Development of a Multichannel Spectrometer for the Thomson Scattering Diagnostic on Pegasus
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Development of a Multichannel Spectrometer for the Thomson Scattering Diagnostic on Pegasus N. L. Schoenbeck, A.S. Dowd, R.J. Fonck, J.I. Moritz, D.J. Schlossberg, and G.R. Winz APS - DPP Nov. 16, 2011 University of PEGASUS Wisconsin-Madison Toroidal Experiment
Abstract • Motivation: Explore electron transport in helicity-driven discharges and investigate edge stability • Source: Red-shifted scattered light from frequency doubled Nd:YAG laser (532-632 nm) • Spectrometer Components: – New high throughput volume phase holographic (VPH) grating technology – New high quantum efficiency image intensified CCD cameras (ICCD) • Design: – 2 temperature ranges: 10eV-100eV and 100eV-500eV – Up to 8 spatial channels per spectrometer • Result: A compact, simplified system N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Pegasus Toroidal Experiment High-stress Ohmic Experimental Parameters Equilibrium Field Coils heating solenoid Parameter To Date A 1.15 – 1.3 R(m) 0.2 – 0.45 Ip (MA) ≤ .21 IN (MA/m-T) 6 – 12 li 0.2 – 0.5 κ 1.4 – 3.7 Vacuum τshot (s) ≤ 0.025 Vessel βt (%) ≤ 25 PHHFW (MW) 0.2 RF Heating Antenna Toroidal Field Coils Ohmic Trim Coils Plasma Limiters N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Thomson Scattering Background info • Elastic scattering of EM radiation off free electrons in the plasma • Low energy limit of Compton scattering • Results in temperature dependent spectrum of Gaussian shape about the laser wavelength – At high temperatures there is a slight relativistic blue shift N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Thomson Scattering On Pegasus • Preliminary calculations of scattering light on Pegasus yields an average of ~3600 scattered photons per laser pulse in the direction of our viewing optics – For more info see Dave Schlossberg PP9.00008 3 80x10 • To improve data analysis at various temperatures, the 60 spectrometer has been Intensity (AU) 40 designed for low (10-100eV) 20 and high (100eV-500eV) ranges 0 480 500 520 540 560 580 nm N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Implementation of a Thomson Scattering Diagnostic Laser Test See Dave Schlossberg PP9.00008 Setup • Selection and testing laser – 2J 532 nm Nd:YAG laser with ~10ns pulse length • Scattering calculations and reduction of stray light within Pegasus Tokamak Background – Beam line baffles Channel Locations – Beam dump • Viewing port and background channels Beam Dump Design N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Pegasus Thomson Scattering System Key Components • Frequency doubled Nd:YAG laser @ 532 nm Spectrometer exit Fast-gated • Beam Dump lens ICCD VPH transmission • Collection Lens & Fiber Optics: dispersion grating – 136mm clear aperture with an 80 cm field of view along the laser Spectrometer entrance lens – Fiber optic bundles to image plasma location to spectrometer Fiber optic bundle (one spatial channel) • Spectrometer – Achromatic lens at spectrometer input Collection lens – Cut-on filter to block laser wavelength Beam – Volume phase holographic (VPH) grating steering Scattered mirror light • New high efficiency, >70%, transmission gratings Beam dump • Simplifies spectrometer design and reduces stray light from reflections Plasma – Camera lens at spectrometer output – Image intensified CCD (ICCD) cameras Nd:YAG • High quantum efficiency (QE ~45%) laser • Low Noise N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Thomson System Location on Pegasus Laser Collection Lens Spectrometer N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Collection Lens Designed to Collect Full Field of View • Design Criteria: – Collect 80 cm flat field of view 72cm from lens – Resolution sufficient to collect a scattering area ~1.3cm x 0.3 cm • Curved image plane with open locations for fiber placement • Image Plane: F# 2.1 with a focal length of 20.2cm • Resolution: 100um • Magnification ~1/3 Collection Lens Field of Fiber Optic View Bundles Transmit (FOV) Light to Spectrometer Image Plane N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Fiber Optic Bundles Map to1.4cm of Light Along Laser Beam • Each spatial channel: – 0.3 cm tall (across the laser) by 1.4 cm along the laser in the plasma – With demagnification this gives .98mm x 4.50mm fiber dimensions • Fibers will be stationary with plans to populate more plasma locations in the future – Repositioning fibers for different data points done manually as needed – Initial measurement will be done with 8 spatial channels: 4 data points with corresponding background channels – Plans to expand to 24 spatial channels 532 nm Laser fi Beam THE FIBER O Fiber Optic N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011 Bundles
