The xEV Industry Insider Report - Assessing the Future of Hybrid and Electric Vehicles

Page created by Hazel Jordan
 
CONTINUE READING
The xEV Industry Insider Report - Assessing the Future of Hybrid and Electric Vehicles
Assessing the
          Future of Hybrid
          and Electric Vehicles:
The xEV Industry Insider Report
           Based on private onsite interviews with
           leading technologists and executives

                        advanced
                        automotive
                        batteries
The xEV Industry Insider Report - Assessing the Future of Hybrid and Electric Vehicles
ACKNOWLEDGEMENTS

       This study was conducted by Advanced Automotive Batteries. Dr. Menahem
       Anderman, President of Advanced Automotive Batteries and principal author
       of the study wishes to acknowledge the valuable contributions of the following
       individuals:
       • Dr. James George, former President, George Consulting International, Inc.
       • Mr. Kevin Konecky, Associate Consultant, Total Battery Consulting, Inc.
       • Dr. Robert Spotnitz, President, Battery Design Company
       • Prof. Martin Winter, Chair, Applied Material Science for Energy Conversion
       and Storage, Institute of Physical Chemistry, University of Muenster

       The author also wishes to acknowledge the cooperation of forty-three organiza-
       tions—listed below—who shared their professional know-how and views in sup-
       port of this study during and following one or more on-site interviews throughout
       the last ten months.

Automakers/Automotive Systems       Battery Producers              Other Participants
• Audi                              • A123 Systems                 • California Air Resources Board
• AVL                               • AESC                         • Hitachi Chemical
• BMW                               • Deutsche Accumotive          • Mitsubishi Chemical
• Chrysler                          • Dow Kokam                    • NEC Devices
• Continental AG                    • Exide                        • Showa Denko
• Daimler                           • GS Yuasa                     • Umicore
• Ford                              • Hitachi
• General Motors                    • Johnson Controls
• Honda                             • LG Chem
• Hyundai                           • Li Energy Japan
• Magna E-Car                       • Primearth EV Energy
• Mitsubishi Motors                 • Panasonic-Sanyo
• Opel AG                           • Robert Bosch
• Porsche                           • Samsung
• PSA Peugeot Citroën               • SK Innovation
• Renault                           • Toshiba
• Robert Bosch
• Toyota
• Valeo
• Volkswagen
• ZF Sachs

       Finally, our thanks to Catherine Searle for her dedicated work in the preparation
       of this report and to Jennifer for her support.
The xEV Industry Insider Report - Assessing the Future of Hybrid and Electric Vehicles
TABLE OF CONTENTS
Executive Summary.............................................. 1                                           Chapter I:
  1. xEV Vehicle Technology...................................................... 2                         Introduction and Hybrid-Vehicle
                                                                                                            Technologies....................................................... 21
     a. Market Drivers..................................................................... 2
     b. Hybrid-Vehicle Architecture................................................ 2                          1. Introduction......................................................................... 22
  2. HEV Battery Technology..................................................... 2                             2. Powertrain Technology ..................................................... 24
     a. Cell Module and Pack Technology..................................... 2                                 3. Electrical Power on Board Vehicles................................. 25
     b. Key Energy-Storage Technologies for HEVs...................... 4                                          a. Power Generation and Demand....................................... 25
         i)     Lead-Acid Batteries........................................................... 4                  b. Electrically Powered Ancillaries and Accessories............ 25
         ii)    Nickel-Metal Hydride Batteries.......................................... 5
                                                                                                               4. The Stop/Start Function.................................................... 26
         iii)   Lithium-Ion Batteries......................................................... 6
         iv)    Ultracapacitors................................................................... 6           5. Hybrid-Vehicle Powertrain Architectures........................ 27
                                                                                                                  a. Overview........................................................................... 27
  3. Battery Requirements and Battery Selection
     for Each Hybrid-Vehicle Category...................................... 6                                     b. Series-Hybrid Architectures.............................................. 27
     a. Overview............................................................................. 6                   c. Classical Parallel Architectures........................................ 27
     b. Micro 2................................................................................ 6                 d. The Integrated Starter Generator (ISG),
                                                                                                                     or Integrated Motor Assist (IMA)....................................... 28
     c. Mild-1 – 48V Systems......................................................... 7
                                                                                                                  e. Series/Parallel Single-Mode
     d. Energy Storage for hybrid Cars - Summary....................... 8
                                                                                                                     Transmission Power-Split Architectures........................... 28
  4. Batteries for EVs & PHEVs.................................................. 8                             6. Levels of Powertrain Hybridization.................................. 29
     a. EV & PHEV Battery Cost.................................................... 8                              a. Micro Hybrids.................................................................... 29
