VARIATIONS INWOODANATOMY WITHIN SPECIES OF EUCALYPTUS* - Brill

Page created by Angela Hansen
 
CONTINUE READING
IAWA Bulletin n.s., Vol. 9 (1),1988: 13-23

VARIATIONS INWOODANATOMY WITHIN SPECIES OF EUCALYPTUS*

                                                   by

                                           John Wilkes
 Wood Technology and Forest Research Division, Forestry Commission ofNew South Wales,
                        P.O. Box 100, Beecroft, 2119, Australia

Summary
  Eucalyptus species are characterised by               1978; Wilkes & Abbou 1983; Bamber
substantial genetically predetermined within-           1985):
and between-tree variations in wood anatom-             Fibres (fibre-tracheids) - 10-20 ).l1ll in di-
ical features including fibre and vessel di-               ameter, 0.8-1.3 mm long and occupying
mensions. This effect of genotype outweighs                > 60% wood volume;
that of growing conditions; indeed the in-              Vessels - solitary and diffuse, 80-180 11m
fluence on wood anatomy of rate of growth                  in diameter, 10-20% volume;
per se is minor. It must therefore be assumed           Rays - 1-3-seriate, < 20 cells high, 10-20
that the reputed difference in wood quality                %volume;
between regrowth/plantation stands and old              Axial parenchyma - apotracheal and para-
growth forests is founded on non-anatomical                tracheal, < 10% volume;
features, or reflects simply the greater pro-           Vasicentric tracheids - < 2 % volume.
portion of juvenile wood in smalI, rapidly
                                                        Intraspecific variations in gross wood density
grown sterns.
                                                        closely reflect variations in the transverse di-
Key words: Eucalyptus, wood anatomy, ju-
                                                        mensions of fibres as indicated, for example,
   venile wood, growth rate.
                                                        by the Runkel ratio (double wall thickness/
Introduction                                            lumen diameter) (Chudnoff & Tischler 1963;
   Native to Australia, Eucalyptus species are          Sardinha 1977a). This relationship is here-
now grown extensively in many countries.                after presumed; the majority of studies con-
The number of studies on variations in wood             cerning the intrinsic wood quality of euca-
quality in the genus has correspondingly in-            lypts deal not with wood anatomy per se, but
creased, and for certain species information            with the more easily measured wood density
exists pertaining to the properties of wood             which correlates weH with the usefulness of
produced under a variety of conditions. Sum-            wood for a range of applications.
marised here are the variations in wood anat-
omy. Particular attention is focused on the             Within-treevariation in wood anatomy
often reported differences between regrowth/                The most widely studied variations in
plantation ('new growth') stands and natural!           wood anatomy of Eucalyptus are within-tree.
virgin Cold growth') forests (Dadswe1l1958;             This age related variation, of obvious impor-
Knigge & Lewark 1976). The new growth                   tance in itself, must be thoroughly under-
forests are typically more vigorous than their          stood if between-tree variations are to be in-
old growth counterparts at a similar age.               terpreted accurately; not only may the mean
                                                        values of an anatomical feature differ between
Anatomy of Eucalypts                                    trees, but the patterns of variation within
   The eucal ypts generallylack distinct growth
                                                        trees mayaiso differ.
rings and have a relatively simple hardwood
 structure (Fig. 1). The various cell types have        Radial direction
the following common features in the majori-               In the centre of older eucalypt sterns, a
ty of species (Dadswell 1972; Hillis 1972,              zone of juvenile wood can be defined where

*   This review formed the basis of a presentation to the XIV International Botanical Congress,
    Berlin, July, 1987.

                                                                        Downloaded from Brill.com12/24/2020 07:08:28AM
                                                                                                         via free access
14                                                                   IAWA Bulletin n.s., Vol. 9 (1),1988

Fig.l.A.Eucalyptus regnans. Transverse section showingvessels in diffuse(tendingto oblique)
arrangement and the virtual absence ofaxial parenchyma. - B. E. tesselaris. Vessels often oc-
cur in short radial multiples, and paratracheal parenchyma is plentiful. These features charac-
terise only the subgenus Corymbia. x 35.

   ..... 20                                  1-5
                                                             N        Z4
   ~
                                                             'e                                           150
    o                                                         e
wz
  .0
,a: w
~ ~
wu
          15

                                             \00
                                                   E
                                                   !1
                                                   %:
                                                   I-
                                                             -
                                                             >u
                                                                 .;
                                                                 e                                              -
                                                                                                                .....::L
                                                                                                                a::
                                                                                                                ~
~~
Wilkes - Wood anatomy of Eucalyptus                                                                 15

Fig. 4. Euca/yptus grandis. Transverse seetions of wood 2 (A) and 30 (B) annual increments
from the pith. x 35.