Thomson Spectrometer Layout N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Large diameter Input Lens & Filter to Reduce Walk-off • Input Lens: Achromat Transmission from Wright Scientific % 90.00001 – F# 1.8 with 124mm focal 80.00001 length 70.00001 • Images collimated light 60.00001 XR3002 onto 3” cut-on filter 50.00001 "1.5 degree tilt" "3 degree tilt" "4.5 degree tilt" 40.00001 – Block wavelengths
VPH Grating Designed for High Throughput in 2 Temperature Regimes • Two gratings – 2971 lines/mm for low temperatures (~10eV-100eV) – 2072 lines/mm for high temperatures (~100eV-500eV) • 3” gratings to minimize walk-off • Dispersion selected such that camera width is J. Arns KOSI limiting the etendu • Spectrometers will be built at two input angles – 54 degrees – 36 degrees N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
VPH Grating Mount Designed for Flexibility with 2 Blaze Angles • Kinematic mount designed to clip in appropriate grating for a given temperature range • 3 degrees of freedom (roll, tilt, & yaw) built in for fine adjustments N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Detector Area Sets System Etendu & Size of Fiber Optic Bundles • Design Criteria: • 8 legs are bundled together – Eight spatial channels vertically – Bundled length ~1’ (30cm) to simplify strain • Depends on camera detector relief at spectrometer height and magnification of spectrometer • Minimum spacing to maximize use of detector area – 10 spectral bins horizontally – ~0.25mm gaps between fiber channels • Based on camera detector width and dispersion of grating • Light from fiber channels collimated – Total area must be conserved by entrance lens – Central 2 channels nearly parallel – Others will be collimated at slight angles CCD Detector Chip N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Exit Lens & Camera Aligned such that 532nm Light Misses Detector ! ! ! ! ! • Camera aligned such that laser light is not!"#$#%&'(&)*+,-.&/0& detected ! • Photography lens used as the exit lens ! ! – High resolution – Small demagnification given input lens • Camera stage designed for 2 input angles. ! !! ! ! 01#23%14& & ! B/+!C09-!C$"3?!0D+5-(5+!D5.@(,+9!)582/-!8>02+9!! !"#$%&$'()*+,-./&0(-+-1'& +E+1!(1@+5!@8CC8,(6-!682/-812!,.1@8-8.19! K+0-(5+9!9D+,806!9,5+02+9!.E+5!-/+!+1-85+!C50>+! 9+--8129!069.!81!5.(2/! ! F5+,89+!>01(06!C.,(9812! 98-(0-8.193! ! ! G.)(9-!C(66H>+-06!,.19-5(,-8.1! !"#$2%&$'3,.,4(&0(-+-1'& Detector Active ! I@+1-8,06!,.6.5!5+D5.@(,-8.1!.C!066!>.@+69!! 099(5+9!-/+!J(068-A!.C!D5.@(,-9!>+09(5+@!! K+0-(5+9!9D+,806!,.0-812!C.5! Area )A!/(+!@8CC+5+1,+! .D-8>8=+@!D+5C.5>01,+!81! 1+05H81C505+@!0DD68,0-8.193! ! K.5!81@(9-5806!,0>+509!>3! 5.64,.&71)'+*& ! L.(1-9!01@!.D-8,06!,.0-8129!,01!)+!! :E0860)6+!C.5!.-/+5!,0>+50! >.@8C8+@!.1!5+J(+9-! >.(1-9!9(,/!09!QKR!S!.5! ! L?M!9,5+.(1-3! to spectrometer "#$#%!&!'()*+,-!-.!,/012+3! ! 4056!7+899!:;!&!
ICCD Detectors Chosen for High Gain & ,&#'(! 1(,+4,%&#/(! +,4%! )0(! $%&'(! $#)(#*$+$(,! 5=())(,! )0&#! ;G! =$)78! 94! +>,)0(,! (#0&#/(! )0(! 1(,+4,%&#/(! 4+! "HEIJ!KDDE*:!)0(!DDE*!&,(!)0(,%4(2(/),$/&223!/442(-8! ! Low Noise Qualities "#!&2)(,#&)$.(!/4>12$#'!%()04-!$*!)4!>*(!&!2(#*!=()B((#!)0(!4>)1>)!4+!)0(!$%&'(!$#)(#*$+$(,!&#-!)0(!DDE!L!&! M2(#*N/4>12(-!KDDEO8!90$*!0&*!)0(!&-.&#)&'(!4+!&224B$#'!)0(!$%&'(!$#)(#*$+$(,!)4!=(!,(%4.(-:!)0>*!(#&=2$#'! )0(! DDE! )4! =(! >*(-! &24#(! +4,! >#$#)(#*$+$(-! &112$/&)$4#*8!P$)0! &! *>$)&=23! 0$'0! Q>&2$)3! $%&'(! $#)(#*$+$(,:! )0(! Manufacturer’s 2(#*N/4>12(-! &,,&#'(%(#)! Specifications: /&#! &2*4! 1,4->/(! Andor &! =())(,! Q>&2$)3! $%&'(! &*! )0(!iStar 734.&,$&)$4#*! &#-! +$=,(N)4N+$=,(! =2(%$*0(*! &,(! ,(%4.(-! +,4%! )0(! *3*)(%8! E$*&-.&#)&'(*! 4+! 2(#*N/4>12(-! *3*)(%*! &,(! 2&,'(,! 103*$/&2! *$6(:! Effective Active Area (mm) 13.3 x 13.3 24B(,!'&$#!2(.(2:!$#/,(&*(-!*/&))(,:!&#-!$#/,(&*(-!-$*)4,)$4#8! Effective Pixel Size (um) 19.5 x 19.5 ! Read Noise As low as 2.9 e- "--$#'!&#!$%&'(!$#)(#*$+$(,!)4!&!DDE!'$.(*!)B4!%&$#!&-.&#)&'(*R! Active Pixels 1024 x 1024 ;8! K#/,(&*(-!*(#*$)$.$)3@!*$#'2(!104)4#!(.(#)*!/&#!=(!-()(/)(-!B0(#!)0(!%$/,4!/0&##(2!12&)(!5SDT7!$*! 120 - 1090 Spectral Range (nm) 41(,&)(-!&)!0$'0!.42)&'(*8! Photocathode QE (max) Up to 45% ))(,$#'!)4!#*(/4#-!2(.(28! Minimum Optical Gate Width As low as 1.2ns Image Intensifier Gain >200 ! N.L. Schoenbeck APS-DPP 11/16/2011 From Andor iStar 734 Manual !
