VARIATIONS INWOODANATOMY WITHIN SPECIES OF EUCALYPTUS* - Brill
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
IAWA Bulletin n.s., Vol. 9 (1),1988: 13-23 VARIATIONS INWOODANATOMY WITHIN SPECIES OF EUCALYPTUS* by John Wilkes Wood Technology and Forest Research Division, Forestry Commission ofNew South Wales, P.O. Box 100, Beecroft, 2119, Australia Summary Eucalyptus species are characterised by 1978; Wilkes & Abbou 1983; Bamber substantial genetically predetermined within- 1985): and between-tree variations in wood anatom- Fibres (fibre-tracheids) - 10-20 ).l1ll in di- ical features including fibre and vessel di- ameter, 0.8-1.3 mm long and occupying mensions. This effect of genotype outweighs > 60% wood volume; that of growing conditions; indeed the in- Vessels - solitary and diffuse, 80-180 11m fluence on wood anatomy of rate of growth in diameter, 10-20% volume; per se is minor. It must therefore be assumed Rays - 1-3-seriate, < 20 cells high, 10-20 that the reputed difference in wood quality %volume; between regrowth/plantation stands and old Axial parenchyma - apotracheal and para- growth forests is founded on non-anatomical tracheal, < 10% volume; features, or reflects simply the greater pro- Vasicentric tracheids - < 2 % volume. portion of juvenile wood in smalI, rapidly Intraspecific variations in gross wood density grown sterns. closely reflect variations in the transverse di- Key words: Eucalyptus, wood anatomy, ju- mensions of fibres as indicated, for example, venile wood, growth rate. by the Runkel ratio (double wall thickness/ Introduction lumen diameter) (Chudnoff & Tischler 1963; Native to Australia, Eucalyptus species are Sardinha 1977a). This relationship is here- now grown extensively in many countries. after presumed; the majority of studies con- The number of studies on variations in wood cerning the intrinsic wood quality of euca- quality in the genus has correspondingly in- lypts deal not with wood anatomy per se, but creased, and for certain species information with the more easily measured wood density exists pertaining to the properties of wood which correlates weH with the usefulness of produced under a variety of conditions. Sum- wood for a range of applications. marised here are the variations in wood anat- omy. Particular attention is focused on the Within-treevariation in wood anatomy often reported differences between regrowth/ The most widely studied variations in plantation ('new growth') stands and natural! wood anatomy of Eucalyptus are within-tree. virgin Cold growth') forests (Dadswe1l1958; This age related variation, of obvious impor- Knigge & Lewark 1976). The new growth tance in itself, must be thoroughly under- forests are typically more vigorous than their stood if between-tree variations are to be in- old growth counterparts at a similar age. terpreted accurately; not only may the mean values of an anatomical feature differ between Anatomy of Eucalypts trees, but the patterns of variation within The eucal ypts generallylack distinct growth trees mayaiso differ. rings and have a relatively simple hardwood structure (Fig. 1). The various cell types have Radial direction the following common features in the majori- In the centre of older eucalypt sterns, a ty of species (Dadswell 1972; Hillis 1972, zone of juvenile wood can be defined where * This review formed the basis of a presentation to the XIV International Botanical Congress, Berlin, July, 1987. Downloaded from Brill.com12/24/2020 07:08:28AM via free access