          1·0                                     most anatomical features are changing rapid-
                                                  ly. Over the first 10-20 years of growth,
                                                  marked increases occur in the diameter, wall
    ~

   ..,    1·1                                     thickness and length of fibres (e.g. 10, 30
    'eo                                           and 50% respectively) (Santos & Nogueira
                                                   1971; Brasil & Ferreira 1972; Foelkel et a/.
                                                  1983; Tomazello Filho 1985a; Fig. 2). Simi-
    >'"'
    I-                                            lar increases (e.g. of 50%) occur in the
    CI)
    Z                                             diameter and length of vessel elements, while
    W
    Q     0,7                                     vessel frequency declines (e. g. by 50 %)
                                               (Chudnoff & Tischler1963; Ranatunga 1964;
    CI)
    4(                                            Arulchelvam 1971; Santos & Nogueira 1977;
    1110>1                                        Nicholls & Griffin 1978; Figs. 3 & 4). The
                                                  proportions of the various cell types change
                                                  relatively little (Nicholls & Phillips 1970;
          0' 5 L-..o...-...:..._"--_ _'--_---'
                                      10     15
                                                  Sardinha & Hughes 1979; Malan 1985). In
                        RADIUS (cm)               relation to the total amount of wood sub-
                                                  stance per unit volume, the centrifugal in-
Fig. 5. Radial gradients in density within the    crease in fibre wall thickness more than com-
heartwood of 40-50-year-old stems of Euca-        pensates for the increment in fibre diameter
lyptus (Sourees: Gerhards 1965; Wilkes &          such that a rise in density of 10-50% nor-
Heather 1982; Wilkes 1984).                       mally occurs with distance from the pith in

                                                                 Downloaded from Brill.com12/24/2020 07:08:28AM
                                                                                                  via free access
16                                                         IAWA Bulletin n.s., Vol. 9 (1),1988

                                                                       .
              BASIC DENSITY (g em- 3 )                                      FIBRE LENGTH (mm)

                            •    0.7

          "
                                                                       3•

                                                               .§
                                                                ,..
                                                                J:

                                                                "iii
                                                                       ..
                                                                J:

                                                                            • __J -_ _ _ _---:-'
                       12
                  RADIUS (ern)
                                                                            •     RADIUS (ern)

Fig. 6. Disnibution of density in Eucalyptus         Fig. 7. Disnibution of fibre length in one
robusta (Sourees: Skolmen 1975; Wilkes,              stern of Eucalyptus regnans (Souree: Bisset
unpublished).                                        & DadsweIl1949).

Eucalyptus sterns (Gerhards 1965; Skolmen            Between-tree variation in wood anat-
1974; Hans 1976; Nahuz et al. 1980; Chafe            omy
1985a; Fig. 5).                                           Variations in wood anatomy may be as
                                                      great between as within sterns of Eucalyp-
 Axial direction                                      tus (GreenhiII & Dadswell 1940; Sardinha
   Variations in wood anatomy along the stern         1977b). This is the ease even for one uniform
 are apparently less eonsistent than those in         site, i.e., the effeet is largely genetie. Varia-
 the radial direetion (e. g. see Barriehelo et al.    tionsin fibrelengthandbasiedensity between
 1983). Density eommonly inereases with              neighbouring trees of the same age ean easily
 height, sometimes after an initial decIine          exeeed 25 and 50% respeetively (Table 1).
 (Crawford et al. 1972; Ferreira 1972; Frank-             The importanee of tree genotype in ex-
!in & Meskimen 1975; Harris & Young 1980;            plaining tree-to-tree differenees in wood anat-
Chafe 1978; Fig. 6). Fibre length more often         omy is echoed in studies showing signifieant
inereases to a point weIl up the bole, then de-      variation between clones or famiIies (Rudman
cIines at higher levels (Ranatunga 1964; Bam-        1970; Waugh 1975; Nieholls & Matheson
ber et al. 1969; Santos & Nogueira 1974;             1980; Wang et al. 1984) and between prove-
Fig. 7). These ehanges can oeeur primarily in        nances (Sesbou & Nepveu 1978; Vital &
wood formed by eambia of the same age,               Lucia 1980; Tomazello Filho 1985a). The
i. e., at a given inerement from the pith, or        lack of appreciable interprovenance variation
additionally, within individual increments,          in the densitometric eharacteristics of E.
i.e., at a set inerement from the cambium            nitens (Deane and Maid.) Maid. (Nicholls &
(Figs 6 & 7).                                        Pederick 1979; McKimm 1985) is apparent1y

                                                                                Downloaded from Brill.com12/24/2020 07:08:28AM
                                                                                                                 via free access
Wilkes - Wood anatomy of Eucalyptus                                                                      17

         2-3
  ....
  ~
  =
                                                                                      High 8Ir . . .

