HST HIGH-PRECISION PROPER MOTIONS OF GLOBULAR CLUSTERS ANDREA BELLINI - COLLABORATORS: JAY ANDERSON (STSCI), ROELAND VAN DER MAREL (STSCI), LAURA ...

Page created by Elmer Frazier
 
CONTINUE READING
HST HIGH-PRECISION PROPER MOTIONS OF GLOBULAR CLUSTERS ANDREA BELLINI - COLLABORATORS: JAY ANDERSON (STSCI), ROELAND VAN DER MAREL (STSCI), LAURA ...
HST high-precision proper motions of globular clusters

                                         Andrea Bellini

Collaborators: Jay Anderson (STScI), Roeland van der Marel (STScI),
Laura Watkins (STScI)
HST high-precision proper motions of globular clusters
• Part I!
  (intro)!           Part I: Why we need high-precision HST PMs
!                        •   HST vs. Ground
Part II
(techniques)             •   Science with PMs
!
Part III             !
(the project)
    !                Part II: Astrometry with the HST
Part IV
(results)
                         •   Undersampling
                         •   CTE / Geometric distortion
                         •   Differential nature
                     !
                     Part III: Our project
                         •   Overview
                         •   PM measuring techniques
                         •   The catalogs
                     !
                     Part IV: Preliminary results
                         •   Internal motion
                         •   Rotation
                         •   Multiple-population kinematics
                         •   Cluster dynamics
                         •   Absolute motion
Andrea Bellini           •   Equipartition / (an)isotropy
HST high-precision proper motions of globular clusters
• Part I!
  (intro)!
!
Part II
                                                                                HST PMs vs. GROUND PMs
(techniques)
!


         FOV:

      ~ 1′


      ~ 1º
Part III
(the project)

                            FWHM:

         0.1′′


      1′′
    !

                     Sampling:

      undersampled

             oversampled
Part IV
(results)


                      Stars:

    V > 17


      V < 18


                   Crowding:

       d ~ 0.3′′

               d ~ 3′′


                  Distortion:

         large, but static

        differential chromatic

                                                                          !     atmosphere, optics          refraction, seeing,

                                                                                breathing (small)

        gravity flexure


                    Reference:

      differential

            can be absolute


                            Detector:

       better pixels

           more pixels


                      Baseline:

     a few years

             a few decades
                                                Absolute PMs:                   faint, plentiful galaxies   bright, sparse galaxies

                                                                      … Very different and complementary niches

Andrea Bellini
HST high-precision proper motions of globular clusters
• Part I!

!
  (intro)!
                                           Scientific applications
Part II
(techniques)
!                     1. Cluster-field separation:
Part III                 •   cluster members
(the project)            •   Stellar exotica
    !                    •   luminosity & mass functions
Part IV                  •   targets for spectroscopic follow-ups
(results)
                      2. Internal motions:
                         • detailed kinematics and dynamics

                      3. Absolute motions
                         • Galactic GC orbits

                      4. Geometric distances
                         • distance scale independent from stellar-evolution models and RR Lyrae

                      5. Clusters rotation
                      6. Energy equipartition
                      7. Mass segregation
                      8. (An)isotropy
                      9. Full 3D cluster dynamics
                         • when LoS velocities for the same stars are available

                      10. Constraints on IMBHs
                         • “shooting stars”
                         • sudden increase in the velocity-dispersion profile in the core

                      11. …
Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
!
• Part II!
(techniques)!
!
Part III               Part II: Astrometry with HST!
(the project)
!
Part IV
(results)
                       !

                           - undersampling (PSF)

                           - geometric distortion

                           - CTE defects

                           - differential nature

Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
!                ISSUE#1: Undersampling
• Part II!
(techniques)!
!
Part III
(the project)          Illustration of undersampling conditions
!
Part IV
(results)                          Where is the center?

