Theory: Particle Cosmology - Filippo Sala 87th PRC meeting, 21 May 2019 - DESY Indico
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
People - Staff ★ Wilfried Buchmüller (honorary member) ★ Valerie Domcke (5yrs) ★ Thomas Konstandin ★ Rafael Porto* (Zeuthen, but located in Hamburg) ★ Andreas Ringwald ★ Filippo Sala (5yrs) ★ Geraldine Servant ★ Alexander Westphal* *External fundings: 2 ERC consolidator grants PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !1
People - Staff ★ Wilfried Buchmüller (honorary member) ★ Valerie Domcke (5yrs) Offered 6 year CERN-EPFL staff position (starting date negotiated to May 2020) ★ Thomas Konstandin ★ Rafael Porto* (Zeuthen, but located in Hamburg) ★ Andreas Ringwald ★ Filippo Sala (5yrs) Ranked 1st in CNRS section02 competition (starting date etc to be negotiated) ★ Geraldine Servant ★ Alexander Westphal* *External fundings: 2 ERC consolidator grants PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !1
People - Postdocs/Students/Other + more later ★ Federico Carta* ★ Felix Giese ★ Luca Di Luzio*(arrives Fall 2019) ★ Yann Gouttenoire ★ Yohei Ema* ★ Jakob Moritz* ★ Nayara Fonseca ★ Henrique Rubira ★ Ryusuke Jinno* ★ Peera Simachakorn ★ Enrico Morgante ★ Stefan Sanders ★ Kyohei Mukaida* ★ Ryosuke Sato ★ Prof. Jorge Gamboa (Humboldt visitor Apr-July 2019) ★ Yvette Welling* *External fundings (partial or all) - japanese JSPS fellowships, ERC, Marie Curie PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !2
External Fundings and Networks ★ Excellence Cluster (participation to “Quantum Universe” proposal) ★ ERC consolidator grant “Stringflation” (Alexander) ★ ERC consolidator grant “LHCtoLISA” (Rafael, Zeuthen but located in Hamburg) ★ Cost European Network “Fundamental Connections” ★ Invisibles-Plus RISE and Elusives European ITN Network (Horizon2020 projects, University of Goettingen-DESY node) ★ PIER Seed project funding (Filippo&Geraldine) “Dark Matter at 10 TeV and beyond, a new goal for cosmic-ray experiments” ★ Nordic Network of Dark Matter (Thomas, funds Danish Research Council) ★ Member of ANTARES collaboration (Filippo, observer status) PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !3
Event Organisation (since 2018) PARTICLE PHYSICS CHALLENGESª Local DESY Theory Workshop 25 - 28 September 2018 Hamburg, Germany ★ 6 Apr 2018 - Gravitational Waves: windows of opportunities Plenary Talks U. Blumenschein (London) N. Craig (Santa Barbara) M. Czakon (Aachen) J. Kopp (Mainz) F. Maltoni (Louvain) T. Mannel (Siegen) M. Pospelov (Perimeter) J. Rademacker (Bristol) M. Schmaltz (Boston) L. Tancredi (CERN) A. Urbano (Trieste) C. Vallée (Marseille & DESY) A. Denner (Würzburg) F. Moortgat (CERN) K. Schmidt-Hoberg (DESY) L. Verde (Barcelona) A. Eichhorn (Heidelberg) I. Moult (Berkeley) M. Spannowsky (Durham) L.-T. Wang (Chicago) DESY Heinrich-Hertz Lecture on Physics 27 September 2018 ★ 18-22 Jun 2018 - 14th Patras Axion-WIMP workshop George Sterman (Stony Brook University) Parallel Sessions Contributions by young researchers are especially encouraged. Deadline for abstract submission in early July 2018 ªStrings & Mathematical Physics: O. Schlotterer (Potsdam & Perimeter Inst.), E. Pomoni (DESY) e−γ ªCosmology & Astroparticle Physics: F. Kahlhoefer (Aachen), V. Domcke (DESY) ªParticle Phenomenology: S. Gieseke (Karlsruhe), M. Bauer (Heidelberg) ★ 21-23 Aug 2018 - Probing strong-field QED in interactions ORGANIZING COMMITTEE: K. Borras, C. Grojean, B. Heinemann, G. Heinrich, G. Hiller, J. Jäckel, M. Krämer (Chair), A. Kulesza, P. Marquard, G. Moortgat-Pick, S. Schumann, P. Schwaller, T. Schwetz-Mangold, F. Tackmann