                   ~
         2·1
  W
  Z
  ~
  UH                                                  l=1-1
  %                                                   CI
  ~                                                   Z
                                                      W
  jH

                   ~
                                                      ...J 1.0
  C                                                   W
  ~                                                   a:
                                                      11
  ~H                                                  ii:   0"
  11
  ii:
                                                            0 · . L - - - - - - - ' -_ _ _ _ _....
         1-3
               0         3S                70                o                   so            100
                   HEIGHT (")                                             RADIUS (,,)

Fig. 8. Variation in fibre wall thickness with     Fig. 9. Contrasting radial gradients in fibre
height in two sterns of Eucalyptus saligna         length in 27-year-old sterns of Eucalyptus
(Source: Sardinha & Hughes 1979).                  grandis of differing growth stress intensity
                                                   (Source: Malan 1985).

exceptional; however even in this species,         1977b; Bamber 1985). Differences in density
other features such as the length and lumen        and fibre length, even between markedly
diameter of fibres, vary significantly with        dissimilar sites, are mostly weIl below 20%
seed source (McKimm & nic 1987).                   (Table 2).
  Within-tree gradients in wood anatomy also           Wood property variations in eucalypts ap-
differ between trees. Sardinha and Hughes          pear not to correlate reliably with changes in
(1979) for example, found that two trees of        specific factors of the environment, such as
E. saligna Sm. from Angola showed reverse          temperature I altitudellatitude, rainfall and
trends of fibre wall thickness with height in      soil properties (Taylor 1974; Skolmen 1975;
the bole (Fig. 8). Malan (1985) has demon-         Sardinha 1977b). Correspondingly, a range
strated that in E. grandis Hill ex Maid., an as-   of forest management practices inc1uding
sociation exists between wood anatomy and          fertilisation (Higgs&Rudman 1973; Chauhanet
levels of longitudinal growth stress in sterns,    al. 1983),irrigation (Tischler&Heth 1985),
e.g. in the outer regions of highly stressed       prescribed buming (Nicholls 1974) and thin-
boles the length (Fig. 9) and wall thickness       ning/espacement (Brasil & Ferreira 1971;
of fibres, wood density and vessel diameter        Higgs & Rudman 1973; Schonau 1974; Fer-
are likely to be higher than in boles of low       rari & Scaramuzzi 1982; Chauhan et al.
stress. Such wood anatomy-stress interrela-        1983) all have re1atively weak effects on eu-
tions may prove an important link in explain-      calypt wood structure.
ing the considerable within- and between-tree          The infiuence of site on within-tree varia-
variation in wood properties (Nicholson et al.     tions in wood anatomy has yet to receive
1975; Boyd 1980).                                  adequate attention, although such an effect
                                                   has been reported for the density of E. gran-
Environmental variation in wood anat-              dis (Villiers 1968).
omy
   Variations in wood anatomy between ge-          New and old growth forests
netically similar trees growing under differ-          The relatively rninor role of growing con-
ent conditions are usually smaller than the        ditions in determining the wood structure of
effects due to age and genotype (Bamber &          Eucalyptus calls into question the reputation
Humphreys 1963; Tay lor 1973; Sardinha             of regrowth and plantation stands as produc-

                                                                      Downloaded from Brill.com12/24/2020 07:08:28AM
                                                                                                       via free access
18                                                         IAWA Bulletin n.s., Vol. 9 (1),1988

          Table 1. Examples of variations in wood anatomy between Eucalyptus trees.

Wood     Species             Age*        Variation          Difference        Reference
property                     (yrs)      Min.    Max.       (% ofmin.)

Basic     E. alba              5        0.44       0.67         52            Ferreira 1970
density E. citriodora          8        0.51       0.75         47            Shukla & Rajput 1981
(g cm-3 ) E. grandis           3        0.30       0.48         60            Brasil et al. 1979
          E.grandis           15        0.34       0.53         56            Taylor 1973
          E.grandis           15        0.40       0.63         58            Taylor 1974
          E. nitens            8        0.39       0.54         38            Chafe 1985b
          E. regnans          27        0.39       0.49         26            Dargavel 1968
          E. robusta           5        0.50       0.68         36            Arulchelvam 1971
          E. saligna           3        0.40       0.58         45            Ferreira et al. 1979
          E. saligna           3        0.35       0.51         46            King 1980