14 IAWA Bulletin n.s., Vol. 9 (1),1988 Fig.l.A.Eucalyptus regnans. Transverse section showingvessels in diffuse(tendingto oblique) arrangement and the virtual absence ofaxial parenchyma. - B. E. tesselaris. Vessels often oc- cur in short radial multiples, and paratracheal parenchyma is plentiful. These features charac- terise only the subgenus Corymbia. x 35. ..... 20 1-5 N Z4 ~ 'e 150 o e wz .0 ,a: w ~ ~ wu 15 \00 E !1 %: I- - >u .; e - .....::L a:: ~ ~~
Wilkes - Wood anatomy of Eucalyptus 15 Fig. 4. Euca/yptus grandis. Transverse seetions of wood 2 (A) and 30 (B) annual increments from the pith. x 35. 1·0 most anatomical features are changing rapid- ly. Over the first 10-20 years of growth, marked increases occur in the diameter, wall ~ .., 1·1 thickness and length of fibres (e.g. 10, 30 'eo and 50% respectively) (Santos & Nogueira 1971; Brasil & Ferreira 1972; Foelkel et a/. 1983; Tomazello Filho 1985a; Fig. 2). Simi- >'"' I- lar increases (e.g. of 50%) occur in the CI) Z diameter and length of vessel elements, while W Q 0,7 vessel frequency declines (e. g. by 50 %) (Chudnoff & Tischler1963; Ranatunga 1964; CI) 4( Arulchelvam 1971; Santos & Nogueira 1977; 1110>1 Nicholls & Griffin 1978; Figs. 3 & 4). The proportions of the various cell types change relatively little (Nicholls & Phillips 1970; 0' 5 L-..o...-...:..._"--_ _'--_---' 10 15 Sardinha & Hughes 1979; Malan 1985). In RADIUS (cm) relation to the total amount of wood sub- stance per unit volume, the centrifugal in- Fig. 5. Radial gradients in density within the crease in fibre wall thickness more than com- heartwood of 40-50-year-old stems of Euca- pensates for the increment in fibre diameter lyptus (Sourees: Gerhards 1965; Wilkes & such that a rise in density of 10-50% nor- Heather 1982; Wilkes 1984). mally occurs with distance from the pith in Downloaded from Brill.com12/24/2020 07:08:28AM via free access
16 IAWA Bulletin n.s., Vol. 9 (1),1988 . BASIC DENSITY (g em- 3 ) FIBRE LENGTH (mm) • 0.7 " 3• .§ ,.. J: "iii .. J: • __J -_ _ _ _---:-' 12 RADIUS (ern) • RADIUS (ern) Fig. 6. Disnibution of density in Eucalyptus Fig. 7. Disnibution of fibre length in one robusta (Sourees: Skolmen 1975; Wilkes, stern of Eucalyptus regnans (Souree: Bisset unpublished). & DadsweIl1949). Eucalyptus sterns (Gerhards 1965; Skolmen Between-tree variation in wood anat- 1974; Hans 1976; Nahuz et al. 1980; Chafe omy 1985a; Fig. 5). Variations in wood anatomy may be as great between as within sterns of Eucalyp- Axial direction tus (GreenhiII & Dadswell 1940; Sardinha Variations in wood anatomy along the stern 1977b). This is the ease even for one uniform are apparently less eonsistent than those in site, i.e., the effeet is largely genetie. Varia- the radial direetion (e. g. see Barriehelo et al. tionsin fibrelengthandbasiedensity between 1983). Density eommonly inereases with neighbouring trees of the same age ean easily height, sometimes after an initial decIine exeeed 25 and 50% respeetively (Table 1). (Crawford et al. 1972; Ferreira 1972; Frank- The importanee of tree genotype in ex- !in & Meskimen 1975; Harris & Young 1980; plaining tree-to-tree differenees in wood anat- Chafe 1978; Fig. 6). Fibre length more often omy is echoed in studies showing signifieant inereases to a point weIl up the bole, then de- variation between clones or famiIies (Rudman cIines at higher levels (Ranatunga 1964; Bam- 1970; Waugh 1975; Nieholls & Matheson ber et al. 1969; Santos & Nogueira 1974; 1980; Wang et al. 1984) and between prove- Fig. 7). These ehanges can oeeur primarily in nances (Sesbou & Nepveu 1978; Vital & wood formed by eambia of the same age, Lucia 1980; Tomazello Filho 1985a). The i. e., at a given inerement from the pith, or lack of appreciable interprovenance variation additionally, within individual increments, in the densitometric eharacteristics of E. i.e., at a set inerement from the cambium nitens (Deane and Maid.) Maid. (Nicholls & (Figs 6 & 7). Pederick 1979; McKimm 1985) is apparent1y Downloaded from Brill.com12/24/2020 07:08:28AM via free access