     b. EV Cell and Pack Key Characteristics...............................11                                     b. Mild Hybrids...................................................................... 30
     c. PHEV Pack Key Characteristics........................................12                                   c. Moderate Hybrids.............................................................. 30
     d. Life, Reliability, and Safety.................................................12                          d. Strong Hybrids...................................................................31
     e. Technology Enhancement Roadmap.................................13                                         e. Plug-in Hybrids...................................................................31
  5. xEV Vehicle Market.............................................................13                         7. Hybridization of Specialty Vehicles..................................31
     a. Market Drivers and Challenges for xEVs...........................13                                    8. Hybridization Summary......................................................31
     b. Market Forecast for xEVs..................................................14
     c. xEV Market Conclusions....................................................16                        Chapter II:
                                                                                                            Energy Storage Technologies for HEVs........... 33
  6. Battery Market for xEVs.....................................................17
                                                                                                             1. High-Power Battery Technology Key Attributes............ 34
     a. Battery Markets for xEVs through 2016.............................17
                                                                                                                a. Introduction....................................................................... 34
         i)     Micro Hybrids................................................................... 17
         ii)    Strong/Mild HEVs............................................................ 17                 b. Battery Impedance and Power Rating.............................. 34
         iii)   PHEVs.............................................................................. 18          c. Battery Life, Reliability, and Safety / Abuse Tolerance.... 36
         iv)    EVs................................................................................... 18    2. Energy-Storage Systems
         v)     Combined Li-Ion Cell Markets......................................... 18                        and Module/Pack Technology........................................... 37
         vi)    Combined xEV Pack Markets.......................................... 18                          a. Introduction....................................................................... 37
     b. xEV Battery Market to 2020...............................................19                             b. Battery Module.................................................................. 38
     c. Industry Overcapacity........................................................19                         c. Thermal Subsystems........................................................ 38
d. Mechanical and Structural Subsystems........................... 40                            Chapter III:
   e. Battery Management Systems (BMS)                                                              Battery Requirements and the Choice of
      and Electronics Hardware................................................. 40                  Battery for Each Hybrid Vehicle Category....... 71
   f. Battery Management System Software.............................41                              1. Overview.............................................................................. 72
   g. ESS Safety Considerations...............................................41                     2. Basic Requirements and Conventional
3. Lead-Acid Batteries........................................................... 42                    SLI Applications................................................................. 72
   a. Introduction........................................................................42            a. Requirements.................................................................... 72
   b. Enhanced Flooded Lead-Acid Batteries (EFLAs)............. 43                                      b. Energy-Storage Solutions................................................. 73
   c. AGM VRLA Designs......................................................... 44                   3. Micro-1 – Stop/Start Vehicles
   d. VRLA Performance........................................................... 44                    with No Regenerative Braking.......................................... 73
   e. VRLA Life.......................................................................... 45            a. Load Profile and Energy-Storage Requirements.............. 73
   f. Manufacturing and Cost Considerations                                                             b. Energy-Storage Solutions..................................................74
      for Enhanced-flooded and VRLAs.................................... 46                          4. Micro-2 – Stop/Start Vehicles
   g. New Lead-Acid Designs................................................... 46                       with Regenerative Braking.................................................74
       i) Batteries incorporating                                                                       a. Load Profile and Energy-Storage Requirements...............74
           a high-surface area capacitive carbon............................46                          b. Energy-Storage Solutions..................................................75
       ii) Bipolar Designs................................................................ 47                 i) VRLA battery................................................................... 76
   h. Lead-Acid Outlook.............................................................47                        ii)Single Graphite-LFP Li-Ion Battery................................. 76
                                                                                                              iii)
                                                                                                                 EFLA + UCap..................................................................77
4. Nickel-Metal Hydride Batteries......................................... 48
