De la recherche fondamentale à la Start-Up - Etienne GHEERAERT CNRS,University of Grenoble - Alps and University of Tsukuba
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
De la recherche fondamentale à la Start-Up Etienne GHEERAERT CNRS,University of Grenoble - Alps and University of Tsukuba 1 JEPHY 2018 Avignon
Contexte LEPES: Laboratoire Propre de Recherche Fondamentale en Physique du Solide CNRS MPB (ancêtre INP): Mathématique et Physique de Base Ion Solomon (1990): « Si vous ne savez pas pour quelle application vous travaillez, alors vous travaillez à 100% pour les japonais et les américains, car eux l’application ils vont la trouver . » 2
Contexte NIMS (Japon): Institut de Recherche sur la Science des Matériaux Impact du terme « Fondamental » Innovation au coeur de la recherche Des outils pour traverser la « vallée de la mort » 3
Contexte: NEEL group Wide Bandgap Semiconductor Group Understand Control Innovative devices Impurity centres Epitaxial Growth Electronic Bio-related Diamond Heterostructures Transport in semiconducting In-situ monitoring Power electronics Membranes nanowires Nano-fabrication Nanowire LED Bio sensors Superconducting semiconductors Impurity incorporation Single photon source Photospintronics Oxide gate insulators Superconductor/Insulator Transition ANR Transport in ZnO (Coll. Leti) FUI Power Schottky (Alstom) ANR Transport in GaN (Coll. Leti) ANR JC D. Eon LANEF PhD (Coll. G2ELab) LANEF Eqt CARAPACE LANEF PhD (Coll. INAC) 4
Context: Diamond diodes Schottky diodes at NEEL Breakdown voltage: Vbreak>1000 V on 1.3µm On resistance : Ron = 52 Ω (@300 K) Diode surface : S = 7.85 10-5 cm2. RonS = 4 mΩ.cm² A. Traore et al APL 2014 5
What material for power electronics ? Property Symbol Si 4H-SiC GaN -Ga2 O3 Diamond Bandgap EG [eV] 1.1 3.23 3.45 4.5 5.45 Sat. drift velocity vS [107 cm/s] 1.0 2.0 2.2 - 1.1 Electron mobility µn [cm2 /V.s] 1500 1000 1250 300 1000 Hole mobility µp [cm2 /V.s] 480 100 200 - 2000 Breakdown field Em [MV/cm] 0.3 3 2 8 10 Dielectric constant ✏r 11.8 9.8 9 10 5.5 Thermal conduct. [W/cm.K] 1.5 5 1.5 0.11 22 BFM (absolute) [MW/cm2] 42 2⇥104 8⇥103 1.4⇥105 9.7⇥105 BFM (relative) [Si=1] 1 550 190 3200 23000 Table 1: Properties of main semiconductors for power electronics and the corresponding Baliga 3 BF M = µ✏ E r m Figure of Merit (BFM). For each material the most favorable carrier mobility (µn or µp ) is used to calculate the figure of merit required to get a 1 kV breakdown voltage, and this leads to a high resistance 6
What material for power electronics ? 1,0E+00 Si CoolMOS 0K Si 1D limit 30 Si-IGBT Diamond SiC 1D limit Si Schottky Diamond 1D limit Diamond Schottky 1,0E-01 Si-CoolMOS TO G Si IGBT C Si SiC MOSFET CREE Gen3 SiC-MOS RonS (Ohm-cm2) Cree SiC p-GTO Cree SIC n-IGBT 1,0E-02 0K 30 d on SiC m 3K IGBT ia 52 D d on 1,0E-03 m ia D SiC-523K SiC-300K SiC-MOSFET 1,0E-04 100 1 000 10 000 Breakdown Voltage (V) Based on H. Umezawa calculations, AIST 7
Potential application (6) Improving fuel efficiency 15 Silicon SiC Goal: 10% fuel improvement* *Japanese JC08 test cycle Due to the increased efficiency, Toyota is aiming for a 10% improvement in fuel efficiency Toyota 2014 8
What material for power electronics ? EMICONDUCTOR TECHNOLOGY ROADMAP FOR POWER ELECTRONICS DEVIC Two possible approaches within the semiconductor technology roadmap for Power Electronic devices: • Progressive evolution • Significant improvement (“revolution”) Diamond performance performance . rtunities ent to diamond eadily SiC, GaN Device ent. Device . Si Technology and cost barriers Executive Summary ©2016 | www.yole.fr | Diamond substrate in power electronic applications - Final report - August 29th, 2016 9
European Project Green Electronics with Diamond Power Devices 4 M€ 2015-2019 15 partners H2020 “Low Carbon Energy” Coordinator: E. Gheeraert - NEEL Kick-Off meeting, Grenoble June 2015 10
Business model Diamond ELS OVERVIEW epitaxy provider ess model 1: Diamond substrate supplier (epitaxy services) Diamond Diamond Diamond Device device wafer epitaxy packaging processing +diamond epitaxial layer(s) Diamond wafer The Company will realize er(s) purchased from an epitaxial growth on a Diamond device processed and packaged by an external external supplier purchased wafer and sell company (Element Six, the “substrate” to a power Sumitomo Electric…) device maker ness model 2: Diamond bare die supplier Diamond Diamond Diamond Device device wafer epitaxy packaging processing 11
DiamFab ❖ Un CDD ❖ 3 enseignants-chercheurs ❖ PI: ❖ Savoir Faire croissance ❖ 3 brevets sur composants ❖ Soutien: SATT, French Tech ❖ Statut: Incubation ❖ Création: Automne 2018 12
Conclusion ❖ Ne pas hésiter à discuter vos idées avec le SPV ❖ Breveter c’est facile (avec le SPV) ❖ Une start-up c’est une belle aventure ❖ Notre mission c’est de créer de la connaissance ❖ Notre devoir c’est d’accompagner les opportunités de valorisation 13
Thanks Post-doc: Permanent: M. Floren*n D. Eon P. Thanh Toan J. Pernot P. Muret PhD students: H. Umezawa K. Driche D. Chaussende C. Masante E. Bustarret J. Letellier O. Loto A. Claudel J. De Vecchy D. Barral B. Fernandez MSc/BSc: C. You F. Fillol European Community's Horizon 2020 Programme (H2020/2014-2020) under grant agreement n° 640947 14
You can also read