Lecture Notes in Artificial Intelligence

Page created by Evelyn Hall
 
CONTINUE READING
Lecture Notes in Artificial Intelligence                 12798

Subseries of Lecture Notes in Computer Science

Series Editors
Randy Goebel
  University of Alberta, Edmonton, Canada
Yuzuru Tanaka
  Hokkaido University, Sapporo, Japan
Wolfgang Wahlster
  DFKI and Saarland University, Saarbrücken, Germany

Founding Editor
Jörg Siekmann
   DFKI and Saarland University, Saarbrücken, Germany
More information about this subseries at http://www.springer.com/series/1244
Hamido Fujita Ali Selamat
              •           •

Jerry Chun-Wei Lin Moonis Ali (Eds.)
                   •

Advances and Trends
in Artificial Intelligence
Artificial Intelligence Practices
34th International Conference
on Industrial, Engineering and Other Applications
of Applied Intelligent Systems, IEA/AIE 2021
Kuala Lumpur, Malaysia, July 26–29, 2021
Proceedings, Part I

123
Editors
Hamido Fujita                                           Ali Selamat
i-SOMET Incorporate Association                         Universiti Teknologi Malaysia
Morioka, Japan                                          Kuala Lumpur, Malaysia
Jerry Chun-Wei Lin                                      Moonis Ali
Western Norway University                               Texas State University San Marcos
of Applied Sciences                                     San Marcos, TX, USA
Bergen, Norway

ISSN 0302-9743                       ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-79456-9               ISBN 978-3-030-79457-6 (eBook)
https://doi.org/10.1007/978-3-030-79457-6
LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
Preface

Artificial Intelligence innovations in recent decades have entered a sophisticated stage
in providing intelligent interaction between humans and machines, solving problems,
and providing advice in many different infrastructures. Machines in different disciplines
have become ubiquitous in all aspects of life, including education, governance, science,
healthcare, warfare, and industry. Computing machinery has become smaller and faster,
and the costs of data storage and communication have greatly decreased. Consequently,
big data of vast dimensionality is being intelligently collected and stored in smart
databases for use in decision making and prediction for applications such as security
and health care, amongst others. Moreover, novel and improved computing architec-
tures have been designed for efficient large-scale data processing, such as big data
frameworks, FPGAs and GPUs. Thanks to these advancements and recent break-
throughs in artificial intelligence, researchers and practitioners have developed more
complex and effective artificial intelligence-based systems. This has led to a greater
interest in artificial intelligence to solve complex real-world problems, and the proposal
of many innovative applications.
    This volume contains the proceedings of the 34th International Conference on
Industrial, Engineering and other Applications of Applied Intelligent Systems
(IEA/AIE 2021), which was held online during July 26–29, 2021, in Kuala Lumpur,
Malaysia. The IEA/AIE conference is an annual event that emphasizes applications of
applied intelligent systems to solve real-life problems in all areas including engineer-
ing, science, industry, automation and robotics, business and finance, medicine and
biomedicine, bioinformatics, cyberspace, and human-machine interactions. This year,
145 submissions were received. Each paper was evaluated by three to four reviewers
from an International Program Committee consisting of 196 members from 37 coun-
tries. Based on the evaluation, 87 papers were selected as full papers and 19 as short
papers, which are presented in two volumes. We are grateful to all the reviewers for the
time spent writing detailed and constructive comments for the authors, and also the
authors for the proposal of so many high-quality papers.
    The program of IEA/AIE 2021 included eight special sessions:
• Special Session on Data Stream Mining: Algorithms and Applications
  (DSMAA2021)
• Special Session on Intelligent Knowledge Engineering in Decision Making Systems
  (IKEDS2021)
• Special Session on Knowledge Graphs in Digitalization Era (KGDE2021)
• Special Session on Spatiotemporal Big Data Analytics (SBDA2021)
• Special Session on Big Data and Intelligence Fusion Analytics (BDIFA2021)
• Special Session on AI in Healthcare (AIH2021)
• Special Session on Intelligent Systems and e-Applications (iSeA2021)
• Special Session on Collective Intelligence in Social Media (CISM2021).
vi      Preface

   Moreover, two keynote talks were given by Professor Francisco Herrera, from the
University of Granada, Spain, and Director of the Andalusian Research Institute “Data
Science and Computational Intelligence”, and Professor Vincent S. Tseng from the
Department of Computer Science, National Yang Ming Chiao Tung University,
Taiwan.
   We would like to thank everyone who has contributed to the success of this year’s
edition of IEA/AIE, that is the authors, Program Committee members, reviewers,
keynote speakers, organizers and participants.