                                                                                                              iv)EFLA + Graphite-LFP Li-Ion Battery..............................77
   a. Overview........................................................................... 48                  v) EFLA + LTO-NMC Battery..............................................77
   b. High-Power Cell Design.................................................... 48                           vi)VRLA + NiMH String.......................................................77
   c. Cell-Manufacturing Tolerance Issues............................... 49                               c. Discussion..........................................................................77
   d. Module Design.................................................................. 50                  d. Outlook.............................................................................. 79
   e. Thermal and Electrical Management................................ 50
                                                                                                       5. Mild-1 – 48V Systems......................................................... 79
   f. HEV Cell and Pack Performance..................................... 50
                                                                                                          a. Load Profile and Energy-Storage Requirements.............. 79
   g. Operating Temperature......................................................51
                                                                                                          b. Energy-Storage Solutions................................................. 80
   h. Life.................................................................................... 52
   i. Cost Estimates for NiMH Cells,                                                                   6. Mild-2 Hybrid Vehicles........................................................81
      Modules, and Battery Packs............................................. 52                          a. Energy-Storage Requirements..........................................81
   j. Outlook ............................................................................. 53            b. Energy-Storage Solutions..................................................81
                                                                                                          c. Discussion of Micro-2 and Mild Hybrid Architectures....... 82
5. Lithium-Ion Batteries......................................................... 53
   a. Overview........................................................................... 53           7. Moderate Power-Assist Hybrids....................................... 82
   b. HEV-Cell Configurations................................................... 54                       a. Energy-Storage Requirements......................................... 82
   c. Choice of Cathode Material.............................................. 56                         b. Energy-Storage Solutions................................................. 83
   d. Choice of Anode Materials................................................ 57                     8. Strong-Hybrid Vehicles..................................................... 83
   e. Electrolyte Considerations................................................ 58                       a. Energy-Storage Requirements......................................... 83
   f. Separators......................................................................... 59              b. Energy-Storage Solutions................................................. 84
   g. HEV Module Design......................................................... 59                    9. Summary............................................................................. 84
   h. HEV Cell and Module Performance................................. 59
   i. Operating Life .................................................................. 60           10. Power-assist Fuel-Cell Hybrid Vehicles.......................... 85
   j. Cost....................................................................................61     11. Hybridization of Specialized Heavy Vehicles................. 86
   k. Safety / Abuse Resistance................................................ 63                       a. Introduction....................................................................... 86
   l. Summary and Outlook...................................................... 64                       b. Buses................................................................................ 87
6. Ultracapacitors................................................................... 64                 c. Delivery Vehicles.............................................................. 87
   a. Overview........................................................................... 64             d. Military Vehicles................................................................ 87
   b. Symmetric Ultracapacitors (EDLCs)................................. 65                              e. Heavy-Duty Vehicles........................................................ 87
   c. Hybrid (Asymmetric) Ultracapacitors................................ 66                             f. Outlook.............................................................................. 88
   d. Hybrid Ultracapacitors in Non-aqueous Electrolytes........ 66                                 Chapter IV:
   e. Performance of Symmetric EDLCs................................... 67                          Lithium-Ion EV
   f. Cost................................................................................... 68    and PHEV Battery Technology.......................... 89
   g. Applications and Outlook.................................................. 69                   1. Battery Manufacturing and Cost...................................... 90
7. Summary and Comparison............................................... 69                              a. Introduction....................................................................... 90
b. Li-Ion Cell Manufacturing Technology.............................. 90                            4. Technology Enhancement Roadmap..............................120
      i)     Overview..........................................................................90         a. Introduction......................................................................120
      ii)    Electrode Fabrication....................................................... 91
                                                                                                          b. Key Short-Term Li-Ion Cell and Pack
