Energy Transport Dynamics in Warm Dense Copper using femtosecond time-resolved XANES spectroscopy - ESRF
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Energy Transport Dynamics in Warm Dense Copper using femtosecond time-resolved XANES spectroscopy Ludovic LECHERBOURG 3rd workshop on Studies of Dynamically Compressed Matter with X-rays 2021 January 14-15 Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 0 / 21
Collaborators Ludovic Lecherbourg Fabien Dorchies Kim Ta Phuoc Patrick Renaudin Julien Gautier Vanina Recoules CELIA, Talence, France LOA, Palaiseau, France CEA, DAM, DIF, Arpajon, France Noémie Jourdain Adrïan Grolleau Thesis CEA/CELIA Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 1 / 21
Warm Dense Matter regime (1/2) Warm Dense Matter (WDM) is involved in different fields of physics Astrophysics Inertial Confinement Fusion Laser processing Planetary science (cores, First moments of the Precision laser ablation mantle, etc...) laser-holrhaum interaction (Au) Laser engraving for Stars (brown dwarves structure, Compression of the ablator (CH) nano-electronics components neutron stars surface) Compression of the fuel (D2 ) Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 2 / 21
Warm Dense Matter regime (2/2) Between plasma physics and solid state physics Warm : . 10 eV and Dense : ∼ ρ0 OCP DOS 104 TFermi η∝ ∼1 10 5 0 5 10 15 20 25 10102 4 10 2 100 102 104 Kinetic energy Energy - EFermi [eV] Density [g. cm ] 3 Complex theoretical description of this regime Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 3 / 21
Phase transition from solid to WDM Laser produced Warm Dense Matter : solid → plasma transition regime Step 1 : Cold solid Step 2 : HETL WDM Step 3 : ETL WDM Te = Ti = 300 K Ti < Tfusion Ti ≈ Te & 1 eV Te ∼ few eV t =0s t . 1 − 10 ps t & 10 ps Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 4 / 21
Ultrafast energy transport in laser-heated thin metal layers (1/3) Chen et al. measured in 2012 surface reflectivity changes of gold after laser heating (400 nm, 45 fs FWHM) using chirped optical probe (800 nm). They highligthed a threshold in the relative reflectivity changes, de- pending on the absorbed flux. Results suggest two different regimes for the energy transport. Figures are from Chen et al., Phys. Rev. Letters 108, 165001 (2012). Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 5 / 21
Ultrafast energy transport in laser-heated thin metal layers (2/3) Electrons are excited within the laser skin-depth #1 Energy is transported by ballistics electrons in the sample over their mean free path (MFP). They thermalise through electrons-electrons collisions and heat the sample in few tens of fs. ⇒ homogeneous heating if sample thickness . δλ + MFP #2 Electrons heat up more and thermalize much faster, in few fs after heating, therefor within the laser skin-depth Mueller et al., Phys. Rev. B 87, 3 (2013) Fourment et al., Phys. Rev. B 89, 161110 (2014) Energy reservoir on the front side heats the whole sample by thermal conduction ⇒ inhomogeneous heating lead by thermal conduction Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 6 / 21
Ultrafast energy transport in laser-heated thin metal layers (3/3) Performing XANES spectroscopy using a betatron source Direct measurement of Te XANES → In-depth probing ⇒ Follow in detail the dynamics of Te Betatron femtosecond time resolution Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 7 / 21
Methodology : Hydrodynamic Simulations (1/4) Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 7 / 21
Two-Temperatures Model (TTM) Local coupled differential equations describing both elec- trons and ions temperatures dynamics : Te 2.0 Ti dTe Temperature [eV] Ce = −Gei (Te − Ti ) + ∇(κe ∇Te )+S(t) dt 1.5 dT Ci i = Gei (Te − Ti ) + ∇(κi ∇Ti ) dt 1.0 0.5 The physics lies in the coefficients : Ce , Ci heat capacities 0.0 Gei coupling parameter 0 1 2 3 4 5 6 Time [ps] κe , κi conductions Illustrative 1D Hydrodynamics TTM simulations using E STHER code. Ce , Gei and κe can be computed from various models, in particular from ab-initio QMD simulations. Lin et al., Phys. Rev. B 77 (2008) Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 8 / 21
Methodology : Ab-initio QMD Simulations (2/4) Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 8 / 21
