (4).
จ�ำลอง A2 อยู่ 1,119.5 DALYS ต่อปี หรือคิดเป็น 49.3%
                                                                                 	The WHO has estimated the global
ค�ำส�ำคัญ: มาลาเรีย, การถดถอยไม่เป็นเส้นตรง                                      burden of disease (GBD) that could be due
แบบผสม, ข้อมูลคาดการณ์การเปลี่ยนแปลง                                             to climate change in terms of disability
ภูมิอากาศ, DALYS                                                                 adjusted life years (DALYS). This measure
                                                                                 makes it possible to take into account
Introduction                                                                     impacts that do not necessarily lead to death
	Climate change is an emerging risk                                              but cause disability. Climate scenarios are
factor for human health. It is now clear                                         derived from the output of global climate
the global climate has been changed in                                           models that are, in turn, driven by scenarios

                                                                             2
J. Environ. Res. 35 (2): 1-11

of future greenhouse gas emissions and                     1.	Selecting the scenarios and time
epidemiological models. These scenarios              period
were used to estimate the degree to which                  2.	Climate change modeling
these climatic changes are likely to affect a              3.	Health impact model
limited series of health outcomes (malaria,                4.	Conversion to a single health
diarrheal disease, malnutrition, flood deaths,       measure DALY (Disability adjusted life year)
direct effects of heat and cold). These
                                                     	This research follows guidelines of the
measures of proportional change can be
                                                     WHO and set the study’s purpose to create
applied to projections of the burden of each
                                                     a Statistical Climate health model of Thailand
of these diseases in the future, to calculate
                                                     to predict and compare incidences under
the possible impacts of climate change on
                                                     climate scenarios projected with the actual
the overall disease burden (5).
                                                     incidence of the disease under real climate
	Prediction malaria incidence facilitates            conditions and improve the results by convert
early public health responses to minimize            to DALYs to enable international comparison
morbidity and mortality. Climate variables           possible.
such as temperature, precipitation, relative
humidity and wind (6) are potential predictors       Data Collection
of malaria incidence have been examined                    1.	Climate data during 1991-2011
in time series studies. In this study, we used       from the Department of Meteorology were
adapted nonlinear time series analysis (7) to        used including rainfall (Rainfall Intensity),
determine the association between climatic           average monthly temperature (Average
variability and the number of monthly                Ambient Temperature), average maximum
malaria outpatients over the past 20 years           temperature (Maximum Temperature), RH
and predicted the next 10 years burden in            (Relative Humidity), wind speed and time
Thailand.                                            (month).
Methodology                                                2.	Reports of malaria incidences in
	In this research, we used WHO                       Thailand during 1991-2011 were collected
Environmental Burden of Disease Series,              from the Bureau of Epidemiology.
climate change guidance, estimating                       3.	The predicted climate data used
attributable and avoidable burdens of                dataset from Southeast Asia START Regional
disease method (8, 9): The main step includes        Center (SEA START RC) projected. These
as following.                                        data are daily climate data (transform to

                                                 3
Pinichka et al., 2013

monthly data) under two different GHG                     mixed- regression technique from Zhou (6)
 emission scenarios; scenarios A2 (regionally             was used. This is due to the existence of
economic development) and scenarios                       classification on the function type such as,
B2 (local environmental sustainability).                  autocorrelation, climate variability function,
Our goal is to f ind the malaria burden                   and seasonal function (10).
difference between the environmental focus                	The number of malaria outpatients,
(B2) and the economic focus (A2) in the                   Nt, at a given time is likely to be affected by
heterogeneous world (regional development)(1).            the previous number of malaria outpatients
                                                          (autoregression), seasonality, and climate
Statistical association between climate                   variability. Thus, the dynamics of the number
variability and malaria incidence                         of monthly malaria outpatients (Nt) can be
	In this step, the adapted nonlinear                      modeled as in Equation (1).

Nt                 			                                                                                (1)

where

      f (Ni
J. Environ. Res. 35 (2): 1-11

	And the model evaluation method                   the death of the life lost prematurely.
used the Root Mean Square Error (RMSE)             The basic formula for YLL (without including
(also called the root mean square deviation,       other social preferences), is the following
RMSD) is a frequently used measure of the          for a given cause, age and sex:
difference between values predicted by a
model and the values actually observed                   YLL	         =	N x L
from the environment that is being modelled.
                                                   Where;
                                                   	N = number of deaths
                                                   	L = standard life expectancy at age of
       Where Xobs is observed values and           death in years
Xmodel is modelled values at time/place i.
                                                         YLD	         =	I x DW x L
Estimate burden of disease
                                                   Where;
       Disability-Adjusted Life Year (DALYs)       	I = number of incidence cases
are calculated as the sum of the years of          	DW = disability weight
life lost (YLL) due to premature mortality         	L = average duration of the case until
in the population and the years lost due to        remission or death (years)
disability (YLD) for incidences cases of the
health condition (11). Calculation is              Results and discussion
                                                   Correlation between variables with malaria
	DALY            =     YLL + YLD                   incidences
     The number of years lost due to                     The study showed that wind speed
premature (Year of Life Lost - YLL) or             has maximum lag period of 5 months with
premature death is a component of the              correlation of 0.282 while humidity and rainfall
disease burden and mortality indicators.           have maximum lag period of 0 month with
The measurement is based on the time of            correlations of 0.297 and 0.241 respectively.