Wilkes - Wood anatomy of Eucalyptus 17 2-3 .... ~ = High 8Ir . . . ~ 2·1 W Z ~ UH l=1-1 % CI ~ Z W jH ~ ...J 1.0 C W ~ a: 11 ~H ii: 0" 11 ii: 0 · . L - - - - - - - ' -_ _ _ _ _.... 1-3 0 3S 70 o so 100 HEIGHT (") RADIUS (,,) Fig. 8. Variation in fibre wall thickness with Fig. 9. Contrasting radial gradients in fibre height in two sterns of Eucalyptus saligna length in 27-year-old sterns of Eucalyptus (Source: Sardinha & Hughes 1979). grandis of differing growth stress intensity (Source: Malan 1985). exceptional; however even in this species, 1977b; Bamber 1985). Differences in density other features such as the length and lumen and fibre length, even between markedly diameter of fibres, vary significantly with dissimilar sites, are mostly weIl below 20% seed source (McKimm & nic 1987). (Table 2). Within-tree gradients in wood anatomy also Wood property variations in eucalypts ap- differ between trees. Sardinha and Hughes pear not to correlate reliably with changes in (1979) for example, found that two trees of specific factors of the environment, such as E. saligna Sm. from Angola showed reverse temperature I altitudellatitude, rainfall and trends of fibre wall thickness with height in soil properties (Taylor 1974; Skolmen 1975; the bole (Fig. 8). Malan (1985) has demon- Sardinha 1977b). Correspondingly, a range strated that in E. grandis Hill ex Maid., an as- of forest management practices inc1uding sociation exists between wood anatomy and fertilisation (Higgs&Rudman 1973; Chauhanet levels of longitudinal growth stress in sterns, al. 1983),irrigation (Tischler&Heth 1985), e.g. in the outer regions of highly stressed prescribed buming (Nicholls 1974) and thin- boles the length (Fig. 9) and wall thickness ning/espacement (Brasil & Ferreira 1971; of fibres, wood density and vessel diameter Higgs & Rudman 1973; Schonau 1974; Fer- are likely to be higher than in boles of low rari & Scaramuzzi 1982; Chauhan et al. stress. Such wood anatomy-stress interrela- 1983) all have re1atively weak effects on eu- tions may prove an important link in explain- calypt wood structure. ing the considerable within- and between-tree The infiuence of site on within-tree varia- variation in wood properties (Nicholson et al. tions in wood anatomy has yet to receive 1975; Boyd 1980). adequate attention, although such an effect has been reported for the density of E. gran- Environmental variation in wood anat- dis (Villiers 1968). omy Variations in wood anatomy between ge- New and old growth forests netically similar trees growing under differ- The relatively rninor role of growing con- ent conditions are usually smaller than the ditions in determining the wood structure of effects due to age and genotype (Bamber & Eucalyptus calls into question the reputation Humphreys 1963; Tay lor 1973; Sardinha of regrowth and plantation stands as produc- Downloaded from Brill.com12/24/2020 07:08:28AM via free access
