DROUGHE ESTIMATION AND MAPPING - CESBIO Mehrez ZRIBI, Michel le page - theia-land.fr
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
CESBIO/TOULOUSE • Toulouse: second university city in France • The world's largest higher education institution in aerospace engineering • Strong presence of the aeronautics, space and high technology industry • Toulouse III is 6th in the world in the Shanghai ranking in remote sensing • The climate and weather are super pleasant 2
CESBIO and partners observatories South West: OSR India: IRP CEFIRSE Lebanon: GDRI OLIFE Morocco: LMI TREMA Tunisia: LMI NAILA 4 ICOS, JECAM, GEOGLAM, FLUXNET, ZA PYGAR, IR OZCAR
Satellite missions in CESBIO 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 2032 SMOS (ESA CNES) VENµS (CNES, IAI) Biomass (ESA), P-Band Color codes Altimeters TRISHNA (CNES/ISRO) L-Band Passive Optical Thermal Radar Precipitation SMOS-HR 5
Spatialized plateforms 29 Juin 2006 Model de transfert radiatif Cartes de Green Area Index (e.g. BV-net de l'INRA Avignon) m2 feuille/m2 sol Spot, Landsat, Sentinel 2 29/06/2006 Initialisation, NDVI 26/07/2006 Forçage, 09/09/2006 assimilation calibration Modèle Sentinel 1, Terrasar X spatialisé Cartes dynamiques des OSCartes et des occupation pratiques SAFYE/ SAFY du sol FAO56 Rendement indice foliaire culturales Eau 8 km CO2 Ré-analyses Météo SAFYE-CO2 Exemple de sortie Validation par stat. régionales Cartes des (Rendement / Irrigation) sols Validation par stations de mesure des flux (ET, Humidité Bilans C des parcelles de blé en 2011 (gC.m-2) sol…) 7
Impacts of drought • Economic • Social • environmental • Impacts increase in response to increasing vulnerability resulting from increased pressure on limited water resources, population growth and many other factors. • Post-crash response increases vulnerability. • The impacts differ from one country to another.
Drought Characteristics • Normal component of climate variability • No universal definition • Complex • Interdisciplinary • Impacts can be economic, social, environmental • Impacts can persist for years ❖ The beginning and end of the drought are difficult to determine ❖ No precise and universally accepted definition of drought ❖ Non-structural impacts and spread over a large geographical area
Agricultural Drought → Meteorological drought affecting agriculture → Usually, the first economic sector to be affected → Shortage of precipitation, ET, soil moisture, etc. → Demand for water from the plant in relation to available soil moisture
Monitoring of Drought • Importance of drought indices → Simplify complex inter-relationships and provide a good communication tool for many audiences → Quantitative assessment of climatic conditions → Provide a historical perspective that can be used in planning and design applications
Data and Methods
Long multi-spectral and multi- resolution time series SpotVeg, Proba-v – Sentinel-3 MODIS - VIIRS AVHRR ERS ASCAT (Metop A-C) SMOS, SMAP 1980 1990 2000 2010 2020
Long multi-spectral and multi- resolution time series SpotVeg, Proba-v – Sentinel-3 MODIS - VIIRS AVHRR ERS ASCAT (Metop A-C) SMOS, SMAP 1980 1990 2000 2010 2020
Selected Indices • MODIS NDVI : Vegetation vigor • MODIS LST : Land Surface Temperature • ASCAT SWI : Soil Moisture m ( s i t )e − (t −ti ) T SWI (t ) = i for ti t e i − (t −ti ) T