Fibre      E. grandis         20        0.91       1.11         22            Bamber et al. 1969
length     E. grandis      25-30        0.84       1.02         21            Ranatunga 1964
(mm)       E. grandis         20        0.86       1.10         28            Taylor 1973
           E. grandis         18        0.93       1.19         28            Taylor 1974
           E. robusta          3        0.83       1.04         25            Arulchelvam 1971
           E. tereticornis     8        0.66       0.88         33            Purkayastha et al. 1984

* Either age of tree or increment from pith.
Data represents either the whole tree or the lower stern, e. g. breast height.

 ing wood very different from virgin forest               While in E. delegarensis R.T. Bak. a elose
material, e. g. the new growth wood is be-            relationship appears to exist between cambial
lieved to have a relatively low basic density         activity durlng the growing season and the
and short fibres (Hillis 1981). The scenario          structure of maturing xylem (Amos et al.
can be largely explained in tenns of the pro-         1950), more general analyses ofthe effects of
portion of juvenile wood in the sterns. The           vigour on eucalypt anatomy are fraught with
period of fonnation of juvenile wood is large-        complexities. Perhaps most importantly, dif-
ly predetennined (Dadswell 1958; Wilkes               ferent stimuli of growth may be associated
 1984); thus in trees harvested at a given size,      with different variations in a wood property,
a larger proportion of juvenile wood is pres-         e.g. fertilisation and thinning may have op-
ent in those more rapidly grown, as in plan-          posite effects on density (Higgs & Rudman
tations.                                              1973). Further, increment in height and diam-
    A depressive effect of accelerated growth         eter may be associated differently with a
on the density and fibre length of tissues of a       wood feature (Taylor 1974). It is also note-
given fonnative age is also widely assumed.           worthy that the extent to which vigour and
However,supportive evidence (SusmeI1953;              wood anatomy are linked genetically in euca-
Hans et al. 1972; Schonau 1974) is limited,           lypts remains largely unknown. Were a sub-
and other results are more often obtained             stantial inverse relationship to exist for den-
(e.g. Taylor 1973; Schonau 1980; Frederick            sity or fibre length, much of the so-called rate
er al. 1982; Bhat & Bhat 1984; Wilkes 1984).          of growth effect could be an artifact of ge-
This might be expected in view of the weak            netic differences between trees. Sesbou and
relationship between growing conditions and           Nepveu (1978) have in fact reported such an
xylem anatomy in Eucalyptus.                          association between density and growth rate

                                                                      Downloaded from Brill.com12/24/2020 07:08:28AM
                                                                                                       via free access
Wilkes - Wood anatomy of Eucalyptus                                                                19

  Table 2. Examples of variations in wood anatomy between Eucalyptus between locations.

Wood     Species            Age        Variation                  Difference          Reference
property                    (yrs)   Site 1 Site 2 (% ofmin.)

Basic      E. camaldulensis     9    0.55     0.59       7        Sesbou & Nepveu 1978
density E. citriodora        8-9     0.65     0.72      11        Shulda & Rajput 1981
(g cm- 3 ) E. grandis          15    0.43     0.46       7        Taylor 1973
           E.grandis           18    0.45     0.48       7        Taylor 1974
           E. robusta          34    0.54     0.63      17        Skolmen, 1975
           E. saligna      ca. 25    0.61     0.69      13        Sardinha & Hughes 1979
Fibre     E. gomphocephala 3         0.59     0.74      25        Stern-Cohen & Fahn 1964
length    E.grandis        15        0.85     0.98      15        Taylor 1973
(mm)      E.grandis        15        0.92     1.02      11        Taylor 1974
          E. tereticornis   8        0.75     0.82       9        Chauhan et al. 1983
          E. tereticornis   8        0.74     0.80       8        Purkayastha et al. 1984
Data represent either the whole tree or the lower stem, e.g. stump height.
In most cases variation may be partly genetic, i.e. genotype was not held constant across the
sites.
In cases where more than two sites or seed sources were tested, the largest variation is pre-
sented.

Fig. 10. Eucalyptus grandis. Transverse sections from control (A) and intensively managed (B)
stems at 5 years of age. x 50.

