Energy Transport Dynamics in Warm Dense Copper using femtosecond time-resolved XANES spectroscopy - ESRF

Page created by Kyle Goodman
 
CONTINUE READING
Energy Transport Dynamics in Warm Dense Copper using femtosecond time-resolved XANES spectroscopy - ESRF
Energy Transport Dynamics in Warm Dense Copper
                                                                 using femtosecond time-resolved XANES
                                                                 spectroscopy

                                                                 Ludovic LECHERBOURG

                                                                 3rd workshop on Studies of Dynamically Compressed Matter with X-rays 2021 January 14-15

Commissariat à l’énergie atomique et aux énergies alternatives                            DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                  0 / 21
Energy Transport Dynamics in Warm Dense Copper using femtosecond time-resolved XANES spectroscopy - ESRF
Collaborators

                  Ludovic Lecherbourg                                  Fabien Dorchies                                      Kim Ta Phuoc
                    Patrick Renaudin                                                                                        Julien Gautier
                    Vanina Recoules                               CELIA, Talence, France
                                                                                                                        LOA, Palaiseau, France
           CEA, DAM, DIF, Arpajon, France

                                                    Noémie Jourdain
                                                     Adrïan Grolleau
                                                    Thesis CEA/CELIA

Commissariat à l’énergie atomique et aux énergies alternatives            DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                        1 / 21
Energy Transport Dynamics in Warm Dense Copper using femtosecond time-resolved XANES spectroscopy - ESRF
Warm Dense Matter regime (1/2)

                                         Warm Dense Matter (WDM) is involved in different fields of physics

                           Astrophysics                          Inertial Confinement Fusion                                    Laser processing

              Planetary science (cores,                          First moments of the                                     Precision laser ablation
              mantle, etc...)                                    laser-holrhaum interaction (Au)
                                                                                                                          Laser engraving for
              Stars (brown dwarves structure,                    Compression of the ablator (CH)                          nano-electronics components
              neutron stars surface)                             Compression of the fuel (D2 )

Commissariat à l’énergie atomique et aux énergies alternatives          DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                              2 / 21
Energy Transport Dynamics in Warm Dense Copper using femtosecond time-resolved XANES spectroscopy - ESRF
Warm Dense Matter regime (2/2)

                                                                         Between plasma physics and solid state physics
                                                                              Warm : . 10 eV and Dense : ∼ ρ0

                                                    OCP                                                                                                                            DOS
                                104
                                           TFermi                η∝                  ∼1                                                       10   5    0     5     10    15   20    25
                            10102     4    10   2    100     102       104
                                                                                             Kinetic energy
                                                                                                                                                                              Energy - EFermi [eV]
                                               Density [g. cm ]
                                                              3

                                                                             Complex theoretical description of this regime

Commissariat à l’énergie atomique et aux énergies alternatives                                 DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                                                                  3 / 21
Energy Transport Dynamics in Warm Dense Copper using femtosecond time-resolved XANES spectroscopy - ESRF
Phase transition from solid to WDM

                                      Laser produced Warm Dense Matter : solid → plasma transition regime

        Step 1 : Cold solid                                      Step 2 : HETL WDM                                  Step 3 : ETL WDM

        Te = Ti = 300 K                                          Ti < Tfusion                                       Ti ≈ Te & 1 eV
                                                                 Te ∼ few eV
        t =0s                                                    t . 1 − 10 ps                                      t & 10 ps

Commissariat à l’énergie atomique et aux énergies alternatives              DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15            4 / 21
Energy Transport Dynamics in Warm Dense Copper using femtosecond time-resolved XANES spectroscopy - ESRF
Ultrafast energy transport in laser-heated thin metal layers (1/3)

                                                                 Chen et al. measured in 2012 surface reflectivity changes of gold after
                                                                 laser heating (400 nm, 45 fs FWHM) using chirped optical probe (800
                                                                 nm).

                                                                 They highligthed a threshold in the relative reflectivity changes, de-
                                                                 pending on the absorbed flux.

                                                                 Results suggest two different regimes for the energy transport.

                                                                 Figures are from Chen et al., Phys. Rev. Letters 108, 165001 (2012).