Normalization of Remote Sensing Obs. VAI: Vegetation Anomaly Index NDVI: NDVI at one date NDVImean: mean of NDVI for a selected period s: standard deviation of NDVI → The same normalization is applied to Soil Moisture (MAI) and Temperature (TAI)
Mixed indices Indi = αi VAIi + βi MAIi Indi − Indi mean GDIi = σInd,i Zribi et al., RS, 2021
Classify drought on two dimensions VAI Ambiguous: Healthy vegetation but Dry Soil DRY -Inf -2S -1S 0 1S 2S Inf -Inf -2S 8 9 -1S 4 5 MAI 0 1 Ambiguous: Low 1S 7 6 vegetation but Wet Soil 11 10 WET 2S Inf Le Page, Zribi, Scientific Reports, 2019
Search for similar years using a drought vector
Study Area: North-West Africa ESA CCI-LC V2.0.7 GLCNMO V3.1
Caracterization of agricultural calendars Minimum of NDVI Maximum of NDVI Average Date of maxNDVI Stdev of Date of maxNDVI
Occurrences of Situations VAI -Inf -2S -1S 0 1S 2S Inf -Inf -2S 8 9 -1S 4 5 MAI 0 1 1S 7 6 11 10 2S Inf 2007 to 2018, November to April
Occurrences of Situations: Normal and moderate 2007 to 2018, November to April
Occurrences of Situations: Extremes 2007 to 2018, November to April
Occurrences of Situations: Ambiguous 2007 to 2018, November to April
Drought qualification for the study area 50 VAI 45 % Moderately Dry -Inf -Inf -2S -1S 0 1S 2S Inf 40 35 %Very Dry -2S 8 9 -1S 4 5 30 25 % MAI 0 1 1S 20 7 6 11 10 15 2S Inf 10 5 0 Avg. 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 25 Good Vgt but Dry soil Good Vgt but Dry soil 2 VAI -Inf -2S -1S 0 1S 2S Inf Low Vegt but Wet soil 2 Low Vegt but Wet soil -Inf 20 -2S 8 9 -1S 4 5 15 MAI % 0 1 1S 7 6 10 11 10 2S Inf 5 0 Avg. 2008 2009 2010 2012 2013 2014 2017 2018 2011 2015 2016 2007 to 2018, 90 administrative areas. November to April for each agricultural year
Drought qualification for the study area 50 45 % Moderately Dry 40 35 %Very Dry 30 25 % 20 15 10 5 0 Avg. 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 25 Good Vgt but Dry soil Good Vgt but Dry soil 2 Low Vegt but Wet soil 2 Low Vegt but Wet soil 20 15 % 10 5 0 Avg. 2008 2009 2010 2012 2013 2014 2017 2018 2011 2015 2016 2007 to 2017, November to April for each agricultural year
Drought qualification for the study area 50 45 % Moderately Dry 40 35 %Very Dry 30 25 % 20 15 10 5 0 Avg. 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 25 Good Vgt but Dry soil Good Vgt but Dry soil 2 Low Vegt but Wet soil 2 Low Vegt but Wet soil 20 15 % 10 5 0 Avg. 2008 2009 2010 2012 2013 2014 2017 2018 2011 2015 2016 2007 to 2017, November to April for each agricultural year
50 45 % Moderately Dry 40 35 %Very Dry Use cases for the peculiar years 30 25 % 20 15 10 5 0 Avg. 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 25 Good Vgt but Dry soil Good Vgt but Dry soil 2 Low Vegt but Wet soil 2 Low Vegt but Wet soil 20 15 % 10 5 0 Settat, Morocco Aïn Defla, Algeria Kairouan, Tunisia Avg. 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2007-08 2015-16 2017-18 NDVI SWI Cumulative Rainfall
Performance of the forecast Percentage of Percentage of Average Rank First Analog First or Second Analog November 21.2 38.4 4.09 December 32.6 53.0 3.12 January 47.5 72.4 2.46 February 57.3 80.0 2.03 March 71.4 91.7 1.51 April 100 100 1
Use Case: Settat, Morocco
Use Case: Settat, Morocco 1 1 - 3 1 1 3 1 1 2 1 3 1 1 1
A Webapp with monthly updates
Thank you for your attention
You can also read