XANES is a diagnostic of both electronic and ionic structures XANES = X-ray Absorption Near-Edge Spectroscopy Probes the (unoccupied) electron DOS from a core level Sensitive to the spatial organization of neighboring ions ⇒ Very proven technique since the 70’s and 80’s, in condensed and diluted media, but needs to be revisited in the extreme conditions of WDM Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 9 / 21
Ab-initio QMD simulations with A BINIT Generation of a thermodynamic configuration Calculation of photoabsorption cross section ∼50 h on 500 CPU ∼10 h on 500 CPU |hφf ,k |∇|φ2p,k i|2 norbitales 1 − f (f ,k ) δ(2p − f − hν) X 2 σk (hν) = 4π hν Fermi-Dirac Transition matrix KS i=1 occupations elements eigenvalues Density Fonctional Theory 1.0 QMD Local Density Approximation exp. exchange and correlation 0.8 Absorption [a. u.] Projected Augmented Wave 0.6 scheme 0.4 108 atoms 3x3x3 grid 0.2 0.0920 930 940 950 960 970 Energy [eV] Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 10 / 21
QMD : a tool to extract Te (1/2) Te = 300 K Te = 0.5 eV Te = 0.75 eV Te = 1.0 eV 1 1 1 1 s-band s-band s-band s-band 0 0 0 0 d-band d-band d-band d-band 1 1 1 1 0 10 0 10 20 30 0 10 0 10 20 30 0 10 0 10 20 30 0 10 0 10 20 30 E - µ (eV) E - µ (eV) E - µ [eV] E - µ (eV) 1.0 1.0 1.0 1.0 Absorption [a. u.] Absorption [a. u.] Absorption [a. u.] Absorption [a. u.] 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.0920 930 940 950 960 970 0.0920 930 940 950 960 970 0.0920 930 940 950 960 970 0.0920 930 940 950 960 970 Energy [eV] Energy [eV] Energy [eV] Energy [eV] When Te increases, available levels appear in the d-band, which increases the absorption before the Fermi level. Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 11 / 21
QMD : a tool to extract Te (2/2) 1.0 9 g/cm³, Ti = 300 K Pre-edge integral [/eV] 6 9 g/cm³, Ti = Te Absorption [a. u.] 0.8 8 g/cm³, Ti = Te 0.6 4 6 g/cm³, Ti = Te 0.4 300 K 0.50 eV 2 0.2 0.75 eV 1.00 eV 0.0920 930 940 950 960 970 0 0.0 0.5 1.0 1.5 2.0 Energy [eV] Temperature [eV] The electronic temperature Te can be measured with the integral of the pre-edge. A function to attribute a Te to our experimental data have been deduced. N. Jourdain et al., Phys. Rev. B 101, 125127 (2020) Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 12 / 21
Methodology : XANES Experiment (3/4) Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 12 / 21
Samples design Two heating regimes investigated Working regime 30 nm : quasi homogeneous energy deposition Based on Chen et al. work 100 nm : inhomogeneous energy deposition Copper deposition Realized by evaporation Substrat : 1 µm of PET "Mylar" Laser skin depth @ 800 nm ∼ 13 nm 1 eV electrons ballistic range ∼ 70 nm Nguyen-Truong, J. Phys. : Condens. Matter 29 (2017) Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 13 / 21
Experimental setup - LOA facility, "Salle jaune" Pump beam (on sample) Betatron drive beam Betatron X-ray beam φ = [380 ± 10] µm - top-hat ∼ 50 TW Low divergence ∼ 10 mrad Incidence⊥ = [2.2 ± 0.2]◦ On gas jet ∼ 3 × 1019 W /cm2 φ ≈ 150 µm on sample Pulse duration FWHM = 30 fs Gas jet : 99%He / 1%N, ∼ 20 Normal incidence on sample [1.1 ± 0.3] × 1014 W /cm2 bars . 6.5 × 104 ph / eV / shot @ ∼ 930 eV Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 14 / 21
Experimental setup - X-ray characteristics Betatron pulse duration estimated from PIC simulations Betatron emission spectrum for 1019 W /cm2 800 nm laser. Mahieu et al., Nature Comm. 9(1), 2018 Figure from Corde et al., Rev. Mod. Phys. 85 :1-48, 2013 Temporal resolution is then limited by pump-probe angle of 2.2◦ and X-ray spot size of ∼ 150 µm leading to ∼ 20 f s resolution. Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 15 / 21
Acquisition routine Accumulation required : betatron spectrum stability over ∼ 100 shots/series. Hot spots filtration (3-axis filtering). A hole is created by the pump beam at each shot : the sample is automatically moved to a clean area bet- ween two shots (0.3 Hz). Shot to shot stability over 100 images 200 100 images filtered stack 1.5 Cold spectrum Hot spectrum Absorption (norm. unit.) Routine to minimize errors during XANES spectra ex- 150 1.25 traction : ROI 1 Pixels 100 0.75 one reference serie ”R” without sample ; 0.5 one cold serie ”C” at ambiant temperature ; 50 0.25 0 one hot serie ”H” with the pump beam. 0 0 100 200 300 400 920 925 930 935 940 945 Pixels Energy (eV) Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 16 / 21