      iii)   Cell Assembly.................................................................. 92
                                                                                                             Performance Enhancement Opportunities .....................121
      iv)    Formation and Final Quality Assurance.......................... 92
      v)     Process Control and Yields............................................. 93                   c. Cell Design Enhancements.............................................121
      vi)    Challenges Relative to Large                                                                     i)     Cathodes........................................................................ 121
             Automotive-Cell Manufacturing....................................... 93                          ii)    Anodes........................................................................... 122
                                                                                                              iii)   Electrolytes.................................................................... 123
   c. Li-Ion Cell Cost Estimates................................................ 94                           iv)    Separators..................................................................... 123
      i) General Considerations...................................................94                          v)     Cell Packaging............................................................... 123
      ii) Cost Estimates for 2.4-Ah 18650 Consumer Cells.........95
                                                                                                          d. Enhanced Li-Ion Pack Technology..................................123
      iii) Manufacturing Investment
           in a 1000-MWh Plant Producing 25-Ah                                                            e. Beyond Li Ion...................................................................123
                                                                                                              i)     Introduction.................................................................... 123
           Prismatic Metal-Can Flat Wound PHEV Cells................96
                                                                                                              ii)    Lithium-Air (Oxygen) Chemistry.................................... 124
      iv) Cost and Price Estimate for a 25-Ah
                                                                                                              iii)   Lithium- Sulfur Chemistry.............................................. 124
           NMC-Graphite Metal-Can Cell at a Production
                                                                                                              iv)    Zn-Air (Oxygen) Chemistry............................................ 125
           Volume of 10 Million Cells (1000 MWh) per Year........... 97                                       v)     Hybrid Energy-Storage Systems................................... 125
      v) Cost Analysis of a 36-Ah EV                                                                          vi)    Conclusions................................................................... 125
           Pouch Cell with an NMC/LMO Blend Cathode...............98
   d. Battery Pack Development and Cost............................... 99                            Chapter V:
      i)     Introduction......................................................................99    xEV Vehicle Market........................................... 127
      ii)    System Development and Integration.............................99
                                                                                                       1. Market Drivers and Challenges for xEVs........................128
      iii)   Development Timeline and Manpower Investment.........99
      iv)    Test and Validation........................................................ 100              a. Introduction......................................................................128
      v)     Subsystem Design Cost Consideration......................... 101                             b. Environmental and Energy-Security Drivers...................128
      vi)    Cell-Size Selection........................................................ 101                  i) Influence of Governments on the Industry.................... 128
      vii)   Cost Summary............................................................... 101                  ii) The Environmental Driver.............................................. 128
                                                                                                              iii) Energy Security............................................................. 129
2. Battery Design and Key Attributes.................................103                                  c. Benefits to Customers.....................................................130
   a. Cell Design......................................................................103                    i) Fuel Savings for Customers.......................................... 130
      i)     Introduction.................................................................... 103             ii) Electrically Powered Ancillaries..................................... 130
      ii)    Mechanical Cell Construction........................................ 103                     d. Industrial Competitiveness and Corporate Image...........131
      iii)   Cathodes........................................................................ 104             i) Industrial Competitiveness............................................ 131
      iv)    Anodes........................................................................... 104            ii) Corporate Image............................................................ 131
      v)     Electrolytes.................................................................... 104
                                                                                                          e. Market Risks....................................................................131
      vi)    Separators..................................................................... 105              i) Success of Advanced Diesel in North America............ 131
   b. Cell and Battery Key Characteristics.............................. 105                                  ii) Stabilization or Reversal in Oil Pricing and
      i)     EV Cell Key Attributes................................................... 105                         Concern about Energy Security.................................... 132