May 2021                                                               Hamido Fujita
                                                                         Ali Selamat
                                                                 Jerry Chun-Wei Lin
                                                                         Moonis Ali
Organization

General Chairs

Hamido Fujita, Japan
Moonis Ali, USA

Organizing Chairs

Ali Selamat, Malaysia
Jun Sasaki, Japan

Program Chairs

Ali Selamat, Malaysia
Jerry Chun-Wei Lin, Norway

Special Session Chairs

Philippe Fournier-Viger, China
Nor Azura Mohd Ghani, Malaysia

Publicity Chairs

Mohd Hazli Mohamed Zabil, Malaysia
Lim Kok Cheng, Malaysia

Program Committee

Abidalrahman Moh’D, USA
Adel Bouhoula, Tunisia
Adrianna Kozierkiewicz, Poland
Ahmed Tawfik, Egypt
Alban Grastien, Australia
Alexander Ferrein, Germany
Artur Andrzejak, Germany
Ayahiko Niimi, Japan
Barbara Pes, Italy
Bay Vo, Vietnam
Dariusz Krol, Poland
Dinh Tuyen Hoang, Korea
Du Nguyen
viii     Organization

Engelbert Mephu Nguifo, France
Eugene Santos Jr., USA
Farid Nouioua, France
Farshad Badie, Denmark
Fevzi Belli, Germany
Flavio Soares Correa da Silva, Brazil
Franz Wotawa, Austria
Giorgos Dounias, Greece
Hadjali Allel, France
Hamido Fujita, Japan
He Jiang, China
Ingo Pill, Austria
Jerry Chun-Wei Lin, Norway
Joao Mendes-Moreira, Portugal
João Paulo Carvalho, Portugal
Jose Maria-Luna, Spain
Krishna Reddy P., India
Ladjel Bellatreche, France
Leszek Borzemski, Poland
Maciej Grzenda, Poland
Mark Levin, USA
Mercedes Merayo, Spain
Nazha Selmaoui-Folcher, Germany
Ngoc-Thanh Nguyen, Poland
Philippe Fournier-Viger, China
Philippe Leray, France
Rui Abreu, Portugal
Sabrina Senatore, Italy
Said Jabbour, France
Shyi-Ming Chen, Taiwan
Sonali Agarwal, India
Takayuki Ito, Japan
Tim Hendtlass, Australia
Trong Hieu Tran, Vietnam
Tzung-Pei Hong, Taiwan
Uday Rage, Japan
Unil Yun, Korea
Van Cuong Tran, Vietnam
Wen-Juan Hou, Taiwan
Wolfgang Mayer, Australia
Xiangdong An, USA
Xinzheng Niu, China
Yun Sing Koh, Australia
Yutaka Watanobe, Japan
Contents – Part I

Knowledge Discovery and Pattern Mining

Fast Mining of Top-k Frequent Balanced Association Rules . . . . . . . . . . . . .                        3
  Xiangyu Liu, Xinzheng Niu, Jieliang Kuang, Shenghan Yang,
  and Pengpeng Liu

Towards Increasing Open Data Adoption Through Stream Data Integration
and Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   15
  Robert Kunicki and Maciej Grzenda

Towards Efficient Discovery of Periodic-Frequent Patterns in Columnar
Temporal Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       28
  Ravikumar Penugonda, Likhitha Palla, Uday Kiran Rage,
  Yutaka Watanobe, and Koji Zettsu

Data-Driven Simulation of Ride-Hailing Services Using Imitation
and Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         41
  Haritha Jayasinghe, Tarindu Jayatilaka, Ravin Gunawardena,
  and Uthayasanker Thayasivam

Discovering Spatial High Utility Itemsets in High-Dimensional
Spatiotemporal Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       53
  Sai Chithra Bommisetty, Ravikumar Penugonda, Uday Kiran Rage,
  Minh Son Dao, and Koji Zettsu

A Single-Stage Tree-Structure-Based Approach to Determine Fuzzy
Average-Utility Itemsets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      66
  Tzung-Pei Hong, Meng-Ping Ku, Hsiu-Wei Chiu, Wei-Ming Huang,
  Shu-Min Li, and Jerry Chun-Wei Lin

