Astroparticle and Gravitational Physics - G. Cella - INFN sez. Pisa - Fisica 2011-2020 - Dipartimento di Fisica

Page created by Shirley Cohen
 
CONTINUE READING
Astroparticle and Gravitational Physics - G. Cella - INFN sez. Pisa - Fisica 2011-2020 - Dipartimento di Fisica
Astroparticle and Gravitational
           Physics

       G. Cella – INFN sez. Pisa

                  Fisica 2011-2020
                  Congressino di Dipartimento
                     Lunedì 11 aprile 2011
Astroparticle and Gravitational Physics - G. Cella - INFN sez. Pisa - Fisica 2011-2020 - Dipartimento di Fisica
An interdisciplinary field…
Astroparticle and Gravitational Physics - G. Cella - INFN sez. Pisa - Fisica 2011-2020 - Dipartimento di Fisica
Astroparticle Physics - Science

• High Energy     Rays
• Neutrino Mass
• High Energy Cosmic Rays
• High Energy Cosmic Neutrinos
• Dark Matter direct detection
• Gravitational Waves
• Low Energy Neutrinos & Proton decay
Astroparticle and Gravitational Physics - G. Cella - INFN sez. Pisa - Fisica 2011-2020 - Dipartimento di Fisica
Cosmic rays
(and other exuberant
       things)
Astroparticle and Gravitational Physics - G. Cella - INFN sez. Pisa - Fisica 2011-2020 - Dipartimento di Fisica
Cosmic rays
                         Protons, light nuclei

                            Astrophysical origin

                            Acceleration mechanisms
                                                  20
                                Unique below 10       eV?

                                UVHE: Engine? GZK?

                            Spectrum?

                            Lower energies:
         indirect
                                Galactic
direct

                                Isotropic

                                High flux       SMALL DETECTORS

                            High energies:
                                Extragalactic

                                Directional

                                Low flux        BIG DETECTORS
Astroparticle and Gravitational Physics - G. Cella - INFN sez. Pisa - Fisica 2011-2020 - Dipartimento di Fisica
AMS: the Alpha Magnetic Spectrometer at ISS
Astroparticle and Gravitational Physics - G. Cella - INFN sez. Pisa - Fisica 2011-2020 - Dipartimento di Fisica
Ams: perspectives
   cosmic rays spectroscopy

   antimatter search

   dark matter indirect search
       PAMELA e+ excess

   gamma astrophysics

                                     Will operate until 2020 and beyond (with
                                     permanent magnet):

                                     Precise & simultaneous measurement
                                     of rates and spectra of the different
                                     components of CR in GeV-TeV range

                                     Main step forward in the tuning of
                                     models for CR propagation
Astroparticle and Gravitational Physics - G. Cella - INFN sez. Pisa - Fisica 2011-2020 - Dipartimento di Fisica
The multi-messenger approach (I)
                             • Charged CR preserve some
                               directionality only above
                               4x1019 eV
                             •
                                 • Directional
                                 • Easy to detect
                                 • Not completely clear origin:
                                   p or e?
 A leit-motiv:               •
 Simultaneous study of           • Directional
 different channels leads
                                 • Difficult to detect
 to a better understanding
                                 • Origin: p
Astroparticle and Gravitational Physics - G. Cella - INFN sez. Pisa - Fisica 2011-2020 - Dipartimento di Fisica
FERMI: a -ray space telescope
   LAT: 20MeV-300GeV

   GBM: 8KeV-40MeV (12 NaI + 2
    BGO detectors)

   Huge field of view:

               30' every direction
               full sky in 3 hours
                                      •   30 times more sensitive than
   5-10 years lifetime                   any previous
                                      •   Can precisely measure cosmic
                                          e+ and e- spectra up to a TeV
Astroparticle and Gravitational Physics - G. Cella - INFN sez. Pisa - Fisica 2011-2020 - Dipartimento di Fisica
FERMI: some results
                                                                ray sky catalog
                                                                          1400 sources > 100
                                                                           MeV
                                                                          Known and
                                                                           unidentified
                                                                          New   sources

                                                               Pulsar catalog
                                                                          60 gamma PSR
                                                                          First population
                                                                           study
                                                                          Emission far from
                                                                           surface

   Detection of LMC, SNR, starbust galaxies   •   Very successful experiment

   Constraints on Dark Matter models (EGRET   •   Will last very probably for 10 years
     excess excluded)
                                               •   Phenomenological and theoretical activities
   GRB, flares, transients                        here in Pisa
   ………
FERMI: some results
                                                                ray sky catalog
                                                                          1400 sources > 100
                                                                           MeV
                                                                          Known and
                                                                           unidentified
                                                                          New   sources