      ii)    Key Attributes of PHEV Cells........................................ 106                         iii) Relaxation of Government Regulations......................... 132
      iii)   Key Attributes of EV Packs............................................ 106                       iv) Life, Reliability, or Safety of xEV Batteries................... 132
      iv)    Key Attributes of PHEV Battery Packs.......................... 109
                                                                                                       2. Market Conditions in Key Regions..................................132
   c. Battery Power and Temperature Performance................110                                        a. The U.S. Market...............................................................132
3. Battery Durability and Safety..........................................112                                 i) California and its Air Resources Board (CARB)........... 132
   a. Battery Durability.............................................................112                      ii) CAFE Standards and the U.S. Federal Scene.............. 134
      i)     Durability and Reliability................................................ 112                   iii) Consumers..................................................................... 135
      ii)    EV-Battery Cycle Life.................................................... 113                b. Europe..............................................................................135
      iii)   EV Battery Calendar Life............................................... 114                      i) Regulations.................................................................... 135
      iv)    Battery Life in PHEV Applications................................. 115                           ii) Consumers and Carmakers........................................... 135
      v)     Life Modeling and Predictions....................................... 115                     c. Japan...............................................................................136
      vi)    Summary: EV and PHEV Life and Reliability............... 117                                 d. China................................................................................136
   b. Safety / Abuse Resistance..............................................117                              i) Governmental Activities................................................. 136
      i) Overview of Safety Challenges..................................... 117                               ii) Vehicle and Battery Producers...................................... 136
      ii) Safety Characteristics.................................................... 117                      iii) Chinese Customers....................................................... 137
      iii) Abuse Testing versus Field Failure............................... 118                          e. Summary..........................................................................137
      iv) Soft Short Developing into a Hard Short...................... 118
                                                                                                       3. Market Forecast for xEVs.................................................137
      v) Standardized Tests........................................................ 119
      vi) Cell-Level Safety Enhancements.................................. 119
                                                                                                          a. Micro-Hybrids...................................................................137
      vii) Pack-Level Safety Enhancements................................. 120                            b. Mild, Moderate, and Strong Hybrids................................138
      viii) Outlook: Safety Aspects of Utilizing Li-Ion                                                   c. Plug-In Electric Vehicles..................................................140
            Batteries in PHEV and EV Applications........................ 120                             d. Electric Vehicles...............................................................142
e. PHEV and EV Market Conclusions.................................143                                     b. Korea............................................................................... 164
                                                                                                                   i)     LG Chem........................................................................ 164
  4. Activities of Key Automakers......................................... 144
                                                                                                                   ii)    Samsung Display Devices (SDI)................................... 164
     a. Japanese Automakers.................................................... 144                                iii)   SK Innovation (SKI)....................................................... 164
         i)     Toyota/Lexus.................................................................. 144                 iv)    EIG................................................................................. 165
         ii)    Honda............................................................................ 145
                                                                                                                c. China and Taiwan........................................................... 165
         iii)   Nissan............................................................................ 145
                                                                                                                   i)     BYD................................................................................ 165
         iv)    Mitsubishi Motors........................................................... 145
                                                                                                                   ii)    Tianjin Lishen Battery Co.............................................. 165
         v)     Other Japanese Automakers......................................... 146
                                                                                                                   iii)   ATL Battery.................................................................... 165
      b. US Automakers................................................................146                          iv)    Other Chinese Suppliers............................................... 165
         i)     General Motors.............................................................. 146