http://th-workshop2018.desy.de ★ 25-28 Sep 2018 - DESY theory workshop Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association ★ 19-20 Mar 2019 - Quantum Universe Kickoff meeting External ★ 14-18 May 2018, CERN Primordial vs Astrophysical origin of Black Holes ★ 9-21 July 2018, Corsica, Cargese Summer School ★ 7-13 April 2019, Benasque, Light Scalars Workshop ★ 10-21 June 2019, ICTP Trieste, Particle Physics summer school ★ 7-12 July 2019, Valencia, GR22 PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !4
Lectures and Teaching (since 2018) ★ Summer semester 2018, Uni. Hamburg, Theoretical Cosmology course [Servant+Westphal] ★ Summer semester 2018, DESY, “Workshop Seminar” on Flavour Physics, 11 lectures ★ June 2018, Erice, “Erice international school of science journalism”, 1 lecture [Servant] ★ July 2018, Mainz, “MITP Summer School 2018”, 4 lectures [Domcke] ★ July 2018, Trieste, “Jennifer summer school on particle physics and detectors”, 2 lectures [Sala] ★ Winter semester 2018, DESY, “Workshop Seminar” on Hot Topics in QFT&String theory, 12 lectures ★ Summer semester 2019, DESY, “Workshop Seminar” on Semiclassical objects in QFT, 11 lectures ★ Summer semester 2019, Uni. Hamburg, Theoretical Cosmology course [Domcke+Servant] ★ August 2019, Ljubljana, Summer School, 2 lectures + 2 tutorings [Sala+Gouttenoire] PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !5
Research: The Big Picture We work to understand: Our lab: ★ Dark Matter ★ Baryon Asymmetry ★ Neutrino Oscillations ★ Quantum Gravity ★ Inflation ★ Dark Energy ★ EW symmetry breaking ★ Strong CP problem ★ Origin of SM flavour ★ …. PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !6
SMASH Self-contained and consistent description of particle physics and cosmology SMASH • Added to Standard Model (SM) singlet complex scalar field featuring spontaneously broken Peccei- BRF ADMX IAXO ADMX3 + X3 Quinn symmetry, a vector-like quark, and three MADMAX ORPHEUS right-handed singlet (sterile) neutrinos ADMX2 • Model solves several problems of particle physics CULTASK and cosmology in one stroke: - - - - - - • Inflation (non-minimal chaotic PQ/H field inflation) • Baryogenesis (leptogenesis) • Dark matter (axion) • Strong CP problem (axion) • Neutrino masses and mixing (seesaw) [Ballesteros,Redondo,Ringwald,Tamarit 1608.05414; 1610.01639] PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !7
GUT SMASH Self-contained and consistent description of particle physics and cosmology Non-SUSY GUT SMASH • Non-SUSY and models addressing both neutrino masses and gauge coupling unification predict axion mass in window accessible in axion DM direct detection CASPEr-Electric • Intriguing possibility that Higgs field required for GUT breaking may be responsible for inflation [Ernst 18; CASPEr prospects from Kimball et al. 17] [Ernst,Ringwald,Tamarit 1801.04906; Di Luzio,Ringwald,Tamarit 1807.09769] PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !8
Flavour-Electroweak symmetry breaking cosmological interplay ● Effect of varying Yukawas on EW phase transition Baldes, Konstandin, Servant, 1604.04526 ● Implementation in Froggatt-Nielsen Baldes, Konstandin, Servant, 1608.03254 ● Natural realisation of Yukawa variation in Randall-Sundrum Von Harling, Servant, 1612.02447 ● Calculation of baryon asymmetry in models of variable Yukawas Bruggisser, Konstandin, Servant, 1706.08534 ● Outcome in composite Higgs models Bruggisser, VonHarling, Matsedonskyi, Servant, 1803.08546 & 1804.07314 ● High scale EW phase transition Baldes, Servant, 1807.08770 PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !9