Mining Episode Rules from Event Sequences Under
Non-overlapping Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          73
  Oualid Ouarem, Farid Nouioua, and Philippe Fournier-Viger

Distributed Mining of High Utility Time Interval Sequential Patterns with
Multiple Minimum Utility Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . .              86
  Sumalatha Saleti, Jaya Lakshmi Tangirala,
  and Ragunathan Thirumalaisamy
x         Contents – Part I

Artificial Intelligence and Machine Learning

Emergency Analysis: Multitask Learning with Deep Convolutional Neural
Networks for Fire Emergency Scene Parsing . . . . . . . . . . . . . . . . . . . . . . .                  101
  Jivitesh Sharma, Ole-Christoffer Granmo, and Morten Goodwin

Comparison of Consolidation Methods for Predictive Learning
of Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   113
   Ryoichi Nakajo and Tetsuya Ogata

Evolutionary Optimization of Convolutional Neural Network Architecture
Design for Thoracic X-Ray Image Classification . . . . . . . . . . . . . . . . . . . . .                 121
  Hassen Louati, Slim Bechikh, Ali Louati, Abdulaziz Aldaej,
  and Lamjed Ben Said

Understanding the Effects of Mitigation on De-identified Data . . . . . . . . . . .                      133
  Andrew Chester, Yun Sing Koh, and Junjae Lee

Combining Siamese Network and Correlation Filter for Complementary
Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    145
  Kosuke Honda and Hamido Fujita

Closed-Form Expressions for Global and Local Interpretation
of Tsetlin Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     158
   Christian D. Blakely and Ole-Christoffer Granmo

Explainable Reinforcement Learning with the Tsetlin Machine . . . . . . . . . . .                        173
  Saeed Rahimi Gorji, Ole-Christoffer Granmo, and Marco Wiering

Sematic, Topology, and Ontology Models

Semantic Technologies Towards Missing Values Imputation. . . . . . . . . . . . .                         191
  Iker Esnaola-Gonzalez, Unai Garciarena, and Jesús Bermúdez

An Improved Integer Programming Formulation for Inferring Chemical
Compounds with Prescribed Topological Structures . . . . . . . . . . . . . . . . . . .                   197
  Jianshen Zhu, Naveed Ahmed Azam, Kazuya Haraguchi, Liang Zhao,
  Hiroshi Nagamochi, and Tatsuya Akutsu

Automatic Classification for Ontology Generation by Pretrained
Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     210
  Atsushi Oba, Incheon Paik, and Ayato Kuwana

Deep Learning Architecture for Topological Optimized Mechanical Design
Generation with Complex Shape Criterion . . . . . . . . . . . . . . . . . . . . . . . . .                222
  Waad Almasri, Dimitri Bettebghor, Fakhreddine Ababsa,
  Florence Danglade, and Faouzi Adjed
Contents – Part I          xi

Computational Ontology and BIM Technology in Data-Driven Indoor
Route Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   235
  Barbara Strug and Grażyna Ślusarczyk

Collaborative Maintenance of EDOAL Alignments in VocBench . . . . . . . . .                              243
  Armando Stellato, Manuel Fiorelli, Tiziano Lorenzetti,
  and Andrea Turbati

DIKG2: A Semantic Data Integration Approach for Knowledge Graphs
Generation from Web Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            255
  Rahma Dandan and Sylvie Despres

Ontology-Based Resume Searching System for Job Applicants
in Information Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        261
   Tung T. Phan, Vinh Q. Pham, Hien D. Nguyen, Anh T. Huynh,
   Dung A. Tran, and Vuong T. Pham

An Approach to Expressing Metamodels’ Semantics in a Concept System . . .                                274
  Marcin Jodłowiec and Marek Krótkiewicz

Medical and Health-Related Applications

Birth-Death MCMC Approach for Multivariate Beta Mixture Models
in Medical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      285
   Mahsa Amirkhani, Narges Manouchehri, and Nizar Bouguila

Intelligent Asthma Self-management System for Personalised
Weather-Based Healthcare Using Machine Learning . . . . . . . . . . . . . . . . . .                      297
   Radiah Haque, Sin-Ban Ho, Ian Chai, Chin-Wei Teoh, Adina Abdullah,
   Chuie-Hong Tan, and Khairi Shazwan Dollmat

