Celestial Amplitudes 8 - ICTP - SAIFR
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
"" au . & Celestial Amplitudes Sabrina Gonzalez Pasterski Princeton PCTS , 8
8 Celestial Holograph ypurportsadual.it#ybetweengravitationa1 flat spacetimes and CFT living scattering the celestial sphere in asymptotically a on . 8 Celestial Amplitudes are 5- matrix elements in a basis where they transform as conformal come lators in D- 2 . f : i Bo •
will the current status of this Today we review dictionary . 0 Part I Asymptotic Symmetries 8 Part II Celestial Amplitudes The results presented are thanks to : Adamo Arkani Hamed Ashtekar, Atanasov Bhatakar , Cachazo Campiglia , Casali , Chang Cheung , Coi -10 Compere Crawley de la Fuente Barn ich Athi ra , Avery , Ball Banerjee, , Donnay , Dumitrescu , Fan Fiorucci , Fotopoulos - , , , , , , , ,, , , , Giribet Gonzalez , Gosh , Haco , Hamada , Hawking He , Him Wich Ladd ha , Lam , Law Li , Lippstreu Liu , Long , Lysov , Magnea Manu , Mao , Mason , Melton Miller, Mirza cyan Mitra Mizera Nandan Nan de , Guevara , , , Huang Kopec , , , , , , , , , , , Narayanan , Nguyen , Nichols, Oblak , Oliveri , Pandey S.P. , Pate , Paul Perry , Porfyriadis , Prabhu, Puhm , Radar ice , Raju , Rojas Rosso Ruzziconi , Saha Satter Samal Schreiber , Schwab , Sen Seo Seraj Shao Sharma , Shiu , Shrivastava Stieber ger , , , , , , , , , , , , , Strom Taylor inger, sand rum , Suskind , , Trevisan i , Troessaert , Venugopal an , Verlinde , Udovich , Wald , Wen Yuan Zhiboedou , Zhu , Zktnikou , , . . . w/ ! 12:20 - 13:10 Discussion session Andy f Tomasz
The first step is to match the symmetries on both sides of the proposed duality . . . •÷÷•• •.•.•:•. ÷ • -•Bo• - N÷ aqg.az mom ••••→-••a• g. µfBB B.at a. m MPB ago BB 8 . ; a. I 1 Lorentz transformations Minkowski space act conformal of as global transformations on the celestial sphere . ?⃝
For what follows we will want to keep in mind how to connect position and momentum space descriptions of the scattering problem 17 , E) ✗ w - ly , z , E) m2 p2 = p2 = 0 - Fy ( il E- 2-1 ? pm = It y -1 2- E , z +E , , I - ' y - 2- E) pm = w/ It 2- E , z +E , il E- 2-1 , I - 2- E) For 5- matrix elements we would typically specify a set of on - shell momenta for the in and out particles .
while inposition space we need to specify the field configurations on early and late Cauchy slices . → " qµf•a o•qoBB_a→ zBBqaB For gravitational scattering we want to allow fluctuations of the bulk geometry and will specify the free data at the conformal boundary .
Let's look at the Penrose for diagram Minka . The causal structure of the boundary will be the same for asymptotically flat spacetimes . # ✗ 2- = e tan ¥ it , It m 1=0 r m = 0 t.io ✓ + r É Massless I-1=-112×5? excitations enter and exit along null hypersurfaces We call this 5h cross section the celestial - sphere .