                                                                Downloaded from Brill.com12/24/2020 07:08:28AM
                                                                                                 via free access
20                                                        IAWA Bulletin n.s., Vol. 9 (1),1988

aeross 25 provenanees of E. camaldulensis            - & F. R. Humphreys. 1963. A prelirninary
Dehnh. Where tree genotype is held eonstant,             study of some wood properties of Euca-
using either clonal or eoppiee material, direct          lyptus grandis (Hill) Maiden. J. Inst.
'effeets' of vigour on wood strueture are                Wood Sei. 11: 63-70.
found to be small and/or ineonsistent (King          Barriehelo, L. E. G., J. O. Brito & A J. Migli-
 1980; Wilkes & Abbott 1983; Wilkes 1984).              orini. 1983. Estudo da variayiio longitu-
    It may be signifieant that the majority of          dinal da densidade basiea de Eucalyptus
work in this area has dealt only with density           spp. Silvicultura 28: 726-731.
and fibre length (in effeet, fibre dimensions).      Bhat, K.M. & K.V. Bhat.1984. Wood prop-
A study ofE.grandis by Bamber et al. (1982)             erties of l-year-old Eucalyptus tereticor-
has shown a larger effeet of vigour on the              nis Sm. Aust. For. Res. 14: 129-133.
physiologieally aetive eells; intensive eultural     Bisset, I.J.W. & H.E. Dadswell. 1949. The
treatment was associated with an inerease in            variation of fibre length within one tree of
the volume of parenehyma and a deerease in              Eucalyptus regnans, F.v.M. Aust. For. 13:
vessel sizeand frequeney (Fig.lO). Clearly, in-         86-96.
suffieient is known regarding the physiology         Boyd, J. D. 1980. Relationships between
ofwood formation inEucalyptus. Neverthe-                fibre morphology, growth strains and
less, there ean be little doubt that the eritieal       physieal properties of wood. Aust. For.
faetors governing wood anatomy are eambial              Res. 10: 337-360.
age when tissues are formed and tree geno-          Brasil, M. AM. & M. Ferreira. 1971. Varia-
type; growing eonditions are less important.            yiio da densidade basica da madeira de
                                                        Eucalyptus alba Reinw., E. saligna Smith
Conc1usion
                                                        e E. grandis Hill ex Maiden aos 5 anos de
    It appears that environmental variation in
                                                        idade, em funyiio do local e do espaya-
the anatomy of euealypts is generally over-
                                                        mento. IPEF 2/3: 129-149.
shadowed by both natural genetie diversity
                                                    - & - 1972. Variayiio da densidade basiea
and within-tree (age) effeets. Thus, the widely
                                                       e das earaeteristieas das fibras em Euca-
held view that wood properties vary mark-
                                                        /yptus grandis Hill ex Maiden ao nivel do
edly between new and old growth forests re-
                                                        DAP. IPEF 5: 81-90.
quires substantial qualifieation; the propor-
                                                    - , R.A.A.Veiga& H.A.Mello.1979.Den-
tion of juvenile wood is the critieal faetor.
                                                        sidade basiea de madeira de Eucalyptus
References                                             grandis Hill ex Maiden, aos 3 anos de
Amos, G. L., I. J. W. Bisset & H. E. Dadswell.          idade. IPEF 19: 63-76.
    1950. Wood strueture in relation to             Chafe, S. C. 1981. Variations in longitudinal
   growth in Eucalyptus gigantea Hook.f.                growth stress, basic density and modulus
   Aust. J. Sei. Res. (B) 3: 393-413.                  of elasticity with height in the tree. Aust.
Arulehelvam, K. 1971. Variation in fibre               For. Res. 11: 79-82.
   length and density in Eucalyptus robusta         - 1985a. The distribution and interrelation-
   grown in Ceylon. Ceylon For. 10: 19-32.             ship of eollapse, volumetrie shrinkage,
Bamber, R. K. 1985. The wood anatomy of                moisture eontent and density in trees of
   euealypts and papermaking. Appita 38:               Eucalyptus regnans F.Muell. Wood Sei.
   210-216.                                            Teehnol. 19: 329-345.
- & R. A Curtin. 1974. Some properties of           - 1985b. Variation in longitudinal growth
   wood in blaekbutt trees of two ages. Aust.          stress with height in trees of Eucalyptus
   For. 36: 226-234.                                   nitens Maiden. Aust. For. Res. 15: 51-55.
- , AG. Floyd & F.R. Humphreys. 1969.               Chauhan, L., S. P.Agrawal & R.Dayal.1983.
   Wood properties of flooded gum. Aust.               Studies on the effeets of spacing and ap-
   For. 33: 3-12.                                      plieation of fertilisers on wood quality of
- , R. Horne & A. Graham-Higgs. 1982.                  Eucalyptus tereticornis Sm. Indian For.
   Effeet of fast growth on the wood proper-           109: 901-908.
   ties of Eucalyptus grandis. Aust. For. Res.      Chudnoff, M. & K. Tischler. 1963. Fiber
   12: 163-167.                                        morphology in Eucalyptus camaldulensis