Commissariat à l’énergie atomique et aux énergies alternatives           DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                5 / 21
Energy Transport Dynamics in Warm Dense Copper using femtosecond time-resolved XANES spectroscopy - ESRF
Ultrafast energy transport in laser-heated thin metal layers (2/3)

                                                                 Electrons are excited within the laser skin-depth

                                                                 #1       Energy is transported by ballistics electrons in the sample over their
                                                                          mean free path (MFP).
                                                                          They thermalise through electrons-electrons collisions and heat the
                                                                          sample in few tens of fs.
                                                                      ⇒   homogeneous heating if sample thickness . δλ + MFP

                                                                 #2       Electrons heat up more and thermalize much faster, in few fs after
                                                                          heating, therefor within the laser skin-depth
                                                                          Mueller et al., Phys. Rev. B 87, 3 (2013)
                                                                          Fourment et al., Phys. Rev. B 89, 161110 (2014)
                                                                          Energy reservoir on the front side heats the whole sample by thermal
                                                                          conduction
                                                                      ⇒   inhomogeneous heating lead by thermal conduction

Commissariat à l’énergie atomique et aux énergies alternatives               DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                6 / 21
Energy Transport Dynamics in Warm Dense Copper using femtosecond time-resolved XANES spectroscopy - ESRF
Ultrafast energy transport in laser-heated thin metal layers (3/3)

                                                Performing XANES spectroscopy using a betatron source
                                                                                     
                                                Direct measurement of Te             
                                       
                                                                                     
                                                                                      
                                                                                     
                     XANES →                     In-depth probing                       ⇒ Follow in detail the dynamics of Te
                                       
                                                                                     
                                                                                      
                                       
                                                                                     
                                                                                      
                                                 Betatron femtosecond time resolution

Commissariat à l’énergie atomique et aux énergies alternatives           DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15        7 / 21
Energy Transport Dynamics in Warm Dense Copper using femtosecond time-resolved XANES spectroscopy - ESRF
Methodology : Hydrodynamic Simulations (1/4)

Commissariat à l’énergie atomique et aux énergies alternatives   DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15   7 / 21
Energy Transport Dynamics in Warm Dense Copper using femtosecond time-resolved XANES spectroscopy - ESRF
Two-Temperatures Model (TTM)

        Local coupled differential equations describing both elec-
        trons and ions temperatures dynamics :                                                                                            Te
                                                                                                       2.0                                Ti
                       dTe

                                                                                        Temperature [eV]
                   Ce      = −Gei (Te − Ti ) + ∇(κe ∇Te )+S(t)
                        dt                                                                             1.5
                       dT
                     Ci i = Gei (Te − Ti ) + ∇(κi ∇Ti )
                        dt                                                                             1.0

                                                                                                       0.5
        The physics lies in the coefficients :
        Ce , Ci       heat capacities                                                                  0.0
        Gei           coupling parameter                                                                     0   1   2    3      4   5         6
                                                                                                                     Time [ps]
        κe , κi       conductions
                                                                                          Illustrative 1D Hydrodynamics TTM simulations
                                                                                          using E STHER code.
        Ce , Gei and κe can be computed from various models, in
        particular from ab-initio QMD simulations.
        Lin et al., Phys. Rev. B 77 (2008)

Commissariat à l’énergie atomique et aux énergies alternatives   DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                           8 / 21
Methodology : Ab-initio QMD Simulations (2/4)

Commissariat à l’énergie atomique et aux énergies alternatives   DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15   8 / 21
XANES is a diagnostic of both electronic and ionic structures

                                                      XANES = X-ray Absorption Near-Edge Spectroscopy
              Probes the (unoccupied) electron DOS from a core level
              Sensitive to the spatial organization of neighboring ions

      ⇒       Very proven technique since the 70’s and 80’s, in condensed and diluted media, but needs to be
              revisited in the extreme conditions of WDM

Commissariat à l’énergie atomique et aux énergies alternatives           DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15   9 / 21
Ab-initio QMD simulations with A BINIT

         Generation of a thermodynamic
                 configuration                                                  Calculation of photoabsorption cross section
               ∼50 h on 500 CPU                                                               ∼10 h on 500 CPU