                                                               Pulsar catalog
                                                                          60 gamma PSR
                                                                          First population
                                                                           study
                                                                          Emission far from
                                                                           surface

   Detection of LMC, SNR, starbust galaxies   •   Very successful experiment

   Constraints on Dark Matter models (EGRET   •   Will last very probably for 10 years
     excess excluded)
                                               •   Phenomenological and theoretical activities
   GRB, flares, transients                        here in Pisa
   ………
MAGIC: an Imaging Air Cherenkov Technique
                   telescope

                                          Very high energy gamma
                                            astronomy (10GeV-10TeV)

                                             AGN: production in the jet,
                                              near the BH

                                             Supernova remnants

                                             Lower energy unidentified
   few ns flashes of light                   sources
    mirror surface of 240 square metres

                                             GRB
    camera with O(100) photomultipliers
                                              Cosmology & fundamental

                                          

   energy resolution: 30% or better          physics
MAGIC: detection principle
              Imaging Air Cherenkov Technique

                 Background rejection

                 Energy reconstruction

                 Direction reconstruction

                 Image reconstruction for
                  extended sources ( > 0.1 degrees)
Results and perspectives
                                                 Goals:
                                                  lower the threshold to 30GeV (or less)

                                                                Increase detection area

                                                       New light-to-electron conversion
                                                                            techniques

                                                    Benefits: fundamental & exotic
                                                    physics, astrophysics, sinergy with
    Four new VHE galactic sources found
                                                    satellite detectors, MWL campaigns


   First detection of pulsed emission from a
    ground based telescope (Crab)                Cherenkov Telescope Array
   Correlations between gamma and X emissions
                                                 (start 2013)?
    (MWL campaign)

   Extragalactic VHE sources

   Suggestions for an higher transparency of
    the universe than expected from EBL
CALorimetric Electron Telescope (CALET)

Fill the gap between satellite/balloon & ground experiments
Launch foreseen 2013, 5 year mission
Neutrinos
(and other shy things)
ANTARES: a deep sea neutrino telescope
Scientific goals:
    Disentangle Synchrotron-Inverse Compton from Hadronic production in
     SNRs
    Study Binary systems, µQuasars
    Investigate the very high energy processes occurring in GRBs          45°
    Search for Dark matter

                                                                            57
                                                                            m

    Final configuration since 2008
KM3NeT: multi-cubic-kilometre Cherenkov
                telescope for high energy neutrinos
                                                 Deep-sea research infrastructure in the
                                                    Mediterranean Sea.
                       KM3NeT in numbers         •    multi-km3 Cherenkov telescope for
                      (full detector)                 neutrinos with E>100 GeV.
                      • ~300 DU
                                                 •    Complementary to ICECUBE
                      • 20 storey/DU
                      • ~ 40m storey spacing     •    Construction can start in 2012, depending
                      • ~1 km DU height               on fundings
                      • ~180m DU distance              Main physics goals
                      • ~ 5 km3 volume               Origin of Cosmic Rays and Astrophysical
                                                      sources
                                                Galactic Candidate   Sources (SNRs, Fermi Bubbles,
                                                     quasar,…)
                                                Extragalactic Candidate   Sources (AGN, GRB, …)
Builds on the experience gained with
  ANTARES, NEMO and NESTOR

                                                Telescope optimisation: “point sources” energy range
                                                  1 TeV-1 PeV
                                                       Implementation requirements
                                                Construction time ≤5 years
                                                Operation over at least 10 years without “major
                                                  maintenance”
Gravitational waves
(and other invisible things)
Gravitational waves
 Nonlinear equation, difficult to solve in the
 general case

       Matter tells the spacetime how to curve, and
       curved space tells to matter how to move
       (J. Wheeler)

  Linearized equation: wave equation

                                             From: M. Pössel,
                                             " The wave nature of simple
                                             gravitational waves " in:
                                             Einstein Online Vol. 2
                                             (2006), 1008
VIRGO: an interferometric detector of
                      gravitational waves

   Goals:

   Challenges:
Gravitational wave detectors
          network
The multimessenger approach (II)
Candidates

                                GW+HEN:

                                   Negligible absorption

                                                travel cosmological
Signatures
                                          

                                                distances

                                   No deflection by magnetic fields

                                               tracing back feasible
                                    Weakly interacting
Advantages
                                

                                               Can escape from dense
                                                object

                                       Agreement with ANTARES
Results/perspectives
   No detections until now

   Several interesting upper limits

   Advanced detectors in the near
    future
Timeline
Gravitation
                                Lense
                                Thirring