                                                                    Downloaded from Brill.com12/24/2020 07:08:28AM
                                                                                                     via free access
Wilkes - Wood anatomy of Eucalyptus                                                                  21

    Dehn. and the relation of wood anatomy        Gerhards, C. C. 1965. Physical and mechani-
    to certain physical and mechanical                cal properties of saligna eucalyptus grown
    properties. La-Yaaran, Supp!. 1.                  in Hawaii. D.S. Dept. Agric. For. Servo
 Crawford, I. A., F. J. Prentice &c. H. Turner.       Res. Pap. FPL 23.
    1972. Variation in pulping quality within     Greenhill, W. L. & H. E. Dadswell.1940. The
    two trees of Eucalyptus delegatensis. Ap-         density of Australian timbers. 2. Air dry
    pita 25: 353-358.                                 and basic density data for 172 timbers.
 Dadswell, H. E. 1958. Wood structure varia-          CSIRO (Aust.) Div. For. Prod. Tech. Pap.
    tions occurring during tree growth and            No. 33.
    their influence on properties. J. Inst.       Hans, A. S. 1976. Variation in wood density
    Wood Sci. 1: 2-24.                                of Eucalyptus grandis (HilI) Maiden and
- 1972. The anatomy of eucalypt woods.                E. tereticornis Sm. Zambia J.Sci. Techno!.
    CSIRO (Aust.) Div. Appl. Chem. Tech-              1: 109-112.
    no!. Pap. No. 66.                             - , J. Burley & P. Williarnson. 1972. Wood
Dargavel, J. B. 1968. Variations in the basic        quality in Eucalyptus grandis (HilI)
   density of mountain ash. Aust. For. Res. 3         Maid., grown in Zambia. Holzforschung
    (3): 25-30.                                       26: 138-141.
Ferrari, G. & G. Scaramuzzi. 1982. Influenza      Harris, J. M. & G. D. Young. 1980. Wood
   della distanza d'impianto sulla densita deI       properties of some New Zealand-grown
   legno in Eucalyptus globulus ed E. x tra-         eucalypts. In: Proc. Conf. Aust. - N. Z.
   butii. Cellulosa e Carta 33: 44-52.               Inst. For., Rotorua: 200-212.
Ferreira, C., M. de Freitas & M. Ferreira.        Higgs, M. L.& P. Rudman. 1973. The effects
    1979. Densidade basica da madeira de             of fertilizing and thinning on wood prop-
   planta~öes comerciais de eucalyptos, na           erties of Eucalyptus regnans. Appita 27:
   regiäo de Mogi-Gua~u (S.P.). IPEF 18:             51-55.
    106-117.                                      Hillis, W. E. 1972. Properties of eucalypt
Ferreira, M. 1970. Estudo da varia~äo da             woods of importance to the pulp and pa-
   densidade basica da madeira de Eucalyp-           per industry. Appita 26: 113-121.
   tus alba Reinw. e Eucalyptus saligna           - 1978. Wood quality and utilisation. In:
   Srnith. IPEF 1: 83-96.                            Eucal ypts for wood production (eds. W. E.
- 1972. V aria~äo da densidade basica da             Hillis and A.G. Brown): 259-289.
   madeira de povoamentos comerciais de              CSIRO, Melbourne.
   Eucalyptus grandis Hill ex Maiden nas          - 1981. Research knowledge relevant to
   idades de 11, 12, 13, 14 e 16 anos. IPEF          conversion to solid wood. In: Proc. Work-
   4: 65-89.                                         shop 'Wood, future growth and conver-
Foelkel, C. E. B., C. A. Busnardo, C. Dias,          sion', Canberra (eds. E.P. Bachelard &
   C. Schmidt, R. M. R. da Silva & J. B. V.          W.E. Hillis): 45-61.
   Vesz. 1983. Variabilidade radial da ma-        King, J. P. 1980. Variation in specific gravity
   deira de Eucalyptus saligna. Silvicultura         in 3-year-old coppice clones of Eucalyp-
   28: 782-791.                                      tus saligna growing in Hawaii. Aust. For.
Franklin, E. C. & G. Meskimen.1975. Wood             Res. 10: 295-299.
   properties of some eucalypts for the           Knigge,W. von &S.Lewark.1976. Die Streu-
   southern United States. In: Proc. Nat.            ung der Holzeigenschaften schnellwüch-
   Conv. Soc. Am. For. 'America's renew-             siger Baumarten. Gegenwärtiger Stand
   able resource potential -1975 the turning         der Literatur. Forstarchiv 47: 251-256.
   point', Washington: 454-458.                   Malan, ES.1985. Wood property variation in
Frederick, D. J., H. A. I. Madgwick & G. R.          South African grown Eucalyptus grandis
   Oliver. 1982. Wood basic density and              trees of varying growth stress intensity.
   moisture content of young Eucalyptus              In: Proc. Int. Symp. 'Forest Products Re-
   regnans grown in New Zealand. New                search International - Achievements and
   Zea!. J. For. Sci. 12: 494-500.                  the Future', Pretoria. Vo!. 1, Topic 16-19.