                               Easy

                               Easy

                   ?
                              Harder

Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
!                ISSUE#1: Undersampling
• Part II!
(techniques)!
!
Part III
(the project)          Illustration of undersampling conditions
!
Part IV
(results)                          Where is the center?
                                                           Anderson & King 2000, PASP 112, 1360

                               Easy

                               Easy

                   ?
                              Harder

Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
!                ISSUE#1: Undersampling and Astrometry
• Part II!
(techniques)!
!                • Impossible?!
Part III
(the project)    – A point source has “no hair”
!
Part IV
(results)
                       • 3 parameters (x*,y*,f), ~9 pixels
                 – Minimal requirements: “slosh”

                   What is possible?!
                 – ≲0.01 pixel possible ~ (S/N)−1
                       - Need good PSF model
                       - Need good dithering

                 • Limitations!
                 – Individual images; no stacks
                 – Hard in crowded fields
                        • Neighbor finding/subtraction
                 – Ideal in “semi-crowded” regime
Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
!                ISSUE#1: what do we mean by the PSF?
• Part II!
(techniques)!
!                • ψINST(Δx,Δy): the “Instrumental” PSF:
Part III
(the project)
!                  –   The PSF as it hits the detector
Part IV
(results)          –   Good theoretical motivations: Gaussians, Moffat
                   –   See ψINST only indirectly in images
                   –   To solve for: must deconvolve the PSF from the
                       pixels
                         !
                 • ψEFF(Δx,Δy): the “Effective” PSF:
                   – The PSF after pixelization: ψEFF = ψINST ⊗ Π
                   – Empirical: no natural basis function to describe
                   – We never deal with anything BUT the effective PSF
                      • See ψEFF directly in images
                      • Can measure ψEFF directly from images

Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
!                ISSUE#1: Finding vs. Using the ePSF
• Part II!
(techniques)!
!
Part III
(the project)
!
Part IV
(results)        • Degeneracy:
                    – Finding ψEFF requires (x*,y*,f)
                    – Finding (x*,y*,f) requires ψEFF

                  • Iteration
                     – Dithers break the degeneracy!

Andrea Bellini
HST high-precision proper motions of globular clusters

                   ISSUE#1: High-level PSF issues

                 •Spatial variability:
                 - Core intensity varies up to ±10%
                 over scales of ~500 pixels.

                 •Time variability (breathing)
                 - Core intensity varies up to ±10%
                 from one exposure to the next

Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
!                ISSUE#2: Geometric distortion
• Part II!
(techniques)!
!
Part III
(the project)         Why? Fewer reflections, better throughput
!
Part IV
(results)
                           •   Linear “skew”: 500 pixels over 2000
                                   → Parallelogram pixels
                           •   Non-linear: 50 pixels over 2000
                           •   Filters introduce distortion (~0.1 pixel)
                           •   Detector “stitching” defects
                                      - WFPC2: every 34.1333th row 3% shorter
                                      - ACS/WFC: pattern every 68.2666th column
                                      - WFC3/UVIS: 2-D zones
                           !

                   Need empirical approach: plot everything against everything else…

Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
!                   ISSUE#2: Geometric distortion
• Part II!
(techniques)!
!
Part III                                        WFC3/UVIS observed distortion
(the project)
!
Part IV
(results)

                                                         ~10 pix rms

Andrea Bellini   Bellini & Bedin 2009, PASP, 121, 1419
HST high-precision proper motions of globular clusters
Part I
(intro)
!                ISSUE#2: Geometric distortion
• Part II!
(techniques)!
!
Part III                            auto-calibration & polynomial solution
(the project)
!
Part IV
(results)

                                               ~10 pix rms                                      ~0.03 pix rms

Andrea Bellini         Bellini & Bedin 2009, PASP, 121, 1419   Bellini, Anderson & Bedin 2010, PASP, 123, 622
HST high-precision proper motions of globular clusters
Part I
(intro)
!                ISSUE#2: Geometric distortion
• Part II!
(techniques)!
!                                  Table-of-residuals correction
Part III
(the project)           Astrometric flat-field to the < 0.01-pixel level
!
Part IV
(results)
HST high-precision proper motions of globular clusters
Part I
(intro)          ISSUE#3: CTE defects
!
• Part II!        Affect ALL CCD detectors (ground- and space-based)
(techniques)!
!                 Increase with time
Part III
(the project)     Are a function of stellar brightness, chip position, and background level
!
Part IV
(results)

Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)          ISSUE#3: CTE defects
!
• Part II!        Affect ALL CCD detectors (ground- and space-based)
(techniques)!
!                 Increase with time
Part III
(the project)     Are a function of stellar brightness, chip position, and background level
!
Part IV
(results)

                                                                                         Anderson & Bedin (2010)
Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
!                ISSUE#4: Transformations
• Part II!
(techniques)!
!
Part III         All HST astrometry is differential astrometry
(the project)
!                  • Guide-star precision ~ 0.5″ (improved from 1.5″!)
Part IV
(results)          • No reference stars in typical fields
                   • We never know the true pointing