           G-Gran Sasso: design study

           Precision tests of
            General Relativity
                     PN effects
                     Exotic physics
GG: test of equivalence principle
Conclusions                           AUGER-N                    1 ton
                                                     ET           DM
                                 KM3NET       CTA
Astroparticle physics:
                                                                1 ton
a rapidly growing field                             Megaton      mass
                                                    p Decay +
  •   Dramatically increasing sensitivities
  •   Very probably at the threshold for new discoveries
  •   International collaborations required
Interdisciplinary field
  •   Technological aspects
  •   Numerical computations
  •   Experimental techniques
European community recommendation encourage
developements.
Funding agencies add a question mark.
Contacts
AMS:
                                                      ANTARES: http://www.pi.infn.it/antares/
  http://www.pi.infn.it/ams/Group.ht
  ml                                                  Armando Bigi,Vincenzo Cavasinni, Vincenzo Flaminio,
                                                          Stefano Galeotti, Dario Grasso, Mauro
Gabriele Bigongiari, Franco Cervelli, Stefano             Morganti, Giuseppe Terreni.
   Di Falco , Giovanni Gallucci, Marco
                                                      KM3NET: http://www.km3net.org/home.php
   Incagli, Federico Pilo, Valerio Vagelli.
                                                      Bachir Bouhadef, Vincenzo Flaminio, Enrico
FERMI/GLAST: http://glast.pi.infn.it/                     Maccioni, Antonio Marinelli, Mauro Morganti,
                                                          Fabio Stefani
Luca Baldini, Ronaldo Bellazzini, Johan
    Bregeon, Alessandro Brez, Marco                   VIRGO: http://www.ego-gw.it/
    Ceccanti, Michael Kuss, Luca Latronico,
    Marco Maria Massai, Massimo Minuti,               Balestri G., Basti A., Bitossi M., Boschi V., Bradaschia
    Nicola Omodei, Melissa Pesce-Rollins,                  C., Cella G., Di Lieto A., Di Virgilio A., Ferrante
                                                           I., Fidecaro F., Frasconi F., Gennai A., Giazotto
    Michele Pinchera, Massimiliano Razzano,                A., Magazzu’ C., Mantovani M., Paoletti F.,
    Carmelo Sgrò, Gloria Spandre.                          Paoletti R., Passaquieti R., Passuello D., Poggiani
                                                           R., Toncelli A., Tonelli M., Torre O., Vajente G.
MAGIC: http://www.pi.infn.it/magic/
                                                      GG: http://eotvos.dm.unipi.it/
Pedro Antoranz, Massimilano Bitossi, Roberto
   Cecchi, Paolo Da Vela, Elvira Leonardo,            M. L. Chiolafo, F. Maccarrone , G. Mengali, A.M.
                                                          Nobili, P. Paolicchi, R. Pegna , E. Polacco,T.R.
   Mario Meucci, Vincenzo Millucci, Jose                  Saravanan, F. Pegoraro.
   Miguel Miranda, Ricardo Padrino,
   Riccardo Paoletti, Serena Partini, Pier            G-Gran Sasso DS:
   Giorgio Prada Moroni, Steve N. Shore,                  http://www.df.unipi.it/~carelli/ricerca/giro.html
   Antonio Stamerra, Diego Tescaro
                                                      Maria Allegrini, Filippo Bosi, Jacopo Belfi, Niccolò
CALET:                                                    Beverini, Giorgio Carelli, Giancarlo Cella ,
                                                          Angela Di Virgilio, Isidoro Ferrante, Enrico
                                                          Maccioni, Flavio Stefani
Pier Simone Marrocchesi
Extra slides
AMS: the Alpha Magnetic Spectrometer on the
                                       ISS
                                 e/p separation
                     TRD         3D tracking

                                 charged particles trigger
                                 time direction

                     TOF         beta measurement

                                 Z measurement (dE/dx)

                      MG             B=0.86 dipolar field
                      TR             rigidity up to 2-3 TeV

                     ACC             3D tracking

                     AST             Z separation (dE/dx)

                                     veto eff. > 99.99%.