18 IAWA Bulletin n.s., Vol. 9 (1),1988 Table 1. Examples of variations in wood anatomy between Eucalyptus trees. Wood Species Age* Variation Difference Reference property (yrs) Min. Max. (% ofmin.) Basic E. alba 5 0.44 0.67 52 Ferreira 1970 density E. citriodora 8 0.51 0.75 47 Shukla & Rajput 1981 (g cm-3 ) E. grandis 3 0.30 0.48 60 Brasil et al. 1979 E.grandis 15 0.34 0.53 56 Taylor 1973 E.grandis 15 0.40 0.63 58 Taylor 1974 E. nitens 8 0.39 0.54 38 Chafe 1985b E. regnans 27 0.39 0.49 26 Dargavel 1968 E. robusta 5 0.50 0.68 36 Arulchelvam 1971 E. saligna 3 0.40 0.58 45 Ferreira et al. 1979 E. saligna 3 0.35 0.51 46 King 1980 Fibre E. grandis 20 0.91 1.11 22 Bamber et al. 1969 length E. grandis 25-30 0.84 1.02 21 Ranatunga 1964 (mm) E. grandis 20 0.86 1.10 28 Taylor 1973 E. grandis 18 0.93 1.19 28 Taylor 1974 E. robusta 3 0.83 1.04 25 Arulchelvam 1971 E. tereticornis 8 0.66 0.88 33 Purkayastha et al. 1984 * Either age of tree or increment from pith. Data represents either the whole tree or the lower stern, e. g. breast height. ing wood very different from virgin forest While in E. delegarensis R.T. Bak. a elose material, e. g. the new growth wood is be- relationship appears to exist between cambial lieved to have a relatively low basic density activity durlng the growing season and the and short fibres (Hillis 1981). The scenario structure of maturing xylem (Amos et al. can be largely explained in tenns of the pro- 1950), more general analyses ofthe effects of portion of juvenile wood in the sterns. The vigour on eucalypt anatomy are fraught with period of fonnation of juvenile wood is large- complexities. Perhaps most importantly, dif- ly predetennined (Dadswell 1958; Wilkes ferent stimuli of growth may be associated 1984); thus in trees harvested at a given size, with different variations in a wood property, a larger proportion of juvenile wood is pres- e.g. fertilisation and thinning may have op- ent in those more rapidly grown, as in plan- posite effects on density (Higgs & Rudman tations. 1973). Further, increment in height and diam- A depressive effect of accelerated growth eter may be associated differently with a on the density and fibre length of tissues of a wood feature (Taylor 1974). It is also note- given fonnative age is also widely assumed. worthy that the extent to which vigour and However,supportive evidence (SusmeI1953; wood anatomy are linked genetically in euca- Hans et al. 1972; Schonau 1974) is limited, lypts remains largely unknown. Were a sub- and other results are more often obtained stantial inverse relationship to exist for den- (e.g. Taylor 1973; Schonau 1980; Frederick sity or fibre length, much of the so-called rate er al. 1982; Bhat & Bhat 1984; Wilkes 1984). of growth effect could be an artifact of ge- This might be expected in view of the weak netic differences between trees. Sesbou and relationship between growing conditions and Nepveu (1978) have in fact reported such an xylem anatomy in Eucalyptus. association between density and growth rate Downloaded from Brill.com12/24/2020 07:08:28AM via free access
Wilkes - Wood anatomy of Eucalyptus 19 Table 2. Examples of variations in wood anatomy between Eucalyptus between locations. Wood Species Age Variation Difference Reference property (yrs) Site 1 Site 2 (% ofmin.) Basic E. camaldulensis 9 0.55 0.59 7 Sesbou & Nepveu 1978 density E. citriodora 8-9 0.65 0.72 11 Shulda & Rajput 1981 (g cm- 3 ) E. grandis 15 0.43 0.46 7 Taylor 1973 E.grandis 18 0.45 0.48 7 Taylor 1974 E. robusta 34 0.54 0.63 17 Skolmen, 1975 E. saligna ca. 25 0.61 0.69 13 Sardinha & Hughes 1979 Fibre E. gomphocephala 3 0.59 0.74 25 Stern-Cohen & Fahn 1964 length E.grandis 15 0.85 0.98 15 Taylor 1973 (mm) E.grandis 15 0.92 1.02 11 Taylor 1974 E. tereticornis 8 0.75 0.82 9 Chauhan et al. 1983 E. tereticornis 8 0.74 0.80 8 Purkayastha et al. 1984 Data represent either the whole tree or the lower stem, e.g. stump height. In most cases variation may be partly genetic, i.e. genotype was not held constant across the sites. In cases where more than two sites or seed sources were tested, the largest variation is pre- sented. Fig. 10. Eucalyptus grandis. Transverse sections from control (A) and intensively managed (B) stems at 5 years of age. x 50. Downloaded from Brill.com12/24/2020 07:08:28AM via free access