Let's compare this to the free mode expansion of the field operators : If ,d¥p£wg[e%a✗ei9 i9× ] ✗ equate - hmu = + ✗= ± The saddle point approximation localizes the momentum direction to align with the corresponding point on the celestial sphere . ¥1 Eh = iaa¥-zpf°°dwg[ a- lwgni ) e- iwoi-aflwgxleih.ci] it , + I ) pig ✗ e- iwqu iwqrltcoso - . = ( Z, E ) L J Lio wa - , I - it v=t+r 92=0 He Mitra , Strom inger 44 , Lysov ,
For massive fields we have a similar identification between the late time momentum and the hyperboloid timelike infinity a point on resolving . i-m-h.c.it ok y E) * e- Hrm " aly E) e- , , -2 , ~ E- , z , . ✗ L S It r ly ,¥ , E) m2 % p2 = - ✓ + r É de Boer solo clutch in 103 , Campi glia , Ladd ha ' is
we're interested in gravitational scattering in spacetimes with 1=0 . The outgoing radiation is captured by the behavior of the metric at large r , fixed u . ✓ flat tr # corrections d§= did -2 dudr y 2r28zz-dzdzi-2-MBdu2-rczzdz2-rcz-z-dz-2-DZC.cz - + dudz + DECEE dude + . . . To study *aµM¥Ñ the phase space f symmetries one needs to g g. ••EEsoaÉÉ#_§¥→BÉ→§q tl I µ pick convenient gauge a 8 specify physical falloffs Rope B-zoziez-s-r-IMM.at#-rgs@-zins ¥1K ¥¥%EoI Bondi ' ' Metzner 62 62 , van der Burg , Sachs
Residual diffeomorphisms that preserve the falloffs and act non trivially - the Asymptotic on the asymptotic data are part of Symmetry Group . Allowed Symmetries ASG = Trivial Symmetries ASG will be much larger then the The group of isometries of any given spacetime within this class . BMS 3 Poincaré # generators : A 10 Bondi ' ' Metzner 62 62 , van der Burg , Sachs
8 Super translations shifts the Time coordinate induce angle dependent - in }/ = flz , E) Ju It 8 Super rotations extend global conformal transformations to local ckvs }/ = YZ / z) Jz + E- DZYZ / E) Ju + cc . 0 § It 0 go o o o o o ' g o o o o 0 ¥ g ooo o ' g og Bondi , van der Burg , Metzner ' 62 Sachs ' 62 Barn ich Troessaert 41 , $
manifest in These soft theorems asymptotic symmetries . scattering amplitudes as "m Lout / QS - SQ 1in) ✗ Coutts / in> w→o 8 The canonical charges are co - dim 2 and can be written as an integral of data on It? Sdu Jul ) . < → Io W 8 Most of the symmetries are spontaneously broken by the vacuum and the term that shifts generates inhomogeneous is linear in hmu Q 3- Qs ~ Sdu Jufdw e- iwualwx) ' 65 Strom He Weinberg inger 43 , Lysov , Mitra , Strom inger 44
Moreover, these Ward identities of currents 2D CFT are naturally organized in terms in a . 4 D ASG
the subleading soft theorem In particular , graviton gives us a candidate stress tensor . Tzz =g÷G fduudufdtdwfz.DE cww However to construct operators with definite , 2D conformal weights we will need to change our scattering basis . ✗ n < Tzz Oi . . . Ori > = § / ¥zup ¥1] < Oi + . . . Ori ) ✗ . × h.IE/-w?wIsnl,h-..--tzl-w?wisu ) . . I Cachazo 44 Kapec Mitra , Radar in , Strom Kopec Lysov 44 ' Strom S.P. Strom 16 , inger , , , inger , inger
theorem In particular , the subheading soft graviton gives us a candidate stress tensor . Tzz =g÷G fduudufdtdwfz.DE cww However to construct operators with definite , 2D conformal weights we will need to change our scattering basis . CTzz.ci#On---wim-wJwoiHalwx1S1in> ✗ n ✗ r ✗ . h.EE/-w?wIsul,h-..--tzl-w?wisu ) . . I Cachazo 44 Kapec Mitra , Radar in , Strom Kopec Lysov 44 ' Strom S.P. Strom 16 , inger , , , inger , inger
A conformal wavefunction " is function of bulk point X primary a a and a reference point we ① which transforms as follows Is / AT ✗ EI-÷ I +7 c- w-i-d-P-JD.sn/II,-lXiw.w-l " ☐ ☒ i , = Icw + d) Where Ds is the spin s rep of the Lorentz group Here we will consider - . . ☒ § with 5- 1J 1 that solve the , appropriate source free linearized eom . 5. P . Shao 47 ,