Cosmological relaxation of the electroweak scale ● UV completion in Randall-Sundrum type of models Fonseca, Von Harling, De Lima, Machado, 1712.07635 ● Higgs relaxation after inflation Fonseca, Morgante, Servant, 1805.04543 ● Relaxation dark matter Fonseca, Morgante, 1809.04534 n V( ) l Evolution after inflation t=0 t=t c B. Low Temperature Inflation c = ⇤/g 0 : µh = 0 Most of its energy is transferred Figure 1. Sketch of the relaxion field evolution. PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !10
GW spectra from fluid models Predictions of gravitational waves from cosmological phase transitions often rely on hydrodynamic lattice simulations. These simulations are limited by grid resolutions and time scales. Semi-analytic models can assess these regimes. They are based on energy considerations and fluid modelling from the simulations. [TK ’17] PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !11
als 0.25 Planck TT+lowP+lensing+ext Planck TT+lowP the test string theory +BK14 Planck TT+lowP+BKP +lensing+ext N= N= 60 with inflation & CMB 0.20 50 2 2 • V r =r T /S 0.15 Co 0.002 nv Co ex nc ave • V strings! 0.10 2/3 0.05 • V / 0.00 0.95 0.96 0.97 0.98 0.99 1.00 ns ns Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running FIG. 7. Constraints in the and cosmological CMB data r vs.the nsinflationary plane whenconsistency using Planck rela- tion. The result is model-dependent; for example, the grey contours show plus how the results additional change data, and whenif there also were additional adding relativistic BICEP2/Keck degrees of freedom with Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). data through Dotted the end of thelines 2014show loci season of approximately including new 95 GHz con- p stant e-folding number N, assuming simple V / ( /mPl ) single-field inflation. maps—the Solid lines constraint onshow the approximate r tightens from r0.05ns –r < relation 0.12 tofor quadratic and linear potentials to first order in slow roll; red lines rshow the approximate allowed range assuming 50 < N < 60 and 0.05 < 0.07. This figure is adapted from Fig. 21 of Ref. [2]— a power-law potential for the duration of inflation. The solid blacksee line (corresponding to a linear potential) separates concave and the string theory landscape: there for further details. convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level of significance compared to the Planck-alone constraints. many isolated vacua, connected by tunneling some mountain slopes drive inflation ⇤ limited by cosmic variance of the dominant scalar anisotropies, from tensor modes. The constraints shown by the blue contours [13 jmkovac@cfa.harvard.edu † and it is also model dependent. In polarization, in addition to B- in Fig. 21, which add Planck lensing, BAO, and other astrophys- pryke@physics.umn.edu modes, the EE and T E spectra also contain a signal from tensor icalA. [1] data, are therefore A. Penzias and R. tighter in the nAstrophys. W. Wilson, s direction and shifted to J. 142, 419 [14 modes coming from reionization and last scattering. However, slightly higher values, but marginally weaker in the r-direction. (1965). in this release the addition of Planck polarization constraints at [2] Planck Collaboration The 95 % limits 2015 XIII, ArXiv e-prints (2015), on r0.002 are [15 ` 30 do not significantly change the results from temperature arXiv:1502.01589. [16 string theory’s 6 compact dimensions: and low-` polarization (see Table 5). r0.002 [3] 0.10, Planckand M.