                                                                  Downloaded from Brill.com12/24/2020 07:08:28AM
                                                                                                   via free access
22                                                       IAWA Bulletin n.s., Vol. 9 (1),1988

 McKimm, R. J. 1985. c=haracteristics of the         Rudrnan, P. 1970. The influence of genotype
     wood of young fastgrown trees of Eucalyp-           and environment on wood properties of
     tus nitens Maiden with special reference           juvenile Eucalyptus camaldulensis Dehn.
     to provenance variation. I. Variations in           Silvae Genet. 19: 49-54.
    growth, strain and density associated with      Santos, C. F. O. & I. R. Nogueira. 1971. A
    provenance. Aust. For. Res. 15: 207-218.            idade adulta do Eucalyptus saligna Smith
 - & Y. nie. 1987. Characteristics of the               em Rio Claro Estado de Säo Paulo, deter-
    wood of young fastgrown trees ofEucalyp-            minada pelas dimens6es das fibras. Anais
    tus nitens Maiden with special reference            da Escola Superior de Agricultura 'Luiz
    to provenance variation. III. Anatomical            de Queiroz' 28: 165-175.
    and physical characteristics. Aust. For.        - &- 1974. Diferenc;:as entre as dimensöes
    Res. 17: 19-28.                                     das fibras nos aneis de crescimento deter-
 Nahuz, M. A. R., V. A. Alfonso, G. J. Zenid,           minados no D. A. P. e em niveis diferentes
    E. R. P. Jara, A.I. P. da Costa, O.B. Neto          do fuste de mores adultas de Eucalyptus
    & S. K. Maria. 1980. Variacao da densi-             saligna Smith. Anais de Escola Superior
    dade basica, de acordo com a idade, em              de Agricultura 'Luiz de Queiroz' 31: 269-
    Eucalyptus spp do Distrito Florestal de             287.
    Mato Grosso do Sul. Presented IUFRO            - &-1977. Dimens6es dos vasos e aumen-
    Symp./Workshop 'Genetic improvement                 to no comprimento das fibras lenhosas em
    and productivity of fast growing tree spe-          relac;:äo as cambiais fusiformes nos aneis
    eies', Aguas de Sao Pedro, Brazil.                  de creseimento do Eucalyptus saligna
Nicholls, J. W. P. 1974. Effect of prescribed           Smith. Anais de Escola Superior de
    buming in a forest on wood characteris-             Agricultura 'Luiz de Queiroz' 34: 307-
    tics ofjarrah. Aust. For. 36: 178-189.              315.
- & A. R. Griffin. 1978. Variation in wood          Sardinha, R. M. A. 1977a. Inter-relationship
    characteristics in a field trial of Eucalyp-        between wood density and anatomie char-
    tus obliqua, E. regnans and some interme-           acteristics. The application of the principal
    diate forms. Aust. For. Res. 8: 93-102.             component analysis. Anais do Instituto
- & A. C. Matheson. 1980. Variation in                  Superior de Agronomia, Univ. Tecnica de
    wood characteristics in thinnings from a            Lisboa 37: 49-63.
    field trial of Eucalyptus obliqua. Aust.       - 1977b. Environmental effects on Euca-
    For. Res. 10: 239-247.                              lyptus saligna Sm. wood density. Anais
- & L. A. Pederick. 1979. Variation in some             do Instituto Superior de Agronomia,
    wood characteristics of Eucalyptus nitens.          Univ. Tecnicade Lisboa 37: 81-101.
    Aust. For. Res. 9: 309-321.                    - & J. F. Hughes. 1979. Wood properties
- & F. H. Phillips. 1970. Preliminary study            variation of Eucalyptus saligna Sm. from
    of coppice-grown Eucalyptus viminalis as           Angola. Anais do Instituto Superior de
    a source of chip material. CSIRO (Aust.)           Agronomia, Univ. Tecnica de Lisboa 38:
    Div. For. Prod. Technol. Pap. No. 58.               105-124.
Nicholson, J. E., W. E. Hillis & N. Ditch-         Schonau, A. P. G. 1974. The effect of plant-
    bume. 1975. Some tree growth - wood                ing espacement and pruning on growth,
   property relationships of eucalypts. Can.           yield and timber density of Eucalyptus
   J. For. Res. 5: 424-432.                            grandis. South Afr. For. J. 88: 16-23.
Purkayastha, S. K., S. P.Agrawal, R. D. Tan-       - 1980. Timber density of planted parent
   don & L. Chauhan. 1984. Studies on the              trees and first-generation coppice of
   variation in wood quality of Eucalyptus             Eucalyptus grandis. Rep. Wattle Res.
   tereticornis Sm. trees grown in different           Inst., Univ. Natal, 1979-1980: 107-110.
   plantations. Part 11. Fibre length. Indian      Sesbou, A. & G. Nepveu. 1978. Variabilite
   For. Rec. n.s. 3 (2): 1-17.                         infraspecifique du retrait avec collapse
Ranatunga, M. S. 1964. A study of the fibre           et de la densite du bois chez Eucalyptus
   lengths of Eucalyptus grandis grown in             camaldulensis. Ann. Sei. For. 35: 237-
   Ceylon. Ceylon For. 6: 101-112.                    263.