20 IAWA Bulletin n.s., Vol. 9 (1),1988 aeross 25 provenanees of E. camaldulensis - & F. R. Humphreys. 1963. A prelirninary Dehnh. Where tree genotype is held eonstant, study of some wood properties of Euca- using either clonal or eoppiee material, direct lyptus grandis (Hill) Maiden. J. Inst. 'effeets' of vigour on wood strueture are Wood Sei. 11: 63-70. found to be small and/or ineonsistent (King Barriehelo, L. E. G., J. O. Brito & A J. Migli- 1980; Wilkes & Abbott 1983; Wilkes 1984). orini. 1983. Estudo da variayiio longitu- It may be signifieant that the majority of dinal da densidade basiea de Eucalyptus work in this area has dealt only with density spp. Silvicultura 28: 726-731. and fibre length (in effeet, fibre dimensions). Bhat, K.M. & K.V. Bhat.1984. Wood prop- A study ofE.grandis by Bamber et al. (1982) erties of l-year-old Eucalyptus tereticor- has shown a larger effeet of vigour on the nis Sm. Aust. For. Res. 14: 129-133. physiologieally aetive eells; intensive eultural Bisset, I.J.W. & H.E. Dadswell. 1949. The treatment was associated with an inerease in variation of fibre length within one tree of the volume of parenehyma and a deerease in Eucalyptus regnans, F.v.M. Aust. For. 13: vessel sizeand frequeney (Fig.lO). Clearly, in- 86-96. suffieient is known regarding the physiology Boyd, J. D. 1980. Relationships between ofwood formation inEucalyptus. Neverthe- fibre morphology, growth strains and less, there ean be little doubt that the eritieal physieal properties of wood. Aust. For. faetors governing wood anatomy are eambial Res. 10: 337-360. age when tissues are formed and tree geno- Brasil, M. AM. & M. Ferreira. 1971. Varia- type; growing eonditions are less important. yiio da densidade basica da madeira de Eucalyptus alba Reinw., E. saligna Smith Conc1usion e E. grandis Hill ex Maiden aos 5 anos de It appears that environmental variation in idade, em funyiio do local e do espaya- the anatomy of euealypts is generally over- mento. IPEF 2/3: 129-149. shadowed by both natural genetie diversity - & - 1972. Variayiio da densidade basiea and within-tree (age) effeets. Thus, the widely e das earaeteristieas das fibras em Euca- held view that wood properties vary mark- /yptus grandis Hill ex Maiden ao nivel do edly between new and old growth forests re- DAP. IPEF 5: 81-90. quires substantial qualifieation; the propor- - , R.A.A.Veiga& H.A.Mello.1979.Den- tion of juvenile wood is the critieal faetor. sidade basiea de madeira de Eucalyptus References grandis Hill ex Maiden, aos 3 anos de Amos, G. L., I. J. W. Bisset & H. E. Dadswell. idade. IPEF 19: 63-76. 1950. Wood strueture in relation to Chafe, S. C. 1981. Variations in longitudinal growth in Eucalyptus gigantea Hook.f. growth stress, basic density and modulus Aust. J. Sei. Res. (B) 3: 393-413. of elasticity with height in the tree. Aust. Arulehelvam, K. 1971. Variation in fibre For. Res. 11: 79-82. length and density in Eucalyptus robusta - 1985a. The distribution and interrelation- grown in Ceylon. Ceylon For. 10: 19-32. ship of eollapse, volumetrie shrinkage, Bamber, R. K. 1985. The wood anatomy of moisture eontent and density in trees of euealypts and papermaking. Appita 38: Eucalyptus regnans F.Muell. Wood Sei. 210-216. Teehnol. 19: 329-345. - & R. A Curtin. 1974. Some properties of - 1985b. Variation in longitudinal growth wood in blaekbutt trees of two ages. Aust. stress with height in trees of Eucalyptus For. 36: 226-234. nitens Maiden. Aust. For. Res. 15: 51-55. - , AG. Floyd & F.R. Humphreys. 1969. Chauhan, L., S. P.Agrawal & R.Dayal.1983. Wood properties of flooded gum. Aust. Studies on the effeets of spacing and ap- For. 33: 3-12. plieation of fertilisers on wood quality of - , R. Horne & A. Graham-Higgs. 1982. Eucalyptus tereticornis Sm. Indian For. Effeet of fast growth on the wood proper- 109: 901-908. ties of Eucalyptus grandis. Aust. For. Res. Chudnoff, M. & K. Tischler. 1963. Fiber 12: 163-167. morphology in Eucalyptus camaldulensis Downloaded from Brill.com12/24/2020 07:08:28AM via free access