                 Always need to define a local reference frame
                   • Pixels/positions have only relative meaning
                   • Choosing a frame
                         * Base it on a population of objects (3+) in the frame
                         * Must know a priori something about the population
                              → absolute μ = 0 (galaxies)
                              → average μ = same (clusters)
                              → average μ = unchanging (field)

Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
!                  ISSUE#3: Transformations
• Part II!
(techniques)!
!
Part III
(the project)
!
Part IV
(results)        • Errors in the transformations:
                    • “Point” associations are not perfect:
                    (Xn,Yn ; Un, Vn)
                        - Stars’ measurement error
                        - Proper motions (dispersion)
                        - “Fuzzy handles” for galaxies/faint stars

                    •   Distortion not perfectly removed

                   Make transformations more local

                                                                     VSYST = σ/√N
Andrea Bellini
HST high-precision proper motions of globular clusters
!
!
!
!
!
• Bonus!
!
!
!
!

                 Courtesy by Jay Anderson
                                            WFI   ACS   WFC3   PM
Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
    !                                     The project
Part II
(techniques)     23 GCs:
!                 4 (PI: Chandar)
• Part III!
(the project)!    4 (PI: Brown)
!                 3 (PI: Ford)
Part IV
(results)
                  1 (PI: van der Marel)
                  1 (PI: Chanamé)
                 10 from the archive
                     (PI: Bellini)
                 !
                 !
                 !
                 Heterogeneous
                 datasets:
                 !
                  - different epoch
                 coverage
                 -different cameras
                 -different filters
                 -different S/N
                 !
                 !
                 Homogeneous
Andrea Bellini   reduction
HST high-precision proper motions of globular clusters
Part I
(intro)
    !
Part II                                Homogeneous reduction:
(techniques)        !
!                   1- Need of reference frames with similar properties
• Part III!
(the project)!      2- Single-exposure catalogs obtained with the same software and procedures
!                   3- Each star position must define a stand-alone epoch
Part IV
(results)

Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
    !
Part II                                    Homogeneous reduction:
(techniques)            !
!                       1- Need of reference frames with similar properties
• Part III!
(the project)!          2- Single-exposure catalogs obtained with the same software and procedures
!                       3- Each star position must define a stand-alone epoch
Part IV
(results)

                            GO-10775 GC Treasury Program (PI: Sarajedini)
                 • 65 MW GCs cores (central 3’x3’)
                 • Properly-dithered exposures
                 • Homogeneous and deep F606W
                   and F814W photometry                                                           100’’

                 • All taken in 2006                                                      50’’
                                                                                   25’’

                                                                                             NGC 6752 F606W Stack

Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
    !
Part II                                 Homogeneus reduction:
(techniques)        !
!                   1- Need of a common reference frame
• Part III!
(the project)!      2- Single-exposure catalogs obtained with the same software and procedures
!                   3- Each star position must define a stand-alone epoch
Part IV
(results)

Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
    !
Part II                                 Homogeneus reduction:
(techniques)        !
!                   1- Need of a common reference frame
• Part III!
(the project)!      2- Single-exposure catalogs obtained with the same software and procedures
!                   3- Each star position must define a stand-alone epoch
Part IV
(results)

Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
    !                                                    Mining down systematics effects
Part II                                                 !
(techniques)
!                                                       1- The Master frame is not perfect
• Part III!                                             2- Our corrections are not perfect
(the project)!                                                                                                                                                                   15
!
Part IV
(results)