product of such a wavefunction with the field operator Taking an inner (quasi ) with 2D conformal dimensions and spin J gives primary operator - a . twin)= i / ① 4×4 1×+1 ; with ± 0s☐ II. , , out selected These operators carry a ± label indicating in versus , by taking ut ie uts . u qm 9M = ( It WÑ , w -10 , ilño wt , I - - wñ ) ~ ÷xP 5. P 47 . , Shao Donnay , S.P. , Puhm '20
these wavefunctions to Mellin For m 0 are equivalent = gauge a transform of on - shell plane waves . l ,e±iw9X± ☐ ' Idw - " To ~ w Eu µ D ,J ,, . . . , - A similar transform exists when m -40 In either case , we can apply . to 5- matrix elements to land on Celestial Amplitudes this transform directly . ( Z, E ) ( w , in ) • w - ly ,¥ , E) m2 p2 0 p2 = = - So°°¥fd%G☐1y wt / ) fiodww " ' f) - z E; w . , , , de Boer solo clutch in 103 de la Fuente 16 S.P. Shao Strom inger 47 ' , Cheung , , Sun drum , ,
elements this basis By construction , 5- matrix in ¥→¥É¥ ¥%% n .ie#ioIiI.ATsi,zi,Ei)--T/fYdwwsi-l)Alwi,z- i =L i , E- i .É ¥¥¥i÷÷:÷÷!÷ → __oo-o--→ É¥E☒BI•ÉEBg¥jµµ*← __-osoo--s---= will transform like come lators of because the quasi primaries - external boost particles are in eigenstates . -2h -5h V11) 1h ,ñiz , E) = kz + d) / c- Etd ) 1h I , ;E¥-b_d ¥I¥- > , • ④@÷:§ . " i ' Joos 62 Banerjee ' 18 i. : e e
elements this basis By construction , 5- matrix in ¥:i.¥E ¥¥¥ n bi 1) A / ;) €K→*:÷→%É • r.ae#ioIiE.ATSi,Zi,-Zi)--T/fYdww - Wi zi , E .EE#EIIxi--l-ooo-o---* , É¥E☒BI•€÷agy¥j F.am#-----oso--------- will transform like come lators of because the quasi primaries - external boost particles are in eigenstates . J; = jth helicity ✓ ;) ;ÉKcz ATS a-Ei -15 Ñfsi azitb (c- E. + d- 1b¥] ;) ☐ Fid , -¥+d = . + d) ; , zi , E , J J • ⑦@÷:§ e . e • ! ; ' Joos 62 Banerjee ' 18 i. i e e e e
This transformation is inverted for the easily radiation Si on principal series which capture finite energy . D= It it , ✗ c- IR However translations shift the conformal dimension >☐ pie que ←→ ☐ +1 = → and will want to continue to SEE we analytically . s ' 5. P . Shao 47 Donnay , Puhm , Strominger 18 stieberger Taylor , 48 Donnay , S.P. , Rehm 20 ,
It is straightforward to do this transform for low point amplitudes . fixed / 4) ← " A / Wi , Zi , Ei ) = M ✗ 8 / Ep ;) , 4. = Sw ; g Letting S = Ewi , q =L-1W ; . integrated ijiodwiwisi 4.) foods g- "" i-Ii dq.q.si -18kg l - = . - 1) l - i= I i= , "' so that for ne s the g. are localized by the 8 Ep ;) and 8kg . - 1) n > Git ✓ < 2- ; The 5- functions low point correlations remaining imply singular - . ' S.P. Shao Strom Schreiber , Vukovich , Zlotnikov 17 , , inger 47
The aim of our from 413 5- matrix elements to 2D correlations map < Pout i / ;) ( Ot ) - S / pin /→ 0 diJi Aj Jj - - - . . , , , ⑤ is to be able to use CFT techniques to learn about amplitudes . ④ that this dual CFT We are already seeing is exotic , both in its ④ complex spectrum , and in the singular behavior at n±4pt . ④ Meanwhile , the want to look at unusual quantity we in 413 is also ⑥ because we are probing scattering at all energy scales . • ⑧ ② ④ ④ ⑥ ④ ④ ② ④
To understand how to effectively use this framework we must build up our dictionary ! ✗:FY.÷¥¥÷*÷÷÷: ies#aima*+sme+÷ry j:÷j me?i:Ei-i esianYE-→÷i ; Dressings Vertex Operators " Ssi " g. ¥ ¥ , Let us now examine how celestial amplitudes encode the various limits behavior of scattering in 0 Infrared soft -1hm 's currents states dressings null - , , , 8 Collinear - Celestial opes conformal block decomposition , 8 Ultraviolet - convergence < → ultrasoft , anti Wilsonian- paradigm
Since soft theorems motivated this program we should understand what the they translate to in celestial basis . also l f.w*dw wa - ~ that factorizations at various orders in w - o turn into factorizations of the residues as A→ special values < outta Cw - g) 51in > = ? /I '%÷ P"Ep?g%" ) Coutts / - i in > + ocw) ↳ ¥ , ↳ ¥ ☐ These residues correspond to celestial currents . - y rominger 49 19 Guevara 49 ' ' de la Fuente , Sun drum ' Fan Fotopoulos Taylor 49 Pate Radar in St Adamo , Mason , Sharma Cheung , 16 , , , , 19 Puhm