New Gen 3 Image Intensifiers Have Improved Quantum Efficiency • New technology has made it possible to make a simplified detector system • Gen 3 ICCD cameras have ~45% QE across visible region • Motivated switch to 532 frequency doubled Nd:YAG laser to take advantage of this technology From Andor iStar 734 Manual N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Dark Noise Testing Indicates Low Read and Low Dark Current Noise Andor iStar 734 ICCD Camera (S/N 4075) Dark Noise 14 31kHz Digitization (32us Read Time per Pixel) 1MHz Digitization (1us Read Time per Pixel) Digitization Measured 62kHz kHz Digitization (16us Read Time per Pixel) Rate Read Noise RMS Counts per Pixel 12 500kHz Digitization (2us Read Time per Pixel) (RMS per Pixel) 10 31 kHz 6.65 ± 0.10 8 62 kHz 9.66 ± 0.02 6 500 kHz 8.61 ± 0.02 1 MHz 8.39 ± 0.01 0 20 40 60 Exposure Time (ms) 1.0 Normalized Average Counts per Pixel !!!"#$ ! ! !!!"#$!!"##$%& ! 0.8 • CCD dark noise ~ 0.6 • Read noise dominates dark signal 0.4 – Can be reduced by hardware binning 0.2 0.0 • Additional noise sources include electron 0 2 4 6 8 Hardware Bin Size (Bins are Square) 10 background illuminescence (EBI) – Expected at < .2 electrons/pixel/sec N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Camera Sensitivity Appears Linear with Intensity • Preliminary test of the camera response with a steady white light source • Variable gating collects light • Background signals level ~800 (programmed by Andor) 0 200 400 600 800 1000 0 200 400 600 800 1000 0 0 2000 50us Light Collection 100us Light Collection 2400 200 200 2400 Average Counts per Pixel 2200 2200 1800 2000 2000 400 400 1800 1800 1600 1600 600 600 1400 1600 1400 1200 1200 1000 1000 800 800 800 800 1400 1000 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 1200 0 0 500us Light Collection 1000us Light Collection 200 200 2400 2400 2200 1000 2200 2000 2000 400 400 1800 1800 1600 1600 800 600 600 1400 1400 1200 1200 200 400 600 800 1000 1000 800 800 1000 800 800 Integration Time (us) 1000 1000 N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Thomson Data Analysis Using ICCD Camera • Image data: All 8 spatial Average Counts per Pixel 822 channels into a single file for Bin Shown 820 818 • Background fluctuations 816 subtracted for each shot 0 200 400 600 800 1000 Pixel Number • Spatial & spectral bins are 0 200 400 600 800 1000 0 created in software – 3nm spectral bins for 10-100eV 200 – 6nm spectral bins for 100eV-500eV 880 400 • Individual bins searched for 860 cosmic rays 600 840 • Fitting routines will determine 820 800 plasma temperature and density 800 1000 Dark Noise Image from S/N 4075 N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Summary • A new Thomson Scattering system has been designed for the Pegasus Toroidal Experiment – Novel spectrometer components include: • Transmission VPH grating – High efficiency (>70%) • ICCD camera as detector – High gain – Fast gating – Low Noise • Testing of individual components is underway • Preliminary data expected early next year N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
Acknowledgements & Website Work supported by US DOE Grant DE_FG02_96ER54375 For a pdf version of this poster please visit: http://pegasus.ep.wisc.edu/Technical_Reports/Conferences.htm Or Contact Nikki: NSCHOENBECK@WISC.EDU N.L. Schoenbeck, APS Division of Plasma Physics 11/16/2011
You can also read