                                               5
Pinichka et al., 2013

Table 1 Correlation between variables with malaria incidences
            Variable                 Lag period, τ (Months)         Correlation       Significance
  Case                                           1                    0.842            0.000 **
  Maximum temperatures                           0                    0.046            0.469
  Maximum temperatures                           1                    0.288            0.000**
  Maximum temperatures                           2                    0.427            0.000**
  Minimum temperatures                           0                    0.250            0.000**
  Minimum temperatures                           1                    0.297            0.000**
  Rainfall                                       0                    0.241            0.000**
  RH                                             0                    0.171            0.007**
  Wind speed                                     0                    0.073            0.245
  Wind speed                                     1                    0.061            0.337
  Wind speed                                     2                    0.161            0.011*
  Wind speed                                     3                    0.251            0.000**
  Wind speed                                     4                    0.258            0.000**
  Wind speed                                     5                    0.282            0.000**
*	Correlation is significant at the 0.05 level (2-tailed).
**	Correlation is significant at the 0.01 level (2-tailed).

	Although spatial incidences data                     method. The model was tested in three
in Thailand were not used, signif icant               assumptions as following.
relationship is found conforming to the results             - Model No EV assuming the
of Zhou (7), as well as some climate variables        environment factors having no affect to the
such as; RH and Rainfall are no lagged                number of patients; (g(x) = 0).
period (Table 1). However, these data are
surveillance and spatial analysis was not                    - Model 1 assuming the environmental
used.                                                 factors having an influence on the number
                                                      of patients given g (x) ≠ 0 and assuming
Nonlinear mixed regression analysis                   the interaction between all climate variables
     Variables were selected and tested               = 0 due to no interaction with the environment.
with time lag period climate variable                       - Model 2 assuming the environmental
associated with malaria incidence. The next           factors having an influence on the number
step is regression analysis by stepwise               of patients given g (x) ≠ 0 and assuming

                                                  6
J. Environ. Res. 35 (2): 1-11

the interaction between all climate variables         The results are shown in Tables 2-4 below.
≠ 0 due to environmental factors related.

Table 2 Nonlinear mixed regression analysis between time series data with malaria incidence
   Model        Method          R        R square Adjusted R Square               Significance
   No EV       Stepwise       0.842       0.710         0.708                       0.000**
     1         Stepwise       0.908       0.825         0.821                       0.000**
     2         Stepwise       0.907       0.823         0.818                       0.000**

Table 3 Model fitting results and effects of autocorrelation and seasonality (f (Ni < t,t))
  Model Type            α                d               β                b1               b2
    No EV               596.37           1              0.84               -                -
      1            - 25,790.64           1              0.90           2,218.16         1,158.79
      2            - 25,404.83           1              0.91           1,421.37         1,497.25

Table 4 Model fitting results and effect of climate variables (g(x))
              Parameter                  Model 1 Significance          Model 2       Significance
  Tmin (τ = 1)                           511.411         0.000**          -                -
  Tmax (τ = 2)                           201.81          0.004**          -                -
  RH (τ = 0)                             107.39          0.000**          -                -
  Wind speed (τ = 5)                         -           0.000**          -                -
  Rainfall (τ = 0)                           -              -             -                -
  SumTmax × RH                               -              -           3.331          0.000**
  SumTmin × Wind speed                       -              -          22.629          0.000**
  SumTmin × Wind speed × RH                  -              -          -0.263          0.000**
* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

                                                  7
Pinichka et al., 2013

	Table 4 shows the fitting results                Model 1. In fact, the regression model in
and effect on climate variables including         this study can represent and predict malaria
parameter and significant value of Model          burden with reasonable accuracy when
1 and Model 2. Significance on interaction        there is sufficient malaria epidemiological
effect between maximum or minimum                 data (non under reported province data)
monthly temperature, RH and wind speed            available for input to the model. In the
with the number of malaria incidences             prediction period, although there may be
are concluded.                                    some over estimated between the actual
	The results show that Model 2 has                incidences and predicted, The RMSE
the best accuracy, therefore the prediction       (Table 5) is relatively small when compared
process model 2 is used. Both models are          with overall malaria burden (Figure 1).
adapted by non linear mixed-regression
technique; Model 2 used interaction of            Table 5 Residual analysis
climate variables, Model 1 only use                    Model Type               RMSE
climate variables at max lag period (τmax).              No EV                 1,258.14
As a result, Model 2 which combined the                    1                    767.24
interaction between climate variables
                                                           2                    763.27
shows potential better prediction than

                  Figure 1 Comparison models 1, 2 with actual incidence

                                              8
J. Environ. Res. 35 (2): 1-11

     Figure 2 Results estimate of malaria incidences under climate scenarios (monthly)

                    Figure 3 DALYs of Malaria in Thailand (2) 2012-2020

	The compared models with actual                 or 4,042.9 DALYs/ yr. The scenario B2
climate data to predict the incidence of         predicted would decrease incidence of
malaria in 2012-2020 found malaria               malaria with trend line, Equation Y = 20.223X3
incidences would increase with trend line,       – 363X2 + 1801.4 X – 19.483 R2 = 0.57,
Equation Y = 312.55X + 2480.1 R2 = 0.74,         average incidence 40,407 persons/ yr, or
average incidences 79,703 persons/ yr            2,042.8 DALYs/ yr.