The familiar universal soft theorems correspond to Sfor which the conformal wavefunctions primary are pure gauge . Od G) ,s=i(O -1-00%-52 , if c. pure gauge 1J / A soft -1hm . Current Asymisym . " v11 ) 1 1 w J large -1/2 3/2 42 W S large SUSY " 2 1 w P translations super 0 WO T superrotations /Diff / 54 ' Cheung de la Fuente , Sundrum Puhm Puhm 205.1? Trevisan i'21 16 Donnay Donnay ,Puhm / / Strominger ' , 5. P Shao 17 , 18 S.P. , , , . ,
of the These IS , J ) are also special from the point of view global conformal multiple-1s . Primary states 41h15 > =L , thin> = 0 have descendants when primary 1) ) " -114,57=0 " 41L 1) 1h 5) - , = - K / 2h -1k - 1L - , and ditto for -4 When both conditions . are met we get nested primaries . 1¥ :-). ' II. Ñ " 1L - , ) I ¥4 > I ' ¥) I "¥¥>
correspond infinite tower of ' conform ally soft theorems ' These to an at de l -27=0 . 01¥ a- so out ✓ 0 > 0 >✓ While the soft theorems of the previous table descend to operators transformations generating asymptotic symmetry OD , J , > ⑤2- ☐ - J , Q[y]=Jd%Osoft Y - ' 05ft c- Banerjee Pandey , Paul 49 Guevara , Himwich , Pate 21 S.P. Puhm Trevisan i 21 ' Strom , , inger , ,
correspond infinite tower of ' conform ally soft theorems ' These to an at de l -27=0 . 01¥ a- so out ✓ 0 to >✓ Whose partners can themselves be expressed as primary descendants of dressing modes . ? ⑤D J , , > ⑤2- ☐ - J , >✓ ' Banerjee Pandey , Paul 49 Guevara , Himwich , Pate 21 S.P. Puhm Trevisan i 21 ' Strom , , inger , ,
Soft factors relate amplitudes with and without an extra single particle emission / absorption . between the that Exchanges charged external legs exponential so without soft radiation vanish amplitudes . This interpreted as vanishing conservation can be non for the charges - generating asymptotic symmetry transformations . One can avoid this vanishing by dressing the operators . m~g.gr = Faddeev Kulish Perry Radar ice , Strom ' 65 ' ' Chung , 70 Kapec , , inger 17
conformal basis These dressings can be adapted to the . For ESM Iott ; it ;) W ;= exp [ - e Q ; %¥_pÉo ( Etna - E✗ µ at ) ] = ei Qi TS c- D= I Ll 2 , E) ascendant and we see that the takes the form of dressing a vertex operator . Moreover the celestial amplitudes factorize A A soft 1- hard = where 1- soft = ( eiQ.IO/ZiEil...eiQnEk-niEn1 ) 1- hard while equals the amplitude for dressed operators . Arkani Hamed , Pate Radariu Strom 120 inger - , ,
The spontaneous symmetry breaking dynamics for the 413 asymptotic symmetries is captured by simple 2D models . V11 ) ←→ free boson Large - with the important observation that the levels of the 2D anomalous dimension in 4D current algebra are set by the cusp . ( Iolz E) Idw , in D= , 4%2 1nA ,=p In / z - wt Nan de , Pate Strom 47 Him Wich Narayanan , Pate inger Paul Strom 120 Nguyen , Salzer ' ' , inger 20 21 - , , ,
Currents arise from tuning si to special values . Rather than tuning tune Zi Zj Zij = i we can - , . Collinear limits in 4D should be captured by a celestial OPE . Consider taking two gluons collinear / Z E) O☐bµ if£÷ ' Osa ( Zz Ea) ~ - CCS , Aa) O l -11 ( Zz 12=2 ) ,+ , , , , , , Dis - , z , A observation is that symmetries to very interesting we can use find CCA , S2 ) . :* , i ✗ - , / Fan , Fotopoulos Taylor , 49 Pate , Radar in , Strom Inger , Yuan 49
From translation invariance CIA , , A a) = CIA , -11 Az) , + CIA , , dat 1) while from the leading soft gluon theorem ¥1 Is 1) Cls Sal 1 - = . , , , , Moreover the kernel of the descend relation for the sub , any that imposes leading soft gluon gives an additional global symmetry IS , 2) CCS - , -1,121=14+12 - 3) CCS , , Sa) This recursion solved giving can be , CCS Sa) BCS -1 Da 1) Blx g) = - = , , , , , , collinear limit which matches what we get from transforming the . Pate , Radar in , Strom Inger , Yuan 49