                     TOF
                             beta measurement
                             Z separation

                             upgoing particle rejection
                     RICH
                             Isotopes separation (with TR)

                             energy measurement
                     EMC     e/h separation

                             e.m. Showers trigger

                             3D imaging
CR factories
Max Energy:
          Magnetic field
LHC
           intensity
          Size of accelerating
           region
GZK limit
Scattering on cosmological photons
D. Grasso (Pisa); D. Gaggero (Pisa, Ph.D. stud.); L. Maccione (DESY); G. Di
                  Bernardo (Goteborg); C. Evoli (SISSA)

         PAMELA e+ excess
FERMI: detection principle
                            LAT: pair conversion telescope

                                                                 4x4 array
                               precision converter/tracker

                                          16 tungsten foils
                                          16 X-Y alternated silicon
                                           strips detectors
                               Calorimeter (caesium iodide)

                                          measure shower energy &
GBM: burst monitor                         shower profile

Scintillators:
                               plastic segmented anti-coincidence
• 12 NaI (8kEV-1MeV)
                                detector
• 2 Bismuth-Germanate
  (150keV-30MeV)               DAQ
Recent works on CR physics
D. Grasso (Pisa); D. Gaggero (Pisa, Ph.D. stud.); L. Maccione (DESY); G. Di Bernardo (Goteborg); C. Evoli (SISSA)

          Provided the first combined interpretations of the Fermi-LAT
           electron spectrum and the positron fraction measured by PAMELA
           in terms of pulsar or DM annihilation.
           Astropart.Phys.32:140-151,2009; Phys.Rev.D82:092004,2010;
           Astropart.Phys.34:528-538,2011

          Developed and tested a new CR propagation package (DRAGON),
           alternative to GALPROP, and interfaced it with DARKSUSY so to
           treat the prop. of DM annihilation/decay products consistently.
           DRAGON is built to consistently model also the γ-ray and neutrino
           diffuse emission.
           JCAP 0810:018,2008; http://www.desy.de/~maccione/DRAGON/

          Improved the constraints on CR propagation models by using CREAM
           light nuclei and PAMELA antiproton data (first combined analysis).
           Astropart.Phys.34:274-283,2010
Work in progress & future plans

   We are using DRAGON to derive new             Markov    chain     MC     comparison      of
    constraints on DM and astrophysical             astrophysical/DM models and AMS-02
    models on the basis of PAMELA antiproton        multichannel data. Study the implications
    data and estimate the projected AMS-02          for the fundamental physics accounting also
    sensitivity (in collaboration with SISSA        for LHC results.
    DM group).
                                                  Consistent modeling of the diffuse γ-ray
   We are studying the PAMELA and Fermi-            (Fermi-LAT) and the synchrotron (PLANCK)
    LAT new measurements in the lepton               emission of the Galaxy. Features in their
    sector and estimate the expected AMS-02          spectral and angular distributions may
    capability   to    discriminate  different       confirm the presence of new CR components
    interpretations of those results. This is        and help identifying their sources. This is
    also relevant for the CALET project.             also useful to model the CMB foreground.
   We are modeling the diffuse γ-ray             Use PLANCK results and CR electron models to
    emission of the Galaxy consistently with CR      improve our knowledge of the Galactic
    data and propose a new interpretation of         magnetic field. It will help modeling UHECR
    the puzzling longitude profile of the γ-ray      deflections which is crucial to better
    emissivity of the Galaxy observed by             identify UHECR sources and composition
    Fermi-LAT (gradient problem).                    (relevant for AUGER).
ANTARES: detection principle
                         Detector:
                            12 detection lines
                            75 10'' PMTs/line
                            V separation: 14.5m (upper
                             PMT depth 100m)
                            H separation: 60-70m
                            Data transfer: optical fibers
                            LED beacons for calibration
                            Environmental monitoring:
                             T,P,salinity, light attenuation,
                             speed of sound

                    Basic idea:
                     select
                     secondary
                     generated
                     inside the
                     earth
Results and perspectives

                                                    Exciting physics program in
                                                     progress….

                                                    Unexplored regions of
                                                     sensitivity in southern
                                                     hemisphere

                                                    Steady/transient sources,
                                                     monopoles, DM, oscillations ……

                                                    2009-2010 data coming soon

                                                    Multi-messenger programs
                                                     established (optical, satellite,
    ANTARES infrastructure completed:
                                                     GW)


   Largest neutrino telescope in the Northern hemisphere

   Operating smoothly, maintenance capability proven

   Understanding of detector and data analysis progressing
KM3NET: sensitivity window

                             100 %

                                0%
VIRGO: detection principle
              Michelson interferometer
                             Resonant cavities
                              along the arms

                             Power recycling

                             Seismic attenuation
                              system for suspended
                              mirrors

              Noises:

                 Seismic

                 Thermal (suspensions/mirrors)

                 Optical (shot noise)

                 “Next generation” noises:

                             Thermal, Quantum,
                              Newtonian
You can also read