                                             9
Pinichka et al., 2013

Conclusions                                            fever diseases and other climate-health
	Climatic factor and seasonal pattern                  impact (3) would be reduced as well.
are the most direct affect on malaria                  Acknowledgements
transmission in Thailand. However, other
factors are also influencing malaria                   	I wish to express my sincere thanks
epidemiology. For example, socioeconomic               to Miss. Sineenat Thaiboonrod (Manchester
condition, public health service, military             University), Miss. Pensiri Duangpoonmat
conflict, migration and water resources                (Faculty of Medicine, Siriraj Hospital), the
management may all modulate the suitability            officers of BOD Thailand (http://www.thaibod.
for malaria transmission. The changes in               net/contact.html.), Mr. Watcharapong
extreme climate such as extreme rainfall, an           Noimunwai, and the officers of SEA START
average temperature increase of result in              RC (www.start.or.th).
a greater incidence of malaria. Each factor            References
could vary with lagged period while rainfall
                                                       (1) 	Intergovernmental Panel on Climate Change
causing a direct effect on the incidence                    (IPCC). 2001. Climate Change 2001: The
of malaria has lagged period = 0 month.                	Scientific Basis: Contribution of Working
Therefore, quoted in the research(2) “a minimal        	Group I to the Third Assessment Report.
climate change impact on human tolerance               	Cambridge University Press, Cambridge.
levels can have a direct impact on human               (2) McMichael, A., Woodruff, R., Whetton, P.,
health immediately” is reliable.                       	Hennessy, K., Nicholls, N., Hales, S., Woodward,
                                                       	A. and Kjellstrom, T. 2003. Human Health and
	In fact, the national monthly malaria                 	Climate Change in Oceania: A Risk Assessment
cases can be modelled and predicted                         2002. Commonwealth of Australia.
using nonlinear mixed regression. Our                  (3) McMichael, A.J., Githeko, A., Akhtar, R.,
                                                       	Carcavallo, R., Gubler,D., Haines, A., Kovats,
results showed the global climate change
                                                       	R.S., Martens, P., Patz, J. and Sasaki, A. 2001.
B2, The local environmental sustainability             	Human health. In: McCarthy, J.J., et al., (Eds.),
scenarios can prevent disease burden                   	Climate Change 2001: Impacts, Adaptation,
around 49.3% from global climate change                     and Vulnerability. Press Syndicate of the
as Model A2 in 2012-2020. However,                     	University of Cambridge, Cambridge, UK, pp.
reducing greenhouse gases emission by                       451– 485.
                                                       (4)	Patz, J.A., Hulme, M., Rosenzweig, C., Mitchell,
international agreement or national policy
                                                       	T.D., Goldberg, R.A., Githeko, A.K., Lele, S.,
can reduce or minimize amount of diseases.                  McMichael, A.J. and Le Sueur, D. 2002.
There are the possibilities that those others          	Regional warming and malaria resurgence.
mosquito-borne diseases such as dengue                       Nature. 420: 627-628.

                                                  10
J. Environ. Res. 35 (2): 1-11

(5)	Haines, A., Kovats, R.S., Campbell-Lendrum,            	Environmental Burden of Disease Series No.14.
	D. and Corvalan, C. 2006. Climate change                       World Health Organization.
    and human health: impacts, vulnerability and           (9)	Campbell-Lendrum, C. and Woodruff, R.
    public health. Public Health. 120:585–596.                  2006. Comparative Risk Assessment of the
(6)	Service, M.W. 1978. The effect of weather on                Burden of Disease from Climate Change,
    mosquito activity. In: Weather and Parasitic           	Environ. Health Perspect. 114: 1935-1941.
	Animal Disease. T. E. Gibson (Ed.) Tech. World            (10)	Stolwijk, A.M. 1999. Studying seasonality by
    Meteor. Org. 159: 151-166.                                  using sine and cosine functions in regression
(7) Zhou, G., Minakawa, N., Githeko, A. K. and Yan,             analysis. J Epidemiol Community Health.
	G. 2005. Climate variability and malaria                       53(4): 235-8.
    epidemics in the highlands of East Africa.             (11) Murray, C.J.L. and Lopez, A.D. 1996. The
	Trends in Parasitology, 21: 54-56.                        	Global Burden of Disease. Geneva, World
(8)	Campbell-Lendrum, C. and Woodruff, R. 2007.            	Health Organization, Harvard School of Public
	Climate change: quantifying the health                    	Health, World Bank.
    impacts at national and local levels.

                                                      11
You can also read