Wilkes - Wood anatomy of Eucalyptus 21 Dehn. and the relation of wood anatomy Gerhards, C. C. 1965. Physical and mechani- to certain physical and mechanical cal properties of saligna eucalyptus grown properties. La-Yaaran, Supp!. 1. in Hawaii. D.S. Dept. Agric. For. Servo Crawford, I. A., F. J. Prentice &c. H. Turner. Res. Pap. FPL 23. 1972. Variation in pulping quality within Greenhill, W. L. & H. E. Dadswell.1940. The two trees of Eucalyptus delegatensis. Ap- density of Australian timbers. 2. Air dry pita 25: 353-358. and basic density data for 172 timbers. Dadswell, H. E. 1958. Wood structure varia- CSIRO (Aust.) Div. For. Prod. Tech. Pap. tions occurring during tree growth and No. 33. their influence on properties. J. Inst. Hans, A. S. 1976. Variation in wood density Wood Sci. 1: 2-24. of Eucalyptus grandis (HilI) Maiden and - 1972. The anatomy of eucalypt woods. E. tereticornis Sm. Zambia J.Sci. Techno!. CSIRO (Aust.) Div. Appl. Chem. Tech- 1: 109-112. no!. Pap. No. 66. - , J. Burley & P. Williarnson. 1972. Wood Dargavel, J. B. 1968. Variations in the basic quality in Eucalyptus grandis (HilI) density of mountain ash. Aust. For. Res. 3 Maid., grown in Zambia. Holzforschung (3): 25-30. 26: 138-141. Ferrari, G. & G. Scaramuzzi. 1982. Influenza Harris, J. M. & G. D. Young. 1980. Wood della distanza d'impianto sulla densita deI properties of some New Zealand-grown legno in Eucalyptus globulus ed E. x tra- eucalypts. In: Proc. Conf. Aust. - N. Z. butii. Cellulosa e Carta 33: 44-52. Inst. For., Rotorua: 200-212. Ferreira, C., M. de Freitas & M. Ferreira. Higgs, M. L.& P. Rudman. 1973. The effects 1979. Densidade basica da madeira de of fertilizing and thinning on wood prop- planta~öes comerciais de eucalyptos, na erties of Eucalyptus regnans. Appita 27: regiäo de Mogi-Gua~u (S.P.). IPEF 18: 51-55. 106-117. Hillis, W. E. 1972. Properties of eucalypt Ferreira, M. 1970. Estudo da varia~äo da woods of importance to the pulp and pa- densidade basica da madeira de Eucalyp- per industry. Appita 26: 113-121. tus alba Reinw. e Eucalyptus saligna - 1978. Wood quality and utilisation. In: Srnith. IPEF 1: 83-96. Eucal ypts for wood production (eds. W. E. - 1972. V aria~äo da densidade basica da Hillis and A.G. Brown): 259-289. madeira de povoamentos comerciais de CSIRO, Melbourne. Eucalyptus grandis Hill ex Maiden nas - 1981. Research knowledge relevant to idades de 11, 12, 13, 14 e 16 anos. IPEF conversion to solid wood. In: Proc. Work- 4: 65-89. shop 'Wood, future growth and conver- Foelkel, C. E. B., C. A. Busnardo, C. Dias, sion', Canberra (eds. E.P. Bachelard & C. Schmidt, R. M. R. da Silva & J. B. V. W.E. Hillis): 45-61. Vesz. 1983. Variabilidade radial da ma- King, J. P. 1980. Variation in specific gravity deira de Eucalyptus saligna. Silvicultura in 3-year-old coppice clones of Eucalyp- 28: 782-791. tus saligna growing in Hawaii. Aust. For. Franklin, E. C. & G. Meskimen.1975. Wood Res. 10: 295-299. properties of some eucalypts for the Knigge,W. von &S.Lewark.1976. Die Streu- southern United States. In: Proc. Nat. ung der Holzeigenschaften schnellwüch- Conv. Soc. Am. For. 