                                                           Figure 9. Impact of uncorrected CTE effects on the GO-10775 NGC 7078 master frame. Panel (a) shows the mF606W vs.
                                                           stars into 4 magnitude regions, labeled R1, R2, R3 and R4. For each region we computed the locally-averaged differen
                                                           X and Y positions and those predicted by our PM fits at the epoch of the master frame. Panels (b1) to (b4) illustrate the
                                                           as a function of the stellar location on the master frame, for the magnitude regions R1 to R4. Panels (c1) to (c4) similarl
                                                           the Y axis (∆Y). Points are color coded according to the size of the differences. A footprint of the typical location of the
                                                           is also shown in black, with individual amplifiers separated by a red line. A strong correlation between the pattern of po
                                                           evident. Panels (d1) to (d4) illustrate the position differences on a rotated reference system, so that the rotated Y′ axis
                                                           GO-10775                                    ′ residuals are highlighted by a red line. The fact that these residuals are stro
                 Figure 9. Impact of uncorrected CTE effects      on theexposures.  The averaged
                                                                         GO-10775 NGC              ∆Yframe.
                                                                                          7078 master         Panel (a) shows the mF606W vs. mF606W − mF814W CMD. We divided the
                 stars into 4 magnitude regions, labeled fainter
                                                           R1, R2,magnitudes
                                                                    R3 and R4.isFor
                                                                                  a clear
                                                                                     each signature
                                                                                           region weof unaccounted
                                                                                                     computed        for CTE losses.difference between the GO-10775 master-frame
                                                                                                               the locally-averaged
                 X and Y positions and those predicted by our PM fits at the epoch of the master frame. Panels (b1) to (b4) illustrate these differences for the X positions (∆X)
                 as a function of the stellar location on the master frame, for the magnitude regions R1 to R4. Panels (c1) to (c4) similarly show theIndifferences
                                                                                                                                                           an absolute         sense,
                                                                                                                                                                      in position along the
                                                                                                                                                   ally ACS/WFC
                 the Y axis (∆Y). Points are color coded according to the size of the differences. A footprint of the typical location of the GO-10775    very small.          In fact, 5
                                                                                                                                                                       chip placements
                 is also shown in black, with individual amplifiers separated by a red line. A strong correlation between the pattern of position have
                                                                                                                                                   differences   and the  chip
                                                                                                                                                           locally-averaged    layoutPMs
                                                                                                                                                                                      is  s
                                                                                                                                       ′
                 evident. Panels (d1) to (d4) illustrate the position differences on a rotated reference system, so that the rotated Y axis is parallel to the−1raw Y direction of the
                                                                                                                                                   pixelyrwithfor
                 GO-10775 exposures. The averaged ∆Y′ residuals are highlighted by a red line. The fact that these residuals are strongly correlated                Y′ the   X andatthe
                                                                                                                                                                        and increase
                 fainter magnitudes is a clear signature of unaccounted for CTE losses.                                                            a reference, we recall that w
                                                                                                                                      bright, unsaturated
                                                                                                   In an absolute sense, the systematic        trends are stars   in ea
                                                                                                                                                             gener-
                                                                                                ally very small. In fact, 50% ofcision        of ∼in0.01
                                                                                                                                        the stars     our pixel.
                                                                                                                                                            catalogNev
                                                                                                have locally-averaged PMs smaller     thethan
                                                                                                                                           master  frame
                                                                                                                                              0.0011  andwhere
                                                                                                                                                             0.0004the s
                                                         Figure 10. Rotated ∆Y′ position offsetspixelyr            theXY′and                            −1
Andrea Bellini                                                                                   as a function
                                                                                                        −1
                                                                                                            forofthe      position    ∼ 0.008 pixelyr
                                                                                                                              the Y component,             . TheAs
                                                                                                                                                 respectively.    availa
                                                         using the original GO-10775 positions as the master frame (black, same as
HST high-precision proper motions of globular clusters
Part I
(intro)
    !                                  Mining down systematics effects
Part II                              !
(techniques)
!                                    1- The Master frame is not perfect
• Part III!                          2- Our corrections are not perfect
                         16
(the project)!
!
Part IV
(results)

Andrea Bellini
                         Figure 11. The top panels show two-dimensional maps of the locally-averaged µα cos δ (a) and µδ (b) components of the PM, as a function of positions with
HST high-precision proper motions of globular clusters
Part I
(intro)
    !                     NGC 7078 (M 15) PM Catalog overview
Part II
(techniques)
!
• Part III!
(the project)!
!
Part IV
(results)

Andrea Bellini
                                                     Bellini et al. 2014, submitted to ApJ
HST high-precision proper motions of globular clusters
Part I
(intro)
!
Part II
(techniques)
!
Part III
(the project)
                         M 15
!
• Part IV!
(results)

                                Part IV: Scientific results

Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
!                               Internal motions
Part II
(techniques)
!
Part III          (a)            (b)               (c)
(the project)
                         M 15
!
• Part IV!
(results)

                  (d)            (e)                (f)