als 0.25 Planck TT+lowP+lensing+ext Planck TT+lowP the test string theory +BK14 Planck TT+lowP+BKP +lensing+ext N= N= 60 with inflation & CMB 0.20 50 2 2 • V r =r T /S 0.15 Co 0.002 nv Co ex nc ave • V strings! 0.10 2/3 0.05 • V / 0.00 0.95 0.96 0.97 0.98 0.99 1.00 ns ns Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running FIG. 7. Constraints in the and cosmological CMB data r vs.the nsinflationary plane whenconsistency using Planck rela- tion. The result is model-dependent; for example, the grey contours show plus how the results additional change data, and whenif there also were additional adding relativistic BICEP2/Keck degrees of freedom with Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). data through Dotted the end of thelines 2014show loci season of approximately including new 95 GHz con- p stant e-folding number N, assuming simple V / ( /mPl ) single-field inflation. maps—the Solid lines constraint onshow the approximate r tightens from r0.05ns –r < relation 0.12 tofor quadratic and linear potentials to first order in slow roll; red lines rshow the approximate allowed range assuming 50 < N < 60 and 0.05 < 0.07. This figure is adapted from Fig. 21 of Ref. [2]— a power-law potential for the duration of inflation. The solid blacksee line (corresponding there to a linear potential) separates concave and for further details. moduli & axions: convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level of significance compared to the Planck-alone constraints. limited by cosmic variance of the dominant scalar anisotropies, ⇤ light scalars … from tensor modes. The constraints shown by the blue contours jmkovac@cfa.harvard.edu [13 † and it is also model dependent. In polarization, in addition to B- in Fig. 21, which add Planck lensing, BAO, and other astrophys- pryke@physics.umn.edu modes, the EE and T E spectra also contain a signal from tensor icalA. [1] data, are therefore A. Penzias and R. tighter in the nAstrophys. W. Wilson, s direction and shifted to J. 142, 419 [14 modes coming from reionization and last scattering. However, slightly higher values, but marginally weaker in the r-direction. (1965). in this release the addition of Planck polarization constraints at [2] Planck Collaboration The 95 % limits 2015 XIII, ArXiv e-prints (2015), on r0.002 are [15 ` 30 do not significantly change the results from temperature arXiv:1502.01589. [16 string theory’s 6 compact dimensions: and low-` polarization (see Table 5). r0.002 [3] 0.10, Planckand M.