Deep Forecasting of COVID-19: Canadian Case Study . . . . . . . . . . . . . . . .                        309
  Fadoua Khennou and Moulay A. Akhloufi

COVID-19 Genome Analysis Using Alignment-Free Methods . . . . . . . . . . .                              316
  M. Saqib Nawaz, Philippe Fournier-Viger, Xinzheng Niu, Youxi Wu,
  and Jerry Chun-Wei Lin

Deep Efficient Neural Networks for Explainable COVID-19 Detection
on CXR Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      329
  Mohamed Chetoui and Moulay A. Akhloufi

Predicting Psychological Distress from Ecological Factors: A Machine
Learning Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      341
   Ben Sutter, Raymond Chiong, Gregorius Satia Budhi,
   and Sandeep Dhakal
xii         Contents – Part I

Graphic and Social Network Analysis

Configuration Model of Employee Competences in a Social Media Team . . .                                  355
  Jarosław Wikarek and Paweł Sitek

The Extended Graph Generalization as a Representation of the
Metamodels’ Extensional Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .             369
  Marcin Jodłowiec, Marek Krótkiewicz, and Piotr Zabawa

WawPart: Workload-Aware Partitioning of Knowledge Graphs . . . . . . . . . . .                            383
 Amitabh Priyadarshi and Krzysztof J. Kochut

Analysis of Sentimental Behaviour over Social Data Using Machine
Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       396
  Abdul Razaque, Fathi Amsaad, Dipal Halder, Mohamed Baza,
  Abobakr Aboshgifa, and Sajal Bhatia

Signal and Bioinformatic Processing

A Large-Scale Dataset for Hate Speech Detection on Vietnamese Social
Media Texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   415
  Son T. Luu, Kiet Van Nguyen, and Ngan Luu-Thuy Nguyen

Determining 2-Optimality Consensus for DNA Structure . . . . . . . . . . . . . . .                        427
  Dai Tho Dang, Huyen Trang Phan, Ngoc Thanh Nguyen,
  and Dosam Hwang

Evolutionary Computation

Utilizing Center-Based Sampling Theory to Enhance Particle Swarm
Classification of Textual Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        441
   Anwar Ali Yahya, Yousef Asiri, and Ahmed Abdu Alattab

Conditional Preference Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .             447
  Nahla Ben Amor, Didier Dubois, Henri Prade, and Syrine Saidi

Enhancing Multi-objective Evolutionary Neural Architecture Search
with Surrogate Models and Potential Point-Guided Local Searches . . . . . . . .                           460
   Quan Minh Phan and Ngoc Hoang Luong

Insightful and Practical Multi-objective Convolutional Neural Network
Architecture Search with Evolutionary Algorithms. . . . . . . . . . . . . . . . . . . .                   473
   Tu Do and Ngoc Hoang Luong

Method for Automatic Furniture Placement Based on Simulated Annealing
and Genetic Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        480
  Eliška Svobodová and Ladislava Smítková Janků
Contents – Part I          xiii

Attack and Security

Recent Research on Phishing Detection Through Machine
Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      495
  Do Nguyet Quang, Ali Selamat, and Ondrej Krejcar

A Transaction Classification Model of Federated Learning . . . . . . . . . . . . . .                      509
  Usman Ahmed, Jerry Chun-Wei Lin, Gautam Srivastava,
  and Philippe Fournier-Viger

On the Assessment of Robustness of Telemedicine Applications Against
Adversarial Machine Learning Attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . .               519
  Ibrahim Yilmaz, Mohamed Baza, Ramy Amer, Amar Rasheed,
  Fathi Amsaad, and Rasha Morsi

A 1D-CNN Based Deep Learning for Detecting VSI-DDoS Attacks
in IoT Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     530
   Enkhtur Tsogbaatar, Monowar H. Bhuyan, Doudou Fall, Yuzo Taenaka,
   Khishigjargal Gonchigsumlaa, Erik Elmroth, and Youki Kadobayashi

Natural Language and Text Processing

Hierarchical Transformer Encoders for Vietnamese Spelling Correction . . . . .                            547
  Hieu Tran, Cuong V. Dinh, Long Phan, and Son T. Nguyen

Fast and Memory-Efficient TFIDF Calculation for Text Analysis
of Large Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     557
   Samah Senbel

Collapsed Gibbs Sampling of Beta-Liouville Multinomial for Short
Text Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   564
  Samar Hannachi, Fatma Najar, Koffi Eddy Ihou, and Nizar Bouguila

