Besoins en HPC pour l'IA - Stéphane Canu, INSA Rouen - Normandy University ORAP - 42e Forum
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Besoins en HPC pour l’IA Stéphane Canu, INSA Rouen – Normandy University github.com/StephaneCanu/Deep_learning_lecture ORAP - 42e Forum CNRS, November 5
Road map 1 Mon expérience HPC 2 l’IA ds’aujourd’hui : le deep learning ? 3 Quoi de neuf avec le deep learning? 4 CPU vs GPU 5 Conclusion
Mon expérience (HP)C & apprentissage 1989 Réseaux de neurones pour le prédiction I beaucoup d’architectures à comparer 1989 C −→ Fortran parallèle sous Alliant I 6 mois de développement I jamais utilisé : trop spécifique 1991 C −→ Matlab I évolution rapide I efficace sur les matrices I exploration des données 1998 un solver SVM rapide (Matlab)
Mon expérience (HP)C & apprentissage 1998 un solver SVM rapide (Matlab) 2005 Matlab −→ C I SVM sur 8M d’exemples I un succès . . . inutile 2014 Matlab −→ python I a cause du deep learning I de la communauté I theano, Scikit-learn 2016 theano −→ keras (GAFAM) I a cause de la simplicité I GPU transparent 2019 keras −→ pytorch, cupy, dask
Google colab – https://colab.research.google.com https://colab.research.google.com/drive/1pJ20J4I4bgxnxQJ08VncJj9aTGS9cI48 Notebook jupyter like (python) accessible via web par login (permanent) collaboratif GPU et TPU gratuit
Machine learning et (HP)C besoin d’expérimentation I comparer différentes solutions besoin de prototypage I besoin d’interactions (en ligne) F matlab F python F R I collaboratif I facilité d’accès (dask) domaine à évolution rapide I pas de développement spécifiques I besoin de performances
Road map 1 Mon expérience HPC 2 l’IA ds’aujourd’hui : le deep learning ? 3 Quoi de neuf avec le deep learning? 4 CPU vs GPU 5 Conclusion
Deep learning for turning text into speech (and vice versa) Baidu deep speech 2 (2015) and Deep voice (2017) Trained on 9,400 hours of labeled audio with 11 million utterances. données brutes de 2.5To
Deep learning for healthcare Skin cancer classification 130 000 training images validation error rate : 28 % (human 34 %) the Digital Mammography DREAM Challenge 640 000 mammographies (1209 participants) 5 % less false positive heart rate analysis 500 000 ECG precision 92.6 % (humain 80.0 %) sensitivity 97 % Statistical machine learning: retrieving correlations with deep learning end-to-end architecture "April showers bring May flowers"
Deep learning success in playing GO Mastering the game of Go without human knowledge D. Silver et al. Nature, 550, 2017
Deep learning progresses in playing Dota 2 separate LSTM for each hero 180 years/days of games against itself Proximal Policy Optimization 256 GPUs and 128,000 CPU the OpenAI Five is very much still a work in progress project https://blog.openai.com/the- international- 2018- results/
Deep learning (limited) success in NLP Learning to translate with 36 million sentences Near Human-Level Performance in Grammatical Error Correction Achieving Human Parity on Automatic News Translation https://devblogs.nvidia.com/author/kcho/
What about personal assistant ? Text understanding - context + comon sense
Deep learning to drive: the Rouen autonomous lab Driving Video Database = 100.000 videos – 120 million images When It Comes to Safety, Autonomous Cars Are Still "Teen Drivers" companies are developing many different levels of automation https://www.rouennormandyautonomouslab.com/?lang=en http://bdd- data.berkeley.edu
So far, so good Deep learning performance breakthrough I Low level perception tasks: speech, image and video processing, natural language processing, games. . . I . . . and specific tasks in health care, astronomy. . . It requires I Big data I Big computers I Specific tasks next step I NLP : prior knowledge I commen sense : unsupervised learning I provide guarantees
Road map 1 Mon expérience HPC 2 l’IA ds’aujourd’hui : le deep learning ? 3 Quoi de neuf avec le deep learning? 4 CPU vs GPU 5 Conclusion
What’s new with deep learning a lot of data (big data) big computing resources (hardware & software), big model (deep vs. shalow) → new architectures → new learning tricks from Recent advances in convolutional neural networks Gu et al. Pattern Recognition, 2017
Big data: a lot of available training data . ImageNet: 1,200,000x256x256x3 (about 200GB) block of pixels MS COCO for supervised learning I Multiple objects per image I More than 300,000 images I More than 2 Million instances I 80 object categories I 5 captions per image YFCC100M for unsupervised learning Google Open Images, 9 million URLs to images annotated over 6000 categories Visual genome: data + knowledge http://visualgenome.org/
Big architectures
Road map 1 Mon expérience HPC 2 l’IA ds’aujourd’hui : le deep learning ? 3 Quoi de neuf avec le deep learning? 4 CPU vs GPU 5 Conclusion
GPU : 10 fois plus rapides https://github.com/StephaneCanu/Deep_learning_lecture/blob/master/jupyter_notebooks/TP1_MNIST.ipynb
Quelles GPU ? What Makes One GPU Faster Than Another? http://timdettmers.com/2018/11/05/which- gpu- for- deep- learning/
AI super computer dans le monde (2017) Rapport sur une Infrastructure de recherche pour l’intelligence artificielle, 2018 T. Kurth et al. Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific data, 2017
AI super computers en 2018 Japan: 54 petaflop USA: 200 petaflop (IA?) https://devblogs.nvidia.com/summit- gpu- supercomputer- enables- smarter- science/ https://www.top500.org/green500/lists/2018/06/
Road map 1 Mon expérience HPC 2 l’IA ds’aujourd’hui : le deep learning ? 3 Quoi de neuf avec le deep learning? 4 CPU vs GPU 5 Conclusion
Besoins Un accès à des GPU (une ou plus) avec deux modes interactif (cf colab) batch (cf AWS) Un centre de compétences dédié faciliter l’accès maintenance hard/soft - gestion et mise à disposition des données pour l’IA, Sécurisé et évolutif
Open issues in Deep learning : A critical apaisal For most problems where deep learning has enabled transformationally better solutions (vision, speech), we’ve entered diminishing returns territory in 2016-2017. Francois Chollet, Google, author of Keras neural network library Dec. 2017
10 Limits on the scope of deep learning It is data hungry not well integrated with prior knowledge (NLP) specialized training (no learning) cannot distinguish causation from correlation it has no natural way to deal with hierarchical structure assume stationarity it has struggled with open-ended inference can be fooled (it is not robust) it is not sufficiently transparent is difficult to engineer with
To go further books I I. Goodfellow, Y. Bengio & A. Courville, Deep Learning, MIT Press book, 2016 http://www.deeplearningbook.org/ I Gitbook leonardoaraujosantos.gitbooks.io/artificial-inteligence/ conferences I NIPS, ICLR, xCML, AIStats, Journals I JMLR, Machine Learning, Foundations and Trends in Machine Learning, machine learning survey http://www.mlsurveys.com/ lectures I Deep Learning: Course by Yann LeCun at Collège de France in 2016 college-de-france.fr/site/en-yann-lecun/inaugural-lecture-2016-02-04-18h00.htm I Convolutional Neural Networks for Visual Recognition (Stanford) I deep mind (https://deepmind.com/blog/) I CS 229: Machine Learning at stanford Andrew Ng Blogs I Andrej Karpathy blog (http://karpathy.github.io/) I http://deeplearning.net/blog/ I https://computervisionblog.wordpress.com/category/computer-vision/
You can also read