Results 1/2 : Experimental overview Differents delays probed to infer the dynamics of Pre-edge integral is transformed into electrons temperature Te (∼ 25 min / delay). using the model from ab initio simulations. Pre-edge absorption increases as sample is Almost no energy is lost in the substrate for 30 nm samples heated. during the heating, as Te rises 3 times higher than for the 100 Uncertainties : photons counting statistics (colo- nm samples ⇒ energy deposition < 30 nm. red areas). 10 100 nm Experimental 30 nm Experimental 1.5 Cold spectrum 8 0.13 ps 0.47 ps 1.25 1.13 ps Absorption (norm. unit.) Temperature (eV) 6 1 0.75 4 0.5 2 0.25 0 0 0 1 2 3 4 5 6 920 925 930 935 940 945 Time (ps) Energy (eV) Data presented has required ∼ 10’000 shots, acquired during 3 days plus 3 weeks for preparation. Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 17 / 21
Methodology : discussion and conclusion (4/4) Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 18 / 21
Results 2/2 : Comparison with TTM simulations 4 Experimental data show a slow increase to ∼ 1.5 eV in ∼ 1 ps Experimental TTM: ballistic regime TTM Simulations (E STHER code) : TTM: thermal regime 3 absorbed flux based on energy and absorption coefficient measurements Temperature (eV) uncertainties on absorbed energy is represented by colored areas 2 Ballistic regime : instantaneous heating, then electron-ions colli- sions ⇒ do not reproduce T e dynamics during the first ps 1 Thermal regime : slower heating, Te rises to 1.5 eV in 0.7 fs , Experimental data unveals the conduction phase inside the sample, below the first picosecond 0 / Errorbars are still too high to differenciate conduction models −0.5 0 0.5 1 1.5 2 2.5 Long time Te for [100 nm] simulation is consistant with experimen- Time (ps) tal data, in agreement with previous work Jourdain et al. Phys. Rev. B 97, 075148 (2018) Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 19 / 21
Summary Copper (30 nm and 100 nm) samples were heated using femtosecond laser at ∼ 1 × 1014 W /cm2 . Almost no energy is lost in the substrate for 30 nm samples during the heating, as Te rises 3 times higher than for the 100 nm samples ⇒ energy deposition < 30 nm. Electrons temperature dynamics is inferred using femtosecond TR-XANES, which highlight 3 thermodynamics steps : 1. electronic temperature rise quickly in the skin depth during laser pulse ; 2. the energy reservoir created heat the whole sample by conduction for ∼ 1 ps ; 3. electrons heat the lattice by electron-ion collisions. Grolleau et al. in preparation Improve the signal to noise ratio (better hot electrons filtration, higher betatron source flux) ⇒ possibility to differienciate conduction models ? Other materials (study on molybdenum is on-going) Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 20 / 21
Thank you for your attention Commissariat à l’énergie atomique et aux énergies alternatives CEA, DAM, DIF | F-91297 ARPAJON Direction des Applications Militaires T. +33 (0)1 69 26 40 00 Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019
Job offer at CEA, DAM, DIF : Plasma Experiments Conductor Fields Location Nuclear physics, plasma physics, atomic physics, molecu- 26 Rue de la Piquetterie, 91680 Bruyères-le-Châtel, lar physics. France (30 km south-west from Paris). Description - Missions Requirements Design, conduction and analysis of plasma experi- PhD in Physics, good knowledge in plasma physics, ments on Laser MégaJoule (LMJ) and partners faci- programming and signal processing. lities. Good french and english speaking. Collaboration with plasma diagnostics development service and analysis programs developpers. Availability Collaboration with simulations codes developpers. September, 2021 International collaborations. Contact berenice.loupias@cea.fr stephanie.brygoo@cea.fr Commissariat à l’énergie atomique et aux énergies alternatives DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15 21 / 21
You can also read