Constructive and Toxic Speech Detection for Open-Domain Social Media
Comments in Vietnamese. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           572
  Luan Thanh Nguyen, Kiet Van Nguyen, and Ngan Luu-Thuy Nguyen

Fuzzy Inference and Theory

The Behaviour of the Product T-Norm in Combination with Several
Implications in Fuzzy PID Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . .             587
  Nourelhouda Zerarka, Saoussen Bel Hadj Kacem, and Moncef Tagina

Hub and Spoke Logistics Network Design for Urban Region
with Clustering-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            598
   Quan Duong, Dang Nguyen, and Quoc Nguyen
xiv         Contents – Part I

Sensor and Communication Networks

Smartphone Sensor-Based Fall Detection Using Machine
Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    609
  Mariam Dedabrishvili, Besik Dundua, and Natia Mamaiashvili

IPR-SN: Intelligent Packet Routing in Satellite Networks Based
on Distributed Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . .               621
  Tao Huang, Lixiang Liu, and Shuaijun Liu

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   633
Contents – Part II

Prediction and Recommendation

F2DeepRS: A Deep Recommendation Framework Applied
to ICRC Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       3
   Yongquan Xie, Finn Tseng, Kristinsson Johannes, Shiqi Qiu,
   and Yi Lu Murphey

A Novel Rule-Based Online Judge Recommender System to Promote
Computer Programming Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .               15
  Md. Mostafizer Rahman, Yutaka Watanobe, Uday Kiran Rage,
  and Keita Nakamura

Using Machine Learning to Predict Salaries of Major League
Baseball Players . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   28
  Cheng-Yu Lee, Ping-Yu Hsu, Ming-Shien Cheng, Jun-Der Leu,
  Ni Xu, and Bo-Lun Kan

Efficient Prediction of Discharge and Water Levels Using Ensemble
Learning and Singular-Spectrum Analysis-Based Denoising . . . . . . . . . . . . .                        34
   Anh Duy Nguyen, Viet Hung Vu, Minh Hieu Nguyen, Duc Viet Hoang,
   Thanh Hung Nguyen, Kien Nguyen, and Phi Le Nguyen

An Efficient Transformer-Based Model for Vietnamese
Punctuation Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     47
  Hieu Tran, Cuong V. Dinh, Quang Pham, and Binh T. Nguyen

Study of Hybridized Support Vector Regression Based Flood Susceptibility
Mapping for Bangladesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         59
   Zakaria Shams Siam, Rubyat Tasnuva Hasan, Soumik Sarker Anik,
   Fahima Noor, Mohammed Sarfaraz Gani Adnan,
   and Rashedur M. Rahman

A Fusion Approach for Paper Submission Recommendation System . . . . . . .                               72
  Son T. Huynh, Nhi Dang, Phong T. Huynh, Dac H. Nguyen,
  and Binh T. Nguyen

One-Class Classification Approach Using Feature-Slide Prediction Subtask
for Feature Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   84
   Toshitaka Hayashi and Hamido Fujita
xvi         Contents – Part II

Data Management, Clustering and Classification

A Novel Approach for Enhancing Vietnamese Sentiment Classification . . . . .                           99
  Cuong V. Nguyen, Khiem H. Le, and Binh T. Nguyen

Consistency Assessment of Datasets in the Context of a Problem Domain . . .                           112
  Bogumila Hnatkowska, Zbigniew Huzar, and Lech Tuzinkiewicz

Effects of Performance Clustering in User Modelling for Learning Style
Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      126
   Chin-Wei Teoh, Sin-Ban Ho, Khairi Shazwan Dollmat, Ian Chai,
   Wan-Noorshahida Mohd-Isa, Chuie-Hong Tan, Sek-Kit Teh,
   and Manzoor Shahida Raihan

A Novel Perspective of Text Classification by Prolog-Based
Deductive Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   138
  Kiet Van Nguyen, Tin Van Huynh, and Anh Gia-Tuan Nguyen

Improving Human Emotion Recognition from Emotive Videos Using
Geometric Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         149
  Nusrat J. Shoumy, Li-Minn Ang, D. M. Motiur Rahaman, Tanveer Zia,
  Kah Phooi Seng, and Sabira Khatun

Applying Method of Automatic Classification Tools to Make Effective
Organizing of Photos Taken in Childcare Facilities . . . . . . . . . . . . . . . . . . .              162
  Takaaki Yamaga, Takayuki Inoue, Hiroki Uemura, Wakaho Otoyama,
  and Jun Sasaki