                                                                    Downloaded from Brill.com12/24/2020 07:08:28AM
                                                                                                     via free access
Wilkes - Wood anatomy of Eucalyptus                                                               23

Shukla, N. K. & S. S. Rajput. 1981. A note on    -  1985b. Varia~iio radial da densidade
   the specific gravity of Eucalyptus species       basica e da estrutura anatomica da ma-
   from different localities. Indian For. 107:      deira do Eucalyptus gummifera, E. micro-
   438-447.                                         corys e E. pilularis. IPEF 30: 45-53.
Skolmen, R. G. 1974. Lumber potential of         Villiers, A. M. deo 1968. Die verband tussen
   12-year-old saligna eucalyptus trees in          ouderdom, spesies en sekere houteien-
   Hawaü. U.S. Dep!. Agric. For. Servo Res.         skappe van die Eucalyptus grandisl
   Note PSW-288.                                    saligna kompleks. Bosb. Suid-Afr. 9: 11-
- 1975. Shrinkage and specific gravity vari-        44.
   ation in robusta eucalyptus wood grown        Vital, B. R. & R. M. D. Lucia. 1980. Proce-
   in Hawaü. U.S. Dept. Agric. For. Servo           deneia de sementes equalidade da ma-
   Res. Note PSW-298.                               deira de Eucalyptus grandis W.Hill ex
Stern-Cohen, S. & A. Fahn. 1964. Structure          Maiden. Revista Arvore 4: 170-178.
   and variation of the wood fibres of Euca-     Wang, S., R. C. Littell & D.L. Rockwood.
   lyptus gomphocephala A. DC. along and            1984. Variation in density and moisture
   across the stern. La-Yaaran 14: 106-117.         content of wood and bark among twenty
Susmel, L. 1953. Ricerche sul peso speeifico        Eucalyptus grandis progenies. Wood Sei.
   dellegno di Eucalyptus rostrata Schlecht.        Techno!. 18: 97-100.
   dell' Agro Pontino. Ital. For. Mont. 8:       Waugh, G.1975.Variation in selected growth
   222-227.                                         and wood characteristics of plantation
Taylor, F. 1973. Anatomical wood properties         grown Eucalyptus regnans. In: Proc. 17th
   of South African grown Eucalyptus gran-          For. Prod. Res. Conf., Melbourne. Topic
   dis. South Afr. For. J. 84: 20-24.               2/5.
-1974. Differences in the wood of Euca-          Wilkes, J. 1984. The influence of rate of
   lyptus grandis grown in different parts of       growth on the density and heartwood ex-
   South Africa. South Afr. For. J. 91: 14-18.      tractives content of eucalypt species.
Tischler, K. & D. Heth. 1985. Wood proper-          Wood Sei. Techno!. 18: 113-120.
   ties of irrigated eucalypts. In: Proc. Int.   - & D. Abbott. 1983. Influence of the rate
   Symp. 'Forest Products Research Interna-         of tree growth on the anatomy of eucalypt
   tional - Achievements and the Future',           species. Appita 37: 231-232.
   Pretoria. Vo!. 3, Topic 10-3.                 - & W. A.Heather.1982.Detection of decay
Tomazello Filho, M. 1985a. Varia~iio radial         with a pulsed-current resistance meter,
   da densidade basica e da eStrutura anato-        and radial variation in some wood proper-
   mica da madeira do Eucalyptus saligna e          ties in tallowwood. Aust. For. Res. 12:
   E. grandis. IPEF 29: 37-45.                      63-70.

                                                                Downloaded from Brill.com12/24/2020 07:08:28AM
                                                                                                 via free access
You can also read