Andrea Bellini
                                                   Bellini et al. 2014, submitted to ApJ
HST high-precision proper motions of globular clusters
Part I
(intro)
                             Cluster rotation (NGC 104)
!
Part II
(techniques)
!
Part III
(the project)
!
• Part IV!
(results)

Andrea Bellini                                   Bellini et al., in preparation
HST high-precision proper motions of globular clusters
Part I
(intro)
!                     Multiple-population kinematics (NGC 2808)
Part II
(techniques)
!
Part III
(the project)
!
• Part IV!
(results)

Andrea Bellini                                    Bellini et al., in preparation
HST high-precision proper motions of globular clusters
Part I
(intro)
!                                                                            Absolute motion (NGC 6681)
Part II
(techniques)
!
Part III
(the project)
!
• Part IV!
(results)

                                                                                                                                           Fig. 7.— VPD of the absolute PMs. The red dots indicate the selected background galaxies (see also Fig. 5), who
                                                                                                                                           mean motion corresponds to the zero point of the VPD. The blue ellipses are centered on the measured absolute PM
                                                                                                                                           of the three populations (marked with a blue cross) and their size corresponds to the calculated 68.3% confiden
                                                                                                                                           region. The black arrows indicate their absolute PM vectors. In the proximity of the Sgr dSph estimate, the PM va
                                                                                                                                           predicted by Law & Majewski (2010) is shown as a light green dot, while the Pryor et al. (2010) and Dinescu et
                                                                                                                                           (2005) measurements and their 68.3% confidence regions are shown as magenta and dark green ellipses, respective
                                                                                                                                           Finally, the cyan ellipse describes the prediction on the PM of the field population by the Besançon model, wh
                                                                                                                                           differs from our estimate obtained using the stars in the same magnitude and color range (marked with black cross
                                                                                                                                           see the text for the selection criteria).
                 Fig. 3.— The upper panels show the Vector Point Diagrams (VPDs) of the relative PMs. In the lower panels the
                  Massari, Bellini, et al. 2013, ApJ, 779, 81M
                 CMDs corresponding to the selections applied in the VPDs are displayed. First column: in the VPD the different
                                                                                                                                    is:                                                                    We compared this value with previous
                 populations are indicated with different colors (a sample of cluster members in blue, of Sgr dSph stars in red, of the
                                                                                                                                                                                     −1
                 field in green), but no selection is applied. The corresponding CMD shows the entire PM catalog. Second column: (µ inα cos δ, µδ ) = (−2.54±0.18, −1.19±0.16) mas yr .
                                                                                                                                                                                   (3)
                 the VPD cluster members are selected within the blue circle and the corresponding CMD displays only well-defined                                                       10
                 cluster evolutionary sequences. Third column: Sgr dSph selection within the red circle and corresponding CMD.
Andrea Bellini   Fourth column: the selection in the VPD (in green) of the bulk-motion of field stars and their location on the CMD.
HST high-precision proper motions of globular clusters
Part I
(intro)                                                         Dispersion profiles / (An)isotropy                                                                                      x0 [arcsec]
!                                                       R [arcsec]                                                     R [arcsec]

Part II                                fit
                                                   1
                                                   /10 Rhalf         Rcore     Rhalf                  fit
                                                                                                                  1
                                                                                                                  /10 Rhalf         Rcore     Rhalf

                                                                                                                                                                                                                    0.568
(techniques)                    0.70
                                                                                                1.6                                                                        50
!                               0.65
                                                                                                1.4

                                                                                                                                                            y 0 [arcsec]
                                0.60

                                                                                                                                                                                                                    [km/s]
                   [mas/yr]
Part III                        0.55
                                                                                                1.2
                                                                                                                                                                            0

                                                                                         t/ r
(the project)                   0.50                                                            1.0

!                               0.45                                                            0.8
                                                                                                                                                                           50
• Part IV!                      0.40

                                                                                                                                                                                                                    0.289
                                                                                                0.6
                                0.35     NGC 6266                                                       NGC 6266                                                                 NGC 6266
(results)                                                                                       0.4
                                       100                     101                 102                100                     101                 102                            100         50         0
                   10                                   R [arcsec]                                          L. L. WATKINS  ET AL .
                                                                                                                    R [arcsec]                                                           0
                                                                                                                                                                                        x [arcsec]

                  Figure 8. The same as Figure17 for NGC 5139, NGC 5904, NGC 5927 and NGC 6266.
                                                                                            1
                                      fit      /10 Rhalf    Rcore                     fit    /10 Rhalf                                        Rcore