Land Use/Land Cover Change Analysis Due to Tourism in the Chittagong
Hill Tracts of Bangladesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    173
   Fayezah Anjum, Hasan Mohiuddin Zilany, Syed Shahir Ahmed Rakin,
   Md. Abdul Hoque, Aina-Nin Ania, Md. Asadut Zaman,
   Jebun Nahar Moni, and Rashedur M. Rahman

Robotics

Estimation Method for Operational Environment Complexity
by a Robotic Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   187
   Denis A. Beloglazov, Maria A. Vasileva, Victor V. Soloviev,
   Vladimir A. Pereverzev, and Viacheslav H. Pshihopov

A Cloud-Based Robot Framework for Indoor Object Identification Using
Unsupervised Segmentation Technique and Convolution Neural
Network (CNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   199
  Raihan Kabir, Yutaka Watanobe, and Md. Rashedul Islam
Contents – Part II           xvii

Knowledge Based and Decision Support Systems

The Concept of Information Graphs as a Tool to Identify Vulnerabilities
in the Information Map of an Organisation. . . . . . . . . . . . . . . . . . . . . . . . .              215
   Zygmunt Mazur and Janusz Pec

A Learning-Automata Based Solution for Non-equal Partitioning: Partitions
with Common GCD Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           227
   Rebekka Olsson Omslandseter, Lei Jiao, and B. John Oommen

Building a Knowledge Graph with Inference for a Production Machine
Using the Web of Things Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            240
  Sascha Meckler, Harald Steinmüller, and Andreas Harth

Open-World Knowledge Graph Completion Benchmarks
for Knowledge Discovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        252
   Felix Hamann, Adrian Ulges, Dirk Krechel, and Ralph Bergmann

A Case-Based Reasoning Approach for a Decision Support System
in Manufacturing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   265
   Sascha Lang, Valentin Plenk, and Ute Schmid

Online Automatic Assessment System for Program Code: Architecture
and Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   272
  Yutaka Watanobe, Md. Mostafizer Rahman, Uday Kiran Rage,
  and Ravikumar Penugonda

A Multi-criteria Group Decision Making Procedure Based
on a Multi-granular Linguistic Approach for Changeable Scenarios . . . . . . . .                        284
  José Ramón Trillo, Enrique Herrera-Viedma,
  Francisco Javier Cabrerizo, and Juan Antonio Morente-Molinera

Multimedia Applications

Edge Based Method for Kidney Segmentation in MRI Scans . . . . . . . . . . . .                          299
  Ala’a R. Al-Shamasneh, Hamid A. Jalab, and Hend Alkahtani

Using the HAAR Wavelet Transform and K-nearest Neighbour Algorithm
to Improve ECG Detection and Classification of Arrhythmia . . . . . . . . . . . .                       310
   A. M. Khairuddin and K. N. F. Ku Azir

Query by Humming for Song Identification Using Voice Isolation . . . . . . . .                          323
  Edwin Alfaro-Paredes, Leonardo Alfaro-Carrasco, and Willy Ugarte

IMAGE-2-AQI: Aware of the Surrounding Air Qualification
by a Few Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     335
  Minh-Son Dao, Koji Zettsu, and Uday Kiran Rage
xviii         Contents – Part II

Advances in Sports Video Summarization – A Review Based
on Cricket Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    347
  Vani Vasudevan and Mohan Sellappa Gounder

Augmented Audio Data in Improving Speech Emotion
Classification Tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    360
  Nusrat J. Shoumy, Li-Minn Ang, D. M. Motiur Rahaman, Tanveer Zia,
  Kah Phooi Seng, and Sabira Khatun

Innovative Applications of Intelligent Systems

Intelligent System of Mooring Planning, Based on Deep Q-Learning . . . . . . .                           369
   B. V. Gurenko and M. A. Vasileva

Experimental Study on Predictive Modeling in the Gamification
Marketing Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      379
  Zhou-Yi Lim, Lee-Yeng Ong, and Meng-Chew Leow

Pivot Point Based Intelligent System to Associate Creative
Textual Artefacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   391
   Hrishikesh Kulkarni and Bradly Alicea

Mood Support: A Personalized Intelligent Support Assignment System
Using an Agent-Based Dynamic Configuration Model . . . . . . . . . . . . . . . . .                       399
  Azizi Ab Aziz, Roqia Rateb, and Arya Muhammad Bimo