machine learning for axion monodromy inflation Steps: 1. Identify relevant scales (class of models) 2. Learn the mapping from parameters µ p … uii to observables … 3. Study how predictions change according fiff to prior choice ns Use numerical methods developed 2 ✓ ◆2 !p/2 3 in previous work to generate a L= 1 (@ )2 V0 4 1 + 15 + Vp,np large sample assuming AAACbHicbVFdb9MwFHXCgLGxUT7epknWKlDRtpIEJHhBmtge9sDDkGg3qQ6R4zqtNcex7JtplZUfygP8BH4DTtpJY+NK9j2+51z5+jjXUliIop9B+GDt4aPH6082Np9ubT/rPX8xtlVtGB+xSlbmIqeWS6H4CARIfqENp2Uu+Xl+edzy51fcWFGp77DQPC3pTIlCMAq+lPWuHWFU4q/NZ1IYyuIED4imBgSVRM/F2x/J4TiLiOQFTLp9EO8vc6d3rahxpKwbYsRsDr7hBjj9LmkO4+Ux3ScnXALF48zpA6WbrNePhlEX+D6IV6CPVnGW9X6RacXqkitgklo7iSMNqWtnZZI3G6S2XFN2SWd84qGiJbcH0yuhbQdTd9251eDXnp3iojJ+KcBd9Xa3o6W1izL3ypLC3N7l2uL/uEkNxafUCaVr4IotLypqiaHCrfV4KgxnIBceUGaEnxuzOfUugv8g70d89/X3wTgZxu+HybcP/aMvK2fW0Q7aQwMUo4/oCJ2iMzRCDP0O1oKtYDv4E74Kd8LdpTQMVj0v0T8RvvkLqkK6xg== 2 µ µ ⇠ U(0.1, 1) p ⇠ U(0.1, 2) • Take a random draw of µ and p • Solve background equations of motion • Solve equations of motion for the perturbations and compute ns • Repeat many times • Use machine learning to get ns (µ, p) Dias, Frazer, Mulryne, Seery: Implementations in C++, Python and Mathematica public at https://transportmethod.com PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !13
machine learning for axion monodromy inflation [Dias, Frazer & AW ’18] Steps: 1. Identify relevant scales (class of models) 2. Learn the mapping from parameters µ p … uii to observables … 3. Study how predictions change according fiff to prior choice ns Use numerical methods developed 2 ✓ ◆2 !p/2 3 in previous work to generate a L= 1 (@ )2 V0 4 1 + 15 + Vp,np large sample assuming AAACbHicbVFdb9MwFHXCgLGxUT7epknWKlDRtpIEJHhBmtge9sDDkGg3qQ6R4zqtNcex7JtplZUfygP8BH4DTtpJY+NK9j2+51z5+jjXUliIop9B+GDt4aPH6082Np9ubT/rPX8xtlVtGB+xSlbmIqeWS6H4CARIfqENp2Uu+Xl+edzy51fcWFGp77DQPC3pTIlCMAq+lPWuHWFU4q/NZ1IYyuIED4imBgSVRM/F2x/J4TiLiOQFTLp9EO8vc6d3rahxpKwbYsRsDr7hBjj9LmkO4+Ux3ScnXALF48zpA6WbrNePhlEX+D6IV6CPVnGW9X6RacXqkitgklo7iSMNqWtnZZI3G6S2XFN2SWd84qGiJbcH0yuhbQdTd9251eDXnp3iojJ+KcBd9Xa3o6W1izL3ypLC3N7l2uL/uEkNxafUCaVr4IotLypqiaHCrfV4KgxnIBceUGaEnxuzOfUugv8g70d89/X3wTgZxu+HybcP/aMvK2fW0Q7aQwMUo4/oCJ2iMzRCDP0O1oKtYDv4E74Kd8LdpTQMVj0v0T8RvvkLqkK6xg== 2 µ µ ⇠ U(0.1, 1) p ⇠ U(0.1, 2) AAACA3icdVDLSsNAFJ3UV62PRl26GSyCi1KSNLR1V9SFywr2AW0ok+m0HTqZhJlJsYQu/Qq3unInbv0QF/6Lk7aCih64cDjnXu69x48Ylcqy3o3M2vrG5lZ2O7ezu7efNw8OWzKMBSZNHLJQdHwkCaOcNBVVjHQiQVDgM9L2J5ep354SIWnIb9UsIl6ARpwOKUZKS30z37siTCHY6ie8yKN53yxYpfNaxXEr0CpZVtV27JQ4VbfsQlsrKQpghUbf/OgNQhwHhCvMkJRd24qUlyChKGZknuvFkkQIT9CIdDXlKCCyOJjSSC6ol9wtnpjDU+0O4DAUuriCC/X7dIICKWeBrzsDpMbyt5eKf3ndWA1rXkJ5FCvC8XLRMGZQhTBNBA6oIFixmSYIC6rvhniMBMJK56bz+Hoa/k9aTskul5wbt1C/WCWTBcfgBJwBG1RBHVyDBmgCDGLwAB7Bk3FvPBsvxuuyNWOsZo7ADxhvn+rEmCg= Vn,np : full model — 12 parameters ! • Take a random draw of µ and p • Solve background equations of motion • Solve equations of motion for the perturbations and compute ns • Repeat many times • Use machine