                                                                                                                                                                                                                    0.674
                                                                                                                                                                           100
                  we consider
                        0.65   all three predictions here.          1.6                                                       to km s-1 . Once again, the dispersions are generally in good
                     We show the results of our comparisons in the bottom
                                                                    1.4      panel                                            agreement, as most points50fall along the 1:1 correspondence

                                                                                                                                                        y 0 [arcsec]

                                                                                                                                                                                                                    [km/s]
                  of Figure
                        0.60 13; the King model predictions are shown       as red                                            line with little scatter. However, we note that now we tend to
                    [mas/yr]

                                                                    1.2
                  points, the Wilson model predictions as green points and                                                    underestimate the central dispersions
                                                                                                                                                             0          more than we overesti-

                                                                                         t/ r
                  the power-law
                        0.55
                                  model predictions as blue points.1.0The dotted                                              mate.
                  line highlights where our central dispersion estimates
                                                                    0.8    and the                                               We consider briefly the 50 two outliers from the Harris (2010)
                  McLaughlin & van der Marel (2005) model predictions          are                                            comparison. Unlike before, our estimate for NGC 6715 is in

                                                                                                                                                                                                                    0.420
                                                                    0.6
                        0.50
                  equal. As NGC
                              before,
                                   0104we use the distance estimates0.4 from
                                                                           NGCHar-
                                                                                0104                                          very good agreement with    100theNGC
                                                                                                                                                                 McLaughlin
                                                                                                                                                                     0104     & van der Marel
                  ris (2010) to convert 1our dispersions estimate
                                                           2
                                                                  from mas yr-1                                               (2005) predictions;    this lends100
                                                                                                                                                                further
                                                                                                                                                                     50
                                                                                                                                                                        weight
                                                                                                                                                                           0
                                                                                                                                                                                to our
                                                                                                                                                                               50   100
                                                                                                                                                                                       assertion
                                                       10                          10                                 101                      2  10
                                                         R [arcsec]                                               HST R
                                                                                                                      GC  S
                                                                                                                        [arcsec]                                                        x0 [arcsec]                          11

                                                   1                                                              1
                                       fit         /10 Rhalf         Rcore     Rhalf                  fit         /10 Rhalf         Rcore     Rhalf

                                                                                                                                                                                                                    0.869
                                                                                                                                                                           150
                                1.0                                                             1.6                                                                        100
                                                                                                1.4                                                                         50

                                                                                                                                                        y 0 [arcsec]
                                0.9

                                                                                                                                                                                                                    [km/s]
                     [mas/yr]

                                                                                                1.2                                                                          0
                                                                                         t/ r

                                0.8                                                             1.0                                                                         50
                                                                                                0.8                                                                        100
                                0.7

                                                                                                                                                                                                                    0.491
                                                                                                0.6
                                                                                                                                                                           150
                                0.6      NGC 5139                                                       NGC 5139                                                                 NGC 5139
                                                                                                0.4
                                                                                                                                                                           200
                                             100            101              102                            100             101             102                                   100   0         100   200   300
                                                                                                                                                                                         0
                                                        R [arcsec]                                                     R [arcsec]                                                       x [arcsec]

                  Watkins L. L., Bellini A., et al., in preparation
Andrea Bellini
HST high-precision proper motions of globular clusters
Part I
(intro)
!                Figure 12. The same as Figure 7 for NGC 7099.                            Vanilla distances
Part II
                              25                                                                                              25
(techniques)                                                                                                                                                        6388
                                                                                                                                           King
!                                                                                                                                          Wilson
                                                                                                                                                                                 6441
Part III
                              20                                 6388                                                         20           power-law
(the project)                                                                 6441                                                                                       2808 6266
!                                                                                                                                                                                       6715

                                                                                                               [km/s]
                                                                                                                                                              104
                   [km/s]

• Part IV!                                                                                5139
                              15                          7078                                                                15
(results)                                                                          6266
                                                                                                                                                             7078
                                                                                                                                                     362                                5139

                                                                                                                 McLaughlin
                                                                            2808
                     Harris