                                                                                                                d. U.S. and Europe.............................................................. 166
         ii)    Ford................................................................................ 146
                                                                                                                   i) Johnson Controls (JCI).................................................. 166
         iii)   Chrysler-Fiat.................................................................. 147
                                                                                                                   ii) Exide.............................................................................. 166
         iv)    Tesla............................................................................... 147
                                                                                                                   iii) A123 Systems................................................................ 166
      c. European Automakers.....................................................147                               iv) Bosch Automotive.......................................................... 166
         i)     Renault........................................................................... 147             v) Li-Tec Corporation......................................................... 167
         ii)    BMW.............................................................................. 148              vi) Magna International....................................................... 167
         iii)   Volkswagen/Audi/Porsche............................................. 148                           vii) Continental AG............................................................... 167
         iv)    Daimler........................................................................... 149             viii) Saft................................................................................. 167
         v)     PSA................................................................................ 149            ix) EnerDel.......................................................................... 167
      d. Korean and Chinese Producers.......................................149                                    x) Others............................................................................ 168
         i) Hyundai.......................................................................... 149
         ii) Fully-Chinese-Owned Companies................................ 150                             Glossary............................................................. 169
         iii) Joint Ventures with Western Companies...................... 150
      e. Premium Brands: Jaguar, Land Rover, and Others..........150
      f. Heavy-Duty Vehicles.......................................................150
         i) HEV Buses, Delivery Vehicles, and Work Vehicles...... 150
         ii) EV Buses in Chinese Market with Fast Charge
             and/or Fast Mechanical Battery Replacement.............. 150

Chapter VI:
Battery Market for xEVs....................................151
 1. Batteries for Micro-Hybrids.............................................152
    a. Lead-Acid Batteries.........................................................152
    b. Other Energy-Storage Technologies...............................152
 2. Mild, Moderate, and Strong HEV Battery Market..........153
 3. PHEV Battery Market........................................................... 155
 4. EV Battery Market............................................................ 156
 5. The xEV Battery Market Summary..................................157
 6. Advanced Automotive
    Li-Ion Cell Materials Market............................................ 159
 7. Cell and Pack Business Structure
    and Key Criteria for Success.......................................... 160
    a. Emerging Industry Structures......................................... 160
    b. Manufacturing Experience...............................................161
    c. Overcapacity....................................................................161
  8. Notes on Key xEV Battery Producers.............................162
     a. Japan...............................................................................162
         i) PrimeEarth EV Energy (PEVE)..................................... 162
         ii) Panasonic Including Sanyo Electric Division................ 162
         iii) Automotive Energy Supply Corporation (AESC)........... 162
         iv) GS Yuasa Corporation (GSYC)..................................... 163
         v) Hitachi Vehicle Energy (HVE)....................................... 163
         vi) Toshiba........................................................................... 163
         vii) Shin Kobe Electric Machinery....................................... 163
         viii) Furukawa....................................................................... 164
         ix) Sony............................................................................... 164
LIST OF TABLES AND FIGURES

Tables                                                                               Table II.1.2: Key Processes that Contribute
                                                                                                   to Ionic (Including Kinetic) Impedance................. 35
                                                                                     Table II.1.3: Typical Abuse Tests
Executive Summary............................................................1
                                                                                                   or EV / HEV Cells and Modules........................... 36
Table E.1.1: Hybrid Vehicle Configurations................................ 3         Table II.2.1: Types of Thermal Control System........................ 39
Table E.2.1: Characteristics of Candidate                                            Table II.2.2: Summary of xEV Electrical
             High-Power Energy-Storage                                                             Subsystem Components.......................................41
             Technologies for HEV Applications........................ 4
                                                                                     Table II.4.1: Cost Estimate for a High-Power NiMH
Table E.2.2: Cost, Manufacturing, and Logistic Issues                                              6-Ah Nominal Cell, and a Module and
             of Candidate Energy-Storage
                                                                                                   a Battery-Pack Assembly of 6-Ah Cells............... 53