learning to get ns (µ, p) lower bound r & 0.015 µ AAACAHicdVDLSsNAFJ34rPVVdelmsAguJCRpbOuu6MZlBfuANpbJdNIOnUzCzKRYQjd+hVtduRO3/okL/8VJW0FFD1w4nHMv997jx4xKZVnvxtLyyuraem4jv7m1vbNb2NtvyigRmDRwxCLR9pEkjHLSUFQx0o4FQaHPSMsfXWZ+a0yEpBG/UZOYeCEacBpQjJSWbkV3oLQZQsu07LNeoWiZ59Wy45YzwarYjp0Rp+KWXGhrJUMRLFDvFT66/QgnIeEKMyRlx7Zi5aVIKIoZmea7iSQxwiM0IB1NOQqJPO2PaSxn1EvvZh9M4bF2+zCIhC6u4Ez9Pp2iUMpJ6OvOEKmh/O1l4l9eJ1FB1UspjxNFOJ4vChIGVQSzOGCfCoIVm2iCsKD6boiHSCCsdGg6j6+n4f+k6Zh2yXSu3WLtYpFMDhyCI3ACbFABNXAF6qABMBDgATyCJ+PeeDZejNd565KxmDkAP2C8fQKdN5ba independent of AAAB9XicdVDLSsNAFJ3UV62vqks3g0VwISFJQ1t3RTcuK9oHtKFMJpN26EwSZibVUvoJbnXlTtz6PS78FydtBRU9cOFwzr3ce4+fMCqVZb0buZXVtfWN/GZha3tnd6+4f9CScSowaeKYxaLjI0kYjUhTUcVIJxEEcZ+Rtj+6zPz2mAhJ4+hWTRLicTSIaEgxUlq66fG0XyxZ5nmt4rgVaJmWVbUdOyNO1S270NZKhhJYotEvfvSCGKecRAozJGXXthLlTZFQFDMyK/RSSRKER2hAuppGiBN5FoxpIufUm97Pz57BE+0GMIyFrkjBufp9eoq4lBPu606O1FD+9jLxL6+bqrDmTWmUpIpEeLEoTBlUMcwygAEVBCs20QRhQfXdEA+RQFjppHQeX0/D/0nLMe2y6Vy7pfrFMpk8OALH4BTYoArq4Ao0QBNgMAAP4BE8GXfGs/FivC5ac8Zy5hD8gPH2Cd0dkzI= Dias, Frazer, Mulryne, Seery: Implementations in C++, Python and Mathematica public at https://transportmethod.com PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !13
Particle production during inflation Slow-roll inflation very flat scalar potential Reheating after inflation coupling to the SM Inflaton as Pseudo Goldstone Boson with shift-symmetric couplings Fµ⌫ F̃µ⌫ (@µ ) ¯ µ 5 explosive helical gauge boson production chiral fermion production additional friction modifies dynamics of baryogenesis through spontaneous CPT inflation, see also relaxion models violation Strongly enhanced non-gaussian polarized backreaction through induced current GW spectrum at scales. of LIGO and LISA modifies gauge boson production PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !14
Particle production during inflation Domcke, Mukaida ‘18 10-3 vacuum 2 One example: + gauge fields s scalar power spectrum Scalar power spectrum 10-5 + fermions at small scales 10-7 CMB Domcke, Mares, Muia, Pieroni ‘18 10-9 10-3 non-Abelian 0 10 20 30 40 50 Abelian N [e-folds] 10-5 vacuum Same scalar potential and coupling strength Different inflaton couplings 10-7 to gauge fields can be probed by observations! 10-9 (PBHs, UCMHs, mu-distortions) CMB 10-11 Similar effects (expected) 10 20 30 40 50 in GW spectrum PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !15