                                                                                                                                      |hφf ,k |∇|φ2p,k i|2
                                                                                                                                 
                                                                                   norbitales
                                                                                                                   1 − f (f ,k )                            δ(2p − f − hν)
                                                                                     X
                                                                            2
                                                                 σk (hν) = 4π hν
                                                                                                                   Fermi-Dirac          Transition matrix          KS
                                                                                      i=1
                                                                                                                   occupations             elements            eigenvalues

              Density Fonctional Theory
                                                                                                             1.0       QMD
              Local Density Approximation                                                                              exp.
              exchange and correlation                                                                       0.8

                                                                                            Absorption [a. u.]
              Projected Augmented Wave                                                                       0.6
              scheme
                                                                                                             0.4
              108 atoms
              3x3x3 grid                                                                                     0.2

                                                                                                             0.0920     930    940      950   960   970
                                                                                                                                Energy [eV]

Commissariat à l’énergie atomique et aux énergies alternatives                   DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                                                10 / 21
QMD : a tool to extract Te (1/2)

          Te = 300 K                                                      Te = 0.5 eV                                                         Te = 0.75 eV                                                    Te = 1.0 eV
                        1                                                               1                                                                   1                                                               1
       s-band

                                                                       s-band

                                                                                                                                           s-band

                                                                                                                                                                                                           s-band
                        0                                                               0                                                                   0                                                               0
       d-band

                                                                       d-band

                                                                                                                                           d-band

                                                                                                                                                                                                           d-band
                        1                                                               1                                                                   1                                                               1

                        0 10       0      10     20         30                          0 10       0      10     20         30                              0 10       0      10     20         30                          0 10       0      10     20         30
                                        E - µ (eV)                                                      E - µ (eV)                                                          E - µ [eV]                                                      E - µ (eV)
                        1.0                                                             1.0                                                                 1.0                                                             1.0
       Absorption [a. u.]

                                                                       Absorption [a. u.]

                                                                                                                                           Absorption [a. u.]

                                                                                                                                                                                                           Absorption [a. u.]
                        0.8                                                             0.8                                                                 0.8                                                             0.8
                        0.6                                                             0.6                                                                 0.6                                                             0.6
                        0.4                                                             0.4                                                                 0.4                                                             0.4
                        0.2                                                             0.2                                                                 0.2                                                             0.2
                        0.0920   930   940     950    960        970                    0.0920   930   940     950    960        970                        0.0920   930   940     950    960        970                    0.0920   930   940     950    960        970
                                       Energy [eV]                                                     Energy [eV]                                                         Energy [eV]                                                     Energy [eV]

          When Te increases, available levels appear in the d-band, which increases the absorption before the Fermi level.

Commissariat à l’énergie atomique et aux énergies alternatives                                                                     DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                                                                                         11 / 21
QMD : a tool to extract Te (2/2)

                                                     1.0                                                                           9 g/cm³, Ti = 300 K

                                                                                                 Pre-edge integral [/eV]
                                                                                                                       6           9 g/cm³, Ti = Te

                                    Absorption [a. u.]
                                                     0.8                                                                           8 g/cm³, Ti = Te
                                                     0.6                                                               4           6 g/cm³, Ti = Te
                                                     0.4                      300 K
                                                                              0.50 eV                                  2
                                                     0.2                      0.75 eV
                                                                              1.00 eV
                                                     0.0920   930   940   950 960 970                                  0
                                                                                                                       0.0   0.5        1.0      1.5     2.0
                                                                    Energy [eV]                                               Temperature [eV]

        The electronic temperature Te can be measured with the integral of the pre-edge.
        A function to attribute a Te to our experimental data have been deduced.
        N. Jourdain et al., Phys. Rev. B 101, 125127 (2020)

Commissariat à l’énergie atomique et aux énergies alternatives                     DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                             12 / 21
Methodology : XANES Experiment (3/4)

Commissariat à l’énergie atomique et aux énergies alternatives   DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15   12 / 21
Samples design

                                                                                          Two heating regimes investigated
        Working regime                                                                         30 nm : quasi homogeneous energy deposition
              Based on Chen et al. work                                                        100 nm : inhomogeneous energy deposition