'America's renew- siger Baumarten. Gegenwärtiger Stand able resource potential -1975 the turning der Literatur. Forstarchiv 47: 251-256. point', Washington: 454-458. Malan, ES.1985. Wood property variation in Frederick, D. J., H. A. I. Madgwick & G. R. South African grown Eucalyptus grandis Oliver. 1982. Wood basic density and trees of varying growth stress intensity. moisture content of young Eucalyptus In: Proc. Int. Symp. 'Forest Products Re- regnans grown in New Zealand. New search International - Achievements and Zea!. J. For. Sci. 12: 494-500. the Future', Pretoria. Vo!. 1, Topic 16-19. Downloaded from Brill.com12/24/2020 07:08:28AM via free access
22 IAWA Bulletin n.s., Vol. 9 (1),1988 McKimm, R. J. 1985. c=haracteristics of the Rudrnan, P. 1970. The influence of genotype wood of young fastgrown trees of Eucalyp- and environment on wood properties of tus nitens Maiden with special reference juvenile Eucalyptus camaldulensis Dehn. to provenance variation. I. Variations in Silvae Genet. 19: 49-54. growth, strain and density associated with Santos, C. F. O. & I. R. Nogueira. 1971. A provenance. Aust. For. Res. 15: 207-218. idade adulta do Eucalyptus saligna Smith - & Y. nie. 1987. Characteristics of the em Rio Claro Estado de Säo Paulo, deter- wood of young fastgrown trees ofEucalyp- minada pelas dimens6es das fibras. Anais tus nitens Maiden with special reference da Escola Superior de Agricultura 'Luiz to provenance variation. III. Anatomical de Queiroz' 28: 165-175. and physical characteristics. Aust. For. - &- 1974. Diferenc;:as entre as dimensöes Res. 17: 19-28. das fibras nos aneis de crescimento deter- Nahuz, M. A. R., V. A. Alfonso, G. J. Zenid, minados no D. A. P. e em niveis diferentes E. R. P. Jara, A.I. P. da Costa, O.B. Neto do fuste de mores adultas de Eucalyptus & S. K. Maria. 1980. Variacao da densi- saligna Smith. Anais de Escola Superior dade basica, de acordo com a idade, em de Agricultura 'Luiz de Queiroz' 31: 269- Eucalyptus spp do Distrito Florestal de 287. Mato Grosso do Sul. Presented IUFRO - &-1977. Dimens6es dos vasos e aumen- Symp./Workshop 'Genetic improvement to no comprimento das fibras lenhosas em and productivity of fast growing tree spe- relac;:äo as cambiais fusiformes nos aneis eies', Aguas de Sao Pedro, Brazil. de creseimento do Eucalyptus saligna Nicholls, J. W. P. 1974. Effect of prescribed Smith. Anais de Escola Superior de buming in a forest on wood characteris- Agricultura 'Luiz de Queiroz' 34: 307- tics ofjarrah. Aust. For. 36: 178-189. 315. - & A. R. Griffin. 1978. Variation in wood Sardinha, R. M. A. 1977a. Inter-relationship characteristics in a field trial of Eucalyp- between wood density and anatomie char- tus obliqua, E. regnans and some interme- acteristics. The application of the principal diate forms. Aust. For. Res. 8: 93-102. component analysis. Anais do Instituto - & A. C. Matheson. 1980. Variation in Superior de Agronomia, Univ. Tecnica de wood characteristics in thinnings from a Lisboa 37: 49-63. field trial of Eucalyptus obliqua. Aust. - 1977b. Environmental effects on Euca- For. Res. 10: 239-247. lyptus saligna Sm. wood density. Anais - & L. A. Pederick. 1979. Variation in some do Instituto Superior de Agronomia, wood characteristics of Eucalyptus nitens. Univ. Tecnicade Lisboa 37: 81-101. Aust. For. Res. 9: 309-321. - & J. F. Hughes. 1979. Wood properties - & F. H. Phillips. 1970. Preliminary study variation of Eucalyptus saligna Sm. from of coppice-grown Eucalyptus viminalis as Angola. Anais do Instituto Superior de a source of chip material. CSIRO (Aust.) Agronomia, Univ. Tecnica de Lisboa 38: Div. For. Prod. Technol. Pap. No. 58. 