Light Dark Matter at Neutrino Experiments MDM AAAB9HicbVA9TwJBEJ3DL8Qv1NLmIphYkTsstCRqYUOCiXwkcCF7ywIb9vbO3TkiufA7bCw0xtYfY+e/cYErFHzJJC/vzWRmnh8JrtFxvq3M2vrG5lZ2O7ezu7d/kD88augwVpTVaShC1fKJZoJLVkeOgrUixUjgC9b0RzczvzlmSvNQPuAkYl5ABpL3OSVoJK9Y7XaQPWFyW50Wu/mCU3LmsFeJm5ICpKh181+dXkjjgEmkgmjddp0IvYQo5FSwaa4TaxYROiID1jZUkoBpL5kfPbXPjNKz+6EyJdGeq78nEhJoPQl80xkQHOplbyb+57Vj7F95CZdRjEzSxaJ+LGwM7VkCdo8rRlFMDCFUcXOrTYdEEYomp5wJwV1+eZU0yiX3ouTelwuV6zSOLJzAKZyDC5dQgTuoQR0oPMIzvMKbNbZerHfrY9GasdKZY/gD6/MHBx+Rmw== Experiment Erecoil . keV AAACB3icbVC7SgNBFJ2NrxhfUUtBBhPBKuzGQsugCJYRzAOSJcxObpIhsw9m7ophiZWNv2JjoYitv2Dn3zhJttDEAwOHc+7lzjleJIVG2/62MkvLK6tr2fXcxubW9k5+d6+uw1hxqPFQhqrpMQ1SBFBDgRKakQLmexIa3vBy4jfuQGkRBrc4isD1WT8QPcEZGqmTPyxeddoI95go4KGQY9qWoLUWfvFhCPVOvmCX7CnoInFSUiApqp38V7sb8tiHALlkWrccO0I3YQoFlzDOtWMNEeND1oeWoQHzQbvJNMeYHhulS3uhMi9AOlV/byTM13rke2bSZzjQ895E/M9rxdg7dxMRRDFCwGeHerGkGNJJKbQrTHqUI0MYV8L8lfIBU4yjqS5nSnDmIy+SernknJbsm3KhcpHWkSUH5IicEIeckQq5JlVSI5w8kmfySt6sJ+vFerc+ZqMZK93ZJ39gff4AJY6Zeg== Standard Detectors not sensitive (Xenon1T,…) Theory New connections in recent years (w/flav. anomalies, hierarchy problem, …) PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !16
Light Dark Matter at Neutrino Experiments MDM AAAB9HicbVA9TwJBEJ3DL8Qv1NLmIphYkTsstCRqYUOCiXwkcCF7ywIb9vbO3TkiufA7bCw0xtYfY+e/cYErFHzJJC/vzWRmnh8JrtFxvq3M2vrG5lZ2O7ezu7d/kD88augwVpTVaShC1fKJZoJLVkeOgrUixUjgC9b0RzczvzlmSvNQPuAkYl5ABpL3OSVoJK9Y7XaQPWFyW50Wu/mCU3LmsFeJm5ICpKh181+dXkjjgEmkgmjddp0IvYQo5FSwaa4TaxYROiID1jZUkoBpL5kfPbXPjNKz+6EyJdGeq78nEhJoPQl80xkQHOplbyb+57Vj7F95CZdRjEzSxaJ+LGwM7VkCdo8rRlFMDCFUcXOrTYdEEYomp5wJwV1+eZU0yiX3ouTelwuV6zSOLJzAKZyDC5dQgTuoQR0oPMIzvMKbNbZerHfrY9GasdKZY/gD6/MHBx+Rmw== Experiment Erecoil . keV AAACB3icbVC7SgNBFJ2NrxhfUUtBBhPBKuzGQsugCJYRzAOSJcxObpIhsw9m7ophiZWNv2JjoYitv2Dn3zhJttDEAwOHc+7lzjleJIVG2/62MkvLK6tr2fXcxubW9k5+d6+uw1hxqPFQhqrpMQ1SBFBDgRKakQLmexIa3vBy4jfuQGkRBrc4isD1WT8QPcEZGqmTPyxeddoI95go4KGQY9qWoLUWfvFhCPVOvmCX7CnoInFSUiApqp38V7sb8tiHALlkWrccO0I3YQoFlzDOtWMNEeND1oeWoQHzQbvJNMeYHhulS3uhMi9AOlV/byTM13rke2bSZzjQ895E/M9rxdg7dxMRRDFCwGeHerGkGNJJKbQrTHqUI0MYV8L8lfIBU4yjqS5nSnDmIy+SernknJbsm3KhcpHWkSUH5IicEIeckQq5JlVSI5w8kmfySt6sJ+vFerc+ZqMZK93ZJ39gff4AJY6Zeg== Standard Detectors not sensitive (Xenon1T,…) Theory New connections in recent years (w/flav. anomalies, hierarchy problem, …) Ema Sala Sato PRL 122 (2019) no.18: High-speed DM component unavoidably generated by Cosmic-ray scatterings! Electrons Dark Matter PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !16
Light Dark Matter at Neutrino Experiments MDM AAAB9HicbVA9TwJBEJ3DL8Qv1NLmIphYkTsstCRqYUOCiXwkcCF7ywIb9vbO3TkiufA7bCw0xtYfY+e/cYErFHzJJC/vzWRmnh8JrtFxvq3M2vrG5lZ2O7ezu7d/kD88augwVpTVaShC1fKJZoJLVkeOgrUixUjgC9b0RzczvzlmSvNQPuAkYl5ABpL3OSVoJK9Y7XaQPWFyW50Wu/mCU3LmsFeJm5ICpKh181+dXkjjgEmkgmjddp0IvYQo5FSwaa4TaxYROiID1jZUkoBpL5kfPbXPjNKz+6EyJdGeq78nEhJoPQl80xkQHOplbyb+57Vj7F95CZdRjEzSxaJ+LGwM7VkCdo8rRlFMDCFUcXOrTYdEEYomp5wJwV1+eZU0yiX3ouTelwuV6zSOLJzAKZyDC5dQgTuoQR0oPMIzvMKbNbZerHfrY9GasdKZY/gD6/MHBx+Rmw== Experiment Erecoil . keV