        Copper deposition
              Realized by evaporation
              Substrat : 1 µm of PET "Mylar"
              Laser skin depth @ 800 nm ∼ 13 nm
              1 eV electrons ballistic range ∼ 70 nm
              Nguyen-Truong, J. Phys. : Condens. Matter 29 (2017)

Commissariat à l’énergie atomique et aux énergies alternatives      DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                 13 / 21
Experimental setup - LOA facility, "Salle jaune"

  Pump beam (on sample)                                          Betatron drive beam                               Betatron X-ray beam
       φ = [380 ± 10] µm - top-hat                                  ∼ 50 TW                                             Low divergence ∼ 10 mrad
       Incidence⊥ = [2.2 ± 0.2]◦                                    On gas jet ∼ 3 × 1019 W /cm2                        φ ≈ 150 µm on sample
       Pulse duration FWHM = 30 fs                                  Gas jet : 99%He / 1%N, ∼ 20                         Normal incidence on sample
       [1.1 ± 0.3] × 1014 W /cm2                                    bars                                                . 6.5 × 104 ph / eV / shot
                                                                                                                        @ ∼ 930 eV

Commissariat à l’énergie atomique et aux énergies alternatives                 DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                       14 / 21
Experimental setup - X-ray characteristics

  Betatron pulse duration estimated from PIC simulations                 Betatron emission spectrum for 1019 W /cm2 800 nm laser.
  Mahieu et al., Nature Comm. 9(1), 2018                                 Figure from Corde et al., Rev. Mod. Phys. 85 :1-48, 2013

  Temporal resolution is then limited by pump-probe angle of 2.2◦
  and X-ray spot size of ∼ 150 µm leading to ∼ 20 f s resolution.

Commissariat à l’énergie atomique et aux énergies alternatives   DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                    15 / 21
Acquisition routine

              Accumulation required : betatron spectrum stability
              over ∼ 100 shots/series.

              Hot spots filtration (3-axis filtering).

              A hole is created by the pump beam at each shot : the
              sample is automatically moved to a clean area bet-
              ween two shots (0.3 Hz).                                                                                    Shot to shot stability over 100 images
                                                                                                    200
                                                                                                              100 images filtered stack                                       1.5                   Cold spectrum
                                                                                                                                                                                                    Hot spectrum

                                                                                                                                                  Absorption (norm. unit.)
              Routine to minimize errors during XANES spectra ex-                                   150
                                                                                                                                                                             1.25

              traction :                                                                                      ROI
                                                                                                                                                                               1

                                                                                           Pixels
                                                                                                    100                                                                      0.75
                   one reference serie ”R” without sample ;
                                                                                                                                                                              0.5

                     one cold serie ”C” at ambiant temperature ;                                     50
                                                                                                                                                                             0.25

                                                                                                                                                                               0
                     one hot serie ”H” with the pump beam.                                            0
                                                                                                          0         100      200      300   400                                920   925   930    935    940        945
                                                                                                                            Pixels                                                         Energy (eV)

Commissariat à l’énergie atomique et aux énergies alternatives     DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                                                                                                  16 / 21
Results 1/2 : Experimental overview

        Differents delays probed to infer the dynamics of                                   Pre-edge integral is transformed into electrons temperature
        Te (∼ 25 min / delay).                                                              using the model from ab initio simulations.
        Pre-edge absorption increases as sample is                                          Almost no energy is lost in the substrate for 30 nm samples
        heated.                                                                             during the heating, as Te rises 3 times higher than for the 100
        Uncertainties : photons counting statistics (colo-                                  nm samples ⇒ energy deposition < 30 nm.
        red areas).                                                                                               10
                                                                                                                           100 nm Experimental                   30 nm Experimental
                                          1.5                    Cold spectrum
                                                                                                                   8
                                                                 0.13 ps
                                                                 0.47 ps
                                         1.25
                                                                 1.13 ps
              Absorption (norm. unit.)