                                                        1851
                              10                                     104                                                                            5904         1851
                                                                                          6715                                10                           6341
                                                      6656
                                                    362                                                                                           6752        6656
                                                 6624     6341                                                                                 6681
                               5           6397          5904                                                                              6397
                                                  6681 6752          7099                                                      5
                                                                                                                                        6362                      7099
                                       288
                                               6362                                                                                    288
                                            6535                                   vs. Harris (2010)                                                  vs. Mclaughlin & van der Marel (2005)
                                                                                                                                             6535
                               0                                                                                               0
                                   0           5           10               15            20           25                          0            5            10             15          20       25
                                                            centre   [km/s]                                                                                   centre   [km/s]

                  Watkins L. L., Bellini A., et al., in preparation                                              Figure
                                                                                                            Figure        14. The ratioofofour
                                                                                                                    13. Comparisons            thecentral
                                                                                                                                                    dispersion measured
                                                                                                                                                          dispersions   withatliterature
                                                                                                                                                                               the core radius
                                                                                                                                                                                         estimates. core t
                                                                                                                 that measured    at  the half-light radius        as a function   of cluster
                                                                                                            Top: central dispersion from Harris (2010) vshalfour central dispersion. The line concentra
                                                                                                                 tion, the
                                                                                                            for which   as listed in Harris
                                                                                                                            estimates         (2010).
                                                                                                                                        are equal       The red
                                                                                                                                                   is marked  as line  shows
                                                                                                                                                                  a dotted     a straight-line
                                                                                                                                                                            line.               fit to th
                                                                                                                                                                                   Bottom: central
                                                                                                                 data. from
                                                                                                            dispersion           half is a proxy
                                                                                                                          core /McLaughlin        for der
                                                                                                                                              & van   the Marel
                                                                                                                                                          slope of  the dispersion
                                                                                                                                                                 (2005)               profile. There is
                                                                                                                                                                          vs our dispersion.
                                                                                                                 clear correlation such that more concentrated clusters have steeper dispersio
                                                                                                                 profiles, as expected.
                                                                                                            where ✏ = 0 indicates a perfectly round cluster and increasing
                                                                                                            ✏ indicates   increasingly
                                                                                                                 culate the               flattening
                                                                                                                              one-dimensional          clusters. dispersion
                                                                                                                                                    major-axis    The minor-majormajor an
                                                                                                            anisotropy    reflects
                                                                                                                 minor-axis         the difference
                                                                                                                               dispersion              in the velocity dispersions
                                                                                                                                                minor profiles in the same bins tha
                                                                                                            alongwere
                                                                                                                    the used
                                                                                                                         majorforandtheminor   axes,
                                                                                                                                         analysis   of where     minor / major = kinema
                                                                                                                                                        the one-dimensional      1 in-
                                                                                                            dicates   isotropy,
                                                                                                                 ics in  Section 4.1.    / major
                                                                                                                                   minorThen         1 indicates anisotropy
                                                                                                                                               the 1 indicatesvalu
                                                                                                                                                             / majorrepresentative    a
                                                                                                            preference
                                                                                                                 againstfor   motion
                                                                                                                           which        along theellipticities,
                                                                                                                                   to compare       minor axis.we took the weighte
                                                                                                               Tomean
                                                                                                                   determine
                                                                                                                         of thethe   major-axisusing
                                                                                                                                 anisotropies,     and minor-axis
                                                                                                                                                          the inverse directions,  we
                                                                                                                                                                        square uncertain
Andrea Bellini                                                                                              use position   angles from White & Shawl (1987). We then cal-
                                                                                                                 ties as weights.
HST high-precision proper motions of globular clusters
Part I
(intro)
!                                    Equipartition (?)
Part II
(techniques)
!
Part III
(the project)
!
• Part IV!
(results)

                              vs. Harris (2010)

Andrea Bellini
HST high-precision proper motions of globular clusters

                                                      Conclusions

                 High-precision astrometry with HST is challenging but DOABLE

                     - undersampling (PSF)

                     - geometric distortion

                     - differential nature (local transformations)

                 !
                 !
                 Scientific projects with HST’s proper motions of GCs

                     -   Internal kinematics

                     -   dispersion profiles

                     -   anisotropy

                     -   rotation

                     -   IMBHs

                     -   …

                 !
                 Our project

                     -   high-precision (~1 km/s) proper motions in the cores of 22+ GCs

                     -   preliminary results encouraging and exciting

                     -   proper-motion catalogs will be made available to the astronomical community

                     -   Future extension to 60+ GCs thanks to new observations
Andrea Bellini
You can also read