Despite the behavior of low point functions , collinear limits let singular us extract the Ciju . With this data and of the spectrum our understanding , we can apply CFT machinery to celestial amplitudes . For example : 8 the of Using symmetries to go beyond leading singular terms the OPE and constrain correlations . 8 Examining conformal block decompositions to interpret intermediate and radial quantization in CCFT exchanges . pi Q Q pi g , V5 . s pie > pi, 02 04 Lam , Shao ' 17 Nandan Schreiber Vukovich , Zlotnikov ' Banerjee ' Gosh , Gonzo 20 Law Zlotnikou 120 Fan , Fotopoulos , Stieber Zhu 121 Atanasov , Melton Radar in Strom ' , , 19 , , ger , Taylor , , , inger 21
Let's take a closer look at 2 → 2 scattering Starting from . the momentum space amplitude Mls -4×8 / Ep ;) " ' 1- = , the corresponding celestial amplitude can be written as Ñ= # A / B , Z ) , D= Hsi 1) - , z= -2122-22 2- 132-24 where for massless external states out 14-1 Zij 43 hi hi 5/3 Tri ñi ) ✗ - - - - # ✗ - Zij glitz - z) is ; . • - in -2 = E ✗ Arkani Hamed , Pate Radariu Strom 120 inger - , ,
The stripped amplitude is probed at all scales energy ftp.z/--fi0dwwB-1Mlw3-zwY 8 The convergence of this integral for external for external dimensions on the principal series is tied to the UV behavior . 8 Poles field quantum gravity at BE 223 present in theory are absent in . s s us imprint of UV completion , . , . . . ' ' ✗ w M~EAI.co if e- -2m Ar Kani Hamed Pate Radar in Strom 120 inger - , , ,
Meanwhile , M around w=O expanding gives M = San ,m , rlz-IWZYGNWYmlog.TW/1uv) 8 The logs coming from running couplings give higher order poles in B. f. ↳ dww-watogbw-Ya-bfidww-wa~E.is 8 constraints from amplitudes translate Positivity to positivity constraints on the residues of the simple poles at D= 222 . I imprint of causality Chang , Huang , Huang , ' Lam , Shao Arkani Hamed , Pate Rada rice Strom 21 ' 17 120 Li inger - , ,
We have a framework that 0 T. m n#Et. . : : q - enhancements manifest makes symmetry , .;••.É¥e I Conformal Lorentz Invariance Symmetry ✗ 8 reorganizes soft and collinear limits Vertex operators , • qq.snsinagrsi.im#s Celestial OPES • 8 and is sensitive to the deep UV . We have given examples of 8 how to translate features of amplitudes into objects within the celestial CFT 8 and what kind of properties we can demand of CCFTS .
The next forward steps are to 8 Expand dictionary ① our 8 Connect to adjacent subfields 8 Look for an intrinsic construction Relativity Conformal Bootstrap Asymptotic Symmetries > 11 > Celestial Amplitudes String Theory ^ Soft Theorems Amplitudes AISKFT
"" " Null states Samal Trevisan : Pandey state /operator him Relativity cfy . Ashtekar i_wm . Banerjee Himwich Miller Currents Crawley Memory Effects Gosh Paul Narayanan Wald cheung Ruzziconi Oblak Ba " Spectrum Tnessaert Horizons Venugopal an de " " " " one, gushing Guevara poss, Saha Canonical Charges Fan Conformal / ysoft Theorems gna, Donna zniooedou , SP ①① £ ' Barnick Giribet Mirza 'yan ' seraj ' Adamo Yuan Fotopoulos Fiorucci Laddha Hamada Schreiber ' Pate Toy Models compere . Law Zhu Asymptotic symmetries Conformal Block Decomposition ✓ ↳ nsusen . ' Mao Udovich Melton Zktnik" "" " Atanasov Nandan Holography Wen Campiglia Shiu Magnea gayer Porfyriadis Kopec IR Divergences stromincser Shao Soft Theorems Lam He Lippstreu Dressings Ashtekar Strings ¥_ Man " Miter" Mason Prabhu Mitra Bhatakar Chang Radariu Cachao Amplitudes Li Raju sundrum Sen UV behavior Taylor ""° stieoerser shrivastava Amira Armani Hamed - spence yelleshpur Huang Rojas Loop Effects Black Hole Info Paradox - Supersymmetry Brandner Gonzalez Sharma Hawking Hao Avery Jiang Travaglini Rihm Collinear Limits Perry Firewalls Double Copy -3 Lesson Adamo . verlinde Dumitrescu schwab Casali
You can also read