                                                                                               Temperature (eV)
                                                                                                                   6
                                           1

                                         0.75                                                                      4

                                          0.5
                                                                                                                   2
                                         0.25
                                                                                                                   0
                                           0
                                                                                                                       0          1              2          3           4             5   6
                                           920   925   930     935    940        945                                                                 Time (ps)
                                                       Energy (eV)
                                                                                       Data presented has required ∼ 10’000 shots, acquired during 3 days plus 3
                                                                                       weeks for preparation.
Commissariat à l’énergie atomique et aux énergies alternatives                         DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                                                        17 / 21
Methodology : discussion and conclusion (4/4)

Commissariat à l’énergie atomique et aux énergies alternatives   DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15   18 / 21
Results 2/2 : Comparison with TTM simulations

                                                                                                              4
        Experimental data show a slow increase to ∼ 1.5 eV in ∼ 1 ps
                                                                                                                         Experimental
                                                                                                                         TTM: ballistic regime
        TTM Simulations (E STHER code) :                                                                                 TTM: thermal regime
                                                                                                              3
           absorbed flux based on energy and absorption coefficient
           measurements

                                                                                           Temperature (eV)
           uncertainties on absorbed energy is represented by colored
           areas                                                                                              2

        Ballistic regime : instantaneous heating, then electron-ions colli-
        sions ⇒ do not reproduce T e dynamics during the first ps                                             1
        Thermal regime : slower heating, Te rises to 1.5 eV in 0.7 fs
        , Experimental data unveals the conduction phase inside the
        sample, below the first picosecond                                                                    0
        / Errorbars are still too high to differenciate conduction models
                                                                                                              −0.5   0        0.5      1      1.5   2   2.5
        Long time Te for [100 nm] simulation is consistant with experimen-                                                          Time (ps)
        tal data, in agreement with previous work
        Jourdain et al. Phys. Rev. B 97, 075148 (2018)

Commissariat à l’énergie atomique et aux énergies alternatives   DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15                                        19 / 21
Summary

              Copper (30 nm and 100 nm) samples were heated using femtosecond laser at ∼ 1 × 1014 W /cm2 .

              Almost no energy is lost in the substrate for 30 nm samples during the heating, as Te rises 3 times higher than
              for the 100 nm samples ⇒ energy deposition < 30 nm.

              Electrons temperature dynamics is inferred using femtosecond TR-XANES, which highlight 3 thermodynamics
              steps :
              1. electronic temperature rise quickly in the skin depth during laser pulse ;
              2. the energy reservoir created heat the whole sample by conduction for ∼ 1 ps ;
              3. electrons heat the lattice by electron-ion collisions.

        Grolleau et al. in preparation

              Improve the signal to noise ratio (better hot electrons filtration, higher betatron source flux) ⇒ possibility to
              differienciate conduction models ?

              Other materials (study on molybdenum is on-going)

Commissariat à l’énergie atomique et aux énergies alternatives   DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15            20 / 21
Thank you for your attention

Commissariat à l’énergie atomique et aux énergies alternatives
CEA, DAM, DIF | F-91297 ARPAJON                                           Direction des Applications Militaires
T. +33 (0)1 69 26 40 00

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019
Job offer at CEA, DAM, DIF : Plasma Experiments Conductor

  Fields                                                                 Location
  Nuclear physics, plasma physics, atomic physics, molecu-               26 Rue de la Piquetterie, 91680 Bruyères-le-Châtel,
  lar physics.                                                           France (30 km south-west from Paris).

  Description - Missions                                                 Requirements
        Design, conduction and analysis of plasma experi-                     PhD in Physics, good knowledge in plasma physics,
        ments on Laser MégaJoule (LMJ) and partners faci-                     programming and signal processing.
        lities.                                                               Good french and english speaking.
        Collaboration with plasma diagnostics development
        service and analysis programs developpers.
                                                                         Availability
        Collaboration with simulations codes developpers.
                                                                         September, 2021
        International collaborations.

                                                                         Contact
                                                                         berenice.loupias@cea.fr
                                                                         stephanie.brygoo@cea.fr

Commissariat à l’énergie atomique et aux énergies alternatives   DyCoMax | Ludovic Lecherbourg | 2021-01-14 & 15            21 / 21
You can also read