             Technologies for HEV Applications........................ 5
                                                                                     Table II.5.1: HEV Li-Ion Cell-Design
Table E.3.1: Energy-Storage Solutions for Micro-2
                                                                                                   Matrix Current/Future........................................... 58
             Profile with Existing Production Cells (Case 2);
             (HP = High Power, UHP = Ultra High Power)........ 7                     Table II.5.2: Comparison of Module Design
                                                                                                   with Pouch and Metal-can Cells........................... 59
Table E.3.2: Energy-Storage Solutions for Mild Hybrids............ 7
Table E.3.3: Energy-Storage Technology Solutions for                                 Table II.5.4: USABC HPPC Test Profile Data
             Advanced Vehicles by Vehicle Category................ 8                               for a 5-Ah Samsung HEV Cell............................. 60
Table E.3.4: Load Profiles for the Various Hybrid                                    Table II.5.3: USABC HPPC Test Conditions............................ 60
             Architectures and Li-Ion Solutions......................... 8           Table II.5.5: Material Cost Estimates for a Li-Ion 5-Ah,
Table E.3.5: Energy-Storage Solutions for                                                          18-Wh, 500-Watt HEV Cell (250-MWh Plant)...... 62
             Hybrid Vehicles: Key Characteristics..................... 9             Table II.5.6: Price Estimate for a 5-Ah,
Table E.4.1: Cost Estimate for a 25-Ah PHEV Cell................... 9                              18-Wh High-power Li-Ion Cell.............................. 62
Table E.4.2: Cost Estimate for a 36-Ah EV Pouch Cell............10                   Table II.5.7: Cost Estimate for a 1.3-kWh
Table E.4.3: PHEV and EV-Pack Pricing..................................10                          Nominal 35-kW Air-Cooled Pack......................... 63
Table E.4.4: Li-Ion Cells Employed in Current EVs...................11               Table II.6.1: Electrode Configurations
Table E.4.5: EV Packs Key Energy Characteristics..................11                               for Ultracapacitors and Li-Ion Cells...................... 67
Table E.4.6: Key Characteristics of PHEV Packs......................12               Table II.6.2: Performance Targets for Cylindrical Hybrid
Table E.6.1: 2020 Automotive Li-Ion Battery Market.................19                              Capacitor Device (Nippon Chemi-Con)................ 68
Table E.6.2: Estimated Globally Installed and                                        Table II.7.1: Characteristics of Candidate
             Utilized xEV Li-Ion Cell Manufacturing................ 20                             High-Power Energy-Storage
                                                                                                   Technologies for HEV Applications...................... 69
Chapter I:                                                                           Table II.7.2: Cost, Manufacturing, and Logistics
Introduction and Hybrid-Vehicle Technologies.............21                                        Issues of Candidate Energy-Storage
Table I.6.1:     Hybrid Vehicle Configurations.............................. 30                    Technologies for HEV Applications...................... 70
Table I.8.1:     Levels of Hybridization/Electrification...................31
                                                                                     Chapter III:
Chapter II:                                                                          Battery Requirements and the Choice
Energy Storage Technologies for HEVs.........................33                      of Battery for Each Hybrid Vehicle Category................71
Table II.1.1:    Key Processes that Contribute                                       Table III.3.1: Duty Cycle Estimates for Micro-1......................... 73
                 to Electronic Impedance....................................... 35   Table III.4.1: Micro-2 Duty Profile...............................................75
Table III.4.2: Micro-2 Energy-Storage Solutions (Case 1).........75                    Table IV.2.7: Key Characteristics of PHEV Packs....................110
Table III.4.3: Key Characteristics of Energy-Storage                                   Table IV.2.8: Chevy Volt Battery Key Characteristics..............110
               Components for Micro-2 Applications.................. 76                Table IV.3.1: Hazard Level Categories for Abuse Tests..........119
Table III.4.4: Lower Performance, Lower Cost
               Energy-Storage Components                                               Chapter V:
               for Micro-2 (Case 2)............................................. 78    xEV Vehicle Market.........................................................127
Table III.4.5: Energy-Storage Solutions for Micro-2 Profile                            Table V.3.1: Strong, Mild and Moderate Hybrid-Vehicle
               with Existing Production Cells (Case 2)............... 78                            Market (Historical and Forecast) by Producer....139
Table III.5.1: Mild-1 Duty Cycle................................................. 80   Table V.3.2: PHEV Unit Production by Automaker..................141
Table III.5.2: Energy-Storage Solutions for Mild Hybrids.......... 80                  Table V.3.3: Historical and Forecast EV Sales
Table III.6.1: Duty Profile for Mild-2 Hybrids..............................81                      by Automaker (in ‘000 Units)...............................143
Table III.6.2: Energy-Storage Solutions for Mild-2 Hybrids....... 82                   Chapter VI:
Table III.7.1: Duty Profiles for Moderate and Strong Hybrids... 82                     Battery Market for xEVs................................................. 151
Table III.8.1: USABC Battery Specifications
                                                                                       Table VI.2.1: Dollar Volume of HEV Cell
               for a Strong Hybrid............................................... 83
                                                                                                     and Battery Production........................................155
Table III.7.2: Energy Storage Solutions
                                                                                       Table VI.3.1: PHEV Battery-Cell Market
               for Moderate Hybrids............................................ 83