105-124. Nicholson, J. E., W. E. Hillis & N. Ditch- Schonau, A. P. G. 1974. The effect of plant- bume. 1975. Some tree growth - wood ing espacement and pruning on growth, property relationships of eucalypts. Can. yield and timber density of Eucalyptus J. For. Res. 5: 424-432. grandis. South Afr. For. J. 88: 16-23. Purkayastha, S. K., S. P.Agrawal, R. D. Tan- - 1980. Timber density of planted parent don & L. Chauhan. 1984. Studies on the trees and first-generation coppice of variation in wood quality of Eucalyptus Eucalyptus grandis. Rep. Wattle Res. tereticornis Sm. trees grown in different Inst., Univ. Natal, 1979-1980: 107-110. plantations. Part 11. Fibre length. Indian Sesbou, A. & G. Nepveu. 1978. Variabilite For. Rec. n.s. 3 (2): 1-17. infraspecifique du retrait avec collapse Ranatunga, M. S. 1964. A study of the fibre et de la densite du bois chez Eucalyptus lengths of Eucalyptus grandis grown in camaldulensis. Ann. Sei. For. 35: 237- Ceylon. Ceylon For. 6: 101-112. 263. Downloaded from Brill.com12/24/2020 07:08:28AM via free access
Wilkes - Wood anatomy of Eucalyptus 23 Shukla, N. K. & S. S. Rajput. 1981. A note on - 1985b. Varia~iio radial da densidade the specific gravity of Eucalyptus species basica e da estrutura anatomica da ma- from different localities. Indian For. 107: deira do Eucalyptus gummifera, E. micro- 438-447. corys e E. pilularis. IPEF 30: 45-53. Skolmen, R. G. 1974. Lumber potential of Villiers, A. M. deo 1968. Die verband tussen 12-year-old saligna eucalyptus trees in ouderdom, spesies en sekere houteien- Hawaü. U.S. Dep!. Agric. For. Servo Res. skappe van die Eucalyptus grandisl Note PSW-288. saligna kompleks. Bosb. Suid-Afr. 9: 11- - 1975. Shrinkage and specific gravity vari- 44. ation in robusta eucalyptus wood grown Vital, B. R. & R. M. D. Lucia. 1980. Proce- in Hawaü. U.S. Dept. Agric. For. Servo deneia de sementes equalidade da ma- Res. Note PSW-298. deira de Eucalyptus grandis W.Hill ex Stern-Cohen, S. & A. Fahn. 1964. Structure Maiden. Revista Arvore 4: 170-178. and variation of the wood fibres of Euca- Wang, S., R. C. Littell & D.L. Rockwood. lyptus gomphocephala A. DC. along and 1984. Variation in density and moisture across the stern. La-Yaaran 14: 106-117. content of wood and bark among twenty Susmel, L. 1953. Ricerche sul peso speeifico Eucalyptus grandis progenies. Wood Sei. dellegno di Eucalyptus rostrata Schlecht. Techno!. 18: 97-100. dell' Agro Pontino. Ital. For. Mont. 8: Waugh, G.1975.Variation in selected growth 222-227. and wood characteristics of plantation Taylor, F. 1973. Anatomical wood properties grown Eucalyptus regnans. In: Proc. 17th of South African grown Eucalyptus gran- For. Prod. Res. Conf., Melbourne. Topic dis. South Afr. For. J. 84: 20-24. 2/5. -1974. Differences in the wood of Euca- Wilkes, J. 1984. The influence of rate of lyptus grandis grown in different parts of growth on the density and heartwood ex- South Africa. South Afr. For. J. 91: 14-18. tractives content of eucalypt species. Tischler, K. & D. Heth. 1985. Wood proper- Wood Sei. Techno!. 18: 113-120. ties of irrigated eucalypts. In: Proc. Int. - & D. Abbott. 1983. Influence of the rate Symp. 'Forest Products Research Interna- of tree growth on the anatomy of eucalypt tional - Achievements and the Future', species. Appita 37: 231-232. Pretoria. Vo!. 3, Topic 10-3. - & W. A.Heather.1982.Detection of decay Tomazello Filho, M. 1985a. Varia~iio radial with a pulsed-current resistance meter, da densidade basica e da eStrutura anato- and radial variation in some wood proper- mica da madeira do Eucalyptus saligna e ties in tallowwood. Aust. For. Res. 12: E. grandis. IPEF 29: 37-45. 63-70. Downloaded from Brill.com12/24/2020 07:08:28AM via free access
You can also read