AAACB3icbVC7SgNBFJ2NrxhfUUtBBhPBKuzGQsugCJYRzAOSJcxObpIhsw9m7ophiZWNv2JjoYitv2Dn3zhJttDEAwOHc+7lzjleJIVG2/62MkvLK6tr2fXcxubW9k5+d6+uw1hxqPFQhqrpMQ1SBFBDgRKakQLmexIa3vBy4jfuQGkRBrc4isD1WT8QPcEZGqmTPyxeddoI95go4KGQY9qWoLUWfvFhCPVOvmCX7CnoInFSUiApqp38V7sb8tiHALlkWrccO0I3YQoFlzDOtWMNEeND1oeWoQHzQbvJNMeYHhulS3uhMi9AOlV/byTM13rke2bSZzjQ895E/M9rxdg7dxMRRDFCwGeHerGkGNJJKbQrTHqUI0MYV8L8lfIBU4yjqS5nSnDmIy+SernknJbsm3KhcpHWkSUH5IicEIeckQq5JlVSI5w8kmfySt6sJ+vFerc+ZqMZK93ZJ39gff4AJY6Zeg== Standard Detectors not sensitive (Xenon1T,…) Theory New connections in recent years (w/flav. anomalies, hierarchy problem, …) Ema Sala Sato PRL 122 (2019) no.18: High-speed DM component unavoidably generated by Cosmic-ray scatterings! Electrons Dark Matter PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !16
Light Dark Matter at Neutrino Experiments MDM AAAB9HicbVA9TwJBEJ3DL8Qv1NLmIphYkTsstCRqYUOCiXwkcCF7ywIb9vbO3TkiufA7bCw0xtYfY+e/cYErFHzJJC/vzWRmnh8JrtFxvq3M2vrG5lZ2O7ezu7d/kD88augwVpTVaShC1fKJZoJLVkeOgrUixUjgC9b0RzczvzlmSvNQPuAkYl5ABpL3OSVoJK9Y7XaQPWFyW50Wu/mCU3LmsFeJm5ICpKh181+dXkjjgEmkgmjddp0IvYQo5FSwaa4TaxYROiID1jZUkoBpL5kfPbXPjNKz+6EyJdGeq78nEhJoPQl80xkQHOplbyb+57Vj7F95CZdRjEzSxaJ+LGwM7VkCdo8rRlFMDCFUcXOrTYdEEYomp5wJwV1+eZU0yiX3ouTelwuV6zSOLJzAKZyDC5dQgTuoQR0oPMIzvMKbNbZerHfrY9GasdKZY/gD6/MHBx+Rmw== Experiment Erecoil . keV AAACB3icbVC7SgNBFJ2NrxhfUUtBBhPBKuzGQsugCJYRzAOSJcxObpIhsw9m7ophiZWNv2JjoYitv2Dn3zhJttDEAwOHc+7lzjleJIVG2/62MkvLK6tr2fXcxubW9k5+d6+uw1hxqPFQhqrpMQ1SBFBDgRKakQLmexIa3vBy4jfuQGkRBrc4isD1WT8QPcEZGqmTPyxeddoI95go4KGQY9qWoLUWfvFhCPVOvmCX7CnoInFSUiApqp38V7sb8tiHALlkWrccO0I3YQoFlzDOtWMNEeND1oeWoQHzQbvJNMeYHhulS3uhMi9AOlV/byTM13rke2bSZzjQ895E/M9rxdg7dxMRRDFCwGeHerGkGNJJKbQrTHqUI0MYV8L8lfIBU4yjqS5nSnDmIy+SernknJbsm3KhcpHWkSUH5IicEIeckQq5JlVSI5w8kmfySt6sJ+vFerc+ZqMZK93ZJ39gff4AJY6Zeg== Standard Detectors not sensitive (Xenon1T,…) Theory New connections in recent years (w/flav. anomalies, hierarchy problem, …) Ema Sala Sato PRL 122 (2019) no.18: High-speed DM component unavoidably generated by Cosmic-ray scatterings! Electrons Dark Matter PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !16
Ema Sala Sato PRL 122 (2019) no.18 Light Dark Matter at Neutrino Experiments Energies > 10 MeV go to biggest existing detectors! PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !17
Ema Sala Sato PRL 122 (2019) no.18 Light Dark Matter at Neutrino Experiments Energies > 10 MeV go to biggest existing detectors! Our Ne w Li mits PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !17
Cosmo approaches to the Big Picture We work to understand: ★ Dark Matter ★ Baryon Asymmetry ★ Neutrino Oscillations ★ Quantum Gravity ★ Inflation ★ Dark Energy ★ EW symmetry breaking ★ Strong CP problem ★ Origin of SM flavour ★ …. PRC meeting 5/2019 | Theoretical physics: cosmology Filippo Sala !18
You can also read