Continuous Build Outcome Prediction: A Small-N Experiment in Settings
of a Real Software Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       412
   Marcin Kawalerowicz and Lech Madeyski

Jaskier: A Supporting Software Tool for Continuous Build Outcome
Prediction Practice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   426
   Marcin Kawalerowicz and Lech Madeyski

CPS and Industrial Applications

Automated Diagnosis of Cyber-Physical Systems . . . . . . . . . . . . . . . . . . . .                    441
  Franz Wotawa, Oliver Tazl, and David Kaufmann

Quick Start and Adaptive New Server Monitor . . . . . . . . . . . . . . . . . . . . . .                  453
  Wei Zhang

Map-Matching Based on HMM for Urban Traffic . . . . . . . . . . . . . . . . . . . .                      462
  Dongzi Chen, Xinzheng Niu, Philippe Fournier-Viger, Wenxin Wu,
  and Bing Wang
Contents – Part II          xix

The Choice of AI Matters: Alternative Machine Learning Approaches
for CPS Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     474
   Uraz Odyurt, Dolly Sapra, and Andy D. Pimentel

On-demand Knowledge Graphs for Standards-Based Power Grid
Data Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   485
  Vijay S. Kumar, Sharad Dixit, Kareem S. Aggour,
  Jenny Weisenberg Williams, and Paul Cuddihy

Defect, Anomaly and Intrusion Detection

Intrusion Detection Algorithm Based on SDA-ELM . . . . . . . . . . . . . . . . . .                      495
   Xiaotao Wei, Shuyu Ren, Yinglong Li, Xi-Xi Wang, and Mengxia Jin

Explaining Defect Detection with Saliency Maps . . . . . . . . . . . . . . . . . . . .                  506
  Joe Lorentz, Thomas Hartmann, Assaad Moawad, Francois Fouquet,
  and Djamila Aouada

d-BTAI: The Dynamic-Binary Tree Based Anomaly Identification
Algorithm for Industrial Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         519
  Jyotirmoy Sarkar, Santonu Sarkar, Snehanshu Saha, and Swagatam Das

Identifying Anomaly Work in Intralogistics Using BLE and LPWA . . . . . . .                             533
   Masahiro Yamaguchi, Noriko Yuasa, Yuki Yoshimura,
   and Takanobu Otsuka

Financial and Supply Chain Applications

Impact Analysis of Proactive and Reactive Inventory Disruption
Management on Supply Chain Performance . . . . . . . . . . . . . . . . . . . . . . . .                  543
  Maroua Kessentini and Narjes Bellamine Ben Saoud

A ML-Based Stock Trading Model for Profit Predication . . . . . . . . . . . . . . .                     554
  Jimmy Ming-Tai Wu, Lingyun Sun, Gautam Srivastava,
  and Jerry Chun-Wei Lin

Machine Learning-Based Empirical Investigation for Credit Scoring
in Vietnam’s Banking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      564
   Khanh Quoc Tran, Binh Van Duong, Linh Quang Tran,
   An Le-Hoai Tran, An Trong Nguyen, and Kiet Van Nguyen

Bayesian Networks

Unsupervised Co-training of Bayesian Networks for Condition Prediction . . .                            577
  Mathilde Monvoisin, Philippe Leray, and Mathieu Ritou
xx          Contents – Part II

BigData and Time Series Processing

Implementation of Neural Network Regression Model for Faster Redshift
Analysis on Cloud-Based Spark Platform . . . . . . . . . . . . . . . . . . . . . . . . . .              591
  Snigdha Sen, Snehanshu Saha, Pavan Chakraborty,
  and Krishna Pratap Singh

Target Class Supervised Sample Length and Training Sample Reduction
of Univariate Time Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      603
   Sanjay Kumar Sonbhadra, Sonali Agarwal, and P. Nagabhushan

Information Retrieval and Relation Extraction

Improving Relation Extraction via Joint Coding Using BiLSTM
and DCNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   617
  Kaixu Wang, Qianqian Ren, Li Hui, Hui Xu, Shiyang Li, and Peng Xu

A Possible Worlds Interpretation of Many-Sorted Theory for IR . . . . . . . . . .                       629
  Mohammed Sadou, Yassine Djouadi, and Allel Hadj-Ali

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    637
You can also read