                                                                                                     by Producer ($ Million).........................................155
Table III.8.2: Energy-Storage Solutions for Strong Hybrids...... 84
                                                                                       Table VI.4.1: EV Battery-Cell Market
Table III.9.1: Energy-Storage Technology Solutions for
                                                                                                     by Cell Producer ($ Million).................................156
               Advanced Vehicles by Vehicle Category.............. 84
                                                                                       Table VI.5.1: xEV Li-Ion Battery-Cell Marke
Table III.9.2: Load Profiles for the Various Hybrid
                                                                                                     by Producer ($ Million).........................................157
               Architectures and Li-Ion Solutions....................... 85
                                                                                       Table VI.5.2: Advanced Automotive Battery Pack
Table III.9.3: Regenerative Charge Loads for the Various                                             Business ($ Million).............................................158
               Hybrid Architectures and Li-Ion Solutions............ 85
                                                                                       Table VI.5.3: 2020 Automotive Li-Ion Battery Market...............159
Table III.9.4: Energy Storage Solutions
                                                                                       Table VI.6.1: Li-Ion HEV Battery Cell-Material
               for Hybrid Vehicles: Key Characteristics.............. 86
                                                                                                     Consumption........................................................159
Chapter IV:                                                                            Table VI.6.2: Li-Ion PHEV and EV Battery
Lithium-Ion EV and PHEV Battery Technology.............89                                            Cell-Material Consumption..................................159
                                                                                       Table VI.7.1: Estimated Globally Installed and Utilized
Table IV.1.1: Cell Assembly Techniques................................... 93
                                                                                                     xEV Li-Ion Cell Manufacturing Capacity.............161
Table IV.1.2: Typical Manufacturing Yields
               in Li-Ion Cell Manufacturing................................. 93
Table IV.1.3: 18650 Cell Materials Cost.................................... 95
Table IV.1.4: 18650 Cell Cost and Price................................... 95
                                                                                       Figures
Table IV.1.5: Equipment and Plant Cost Estimates................... 96                 Executive Summary............................................................1
Table IV.1.6: Materials’ Cost Estimate
                                                                                       Figure E.2.1: Liquid-cooled Li-Ion Mild HEV (Cylindrical Cells)
               for a 25-Ah PHEV Cell......................................... 97
                                                                                                     Battery Pack for Mercedes S Class Vehicle.......... 4
Table IV.1.7: Cost Estimate for a 25-Ah PHEV Cell................. 98
                                                                                       Figure E.5.1: Comparison of Global CO2 Emission
Table IV.1.8: Materials Cost for a 36-Ah EV Pouch Cell.......... 98
                                                                                                     Regulations in g CO2/km for Passenger
Table IV.1.9: Cost Estimate for a 36-Ah EV Pouch Cell........... 99                                  Cars (Test Conditions Normalized to
Table IV.1.10: Four-Step ESS Development Process............... 100                                  the New European Drive Cycle (NEDC)...............14
Table IV.1.11: 36-Month Project Timeline................................. 100          Figure E.5.2: Micro-Hybrid Market by World Region..................14
Table IV.1.12: Thermal Subsystem Design Comparison............101                      Figure E.5.3: Strong, Mild/Moderate Hybrid-Market
Table IV.1.13: System-Configuration Analysis                                                         Growth by World Region.......................................15
               for a 60-Ah, Nominal 22kWh EV System............102                     Figure E.5.4: PHEV Market Growth by World Region................15
Table IV.1.14: Amortization of NRE and Tooling Investment.....102                      Figure E.5.5: World EV Market Growth by Region.....................16
Table IV.1.15: PHEV and EV-Pack Pricing................................103             Figure E.5.6: Historical and Forecast EV
Table IV.2.1: Li Ion Cells Employed in Current EVs................ 106                               Sales by Automaker..............................................16
Table IV.2.2: Key Characteristics of Current PHEV Cells....... 106                     Figure E.6.1: Estimated Unit Sales of EFLA
Table IV.2.3: Specifications of the Battery Pack                                                     and VRLA Designs (in Million Units).....................17
               for Mitsubishi Motors’ i-MiEV..............................107          Figure E.6.2: NiMH vs. Li-Ion HEV
Table IV.2.4: Tesla Roadster Battery Pack...............................107                          Battery-Pack Business ($ Million).........................17
Table IV.2.5: Key Attributes of EV Packs................................ 108           Figure E.6.3: Li-Ion HEV Battery-Cell
Table IV.2.6: EV Packs Key Energy Characteristics............... 108                                 Business by Cell Producer....................................18
Figure E.6.4: Combined Li-Ion Automotive Cell Market                                     Figure II.4.7:     In-Vehicle Cycle Life of Prius NiMH (2009).......... 52
              for HEV, PHEVs, and EVs by Producer................18                      Figure II.4.8:     Nickel-Metal Pricing from 2003 to 2013............... 52
Figure E.6.5: Advanced Automotive Battery-Pack                                           Figure II.5.1:     Li-Ion Shuttle in a Li-Ion Cell............................... 54
              Business ($ Million)...............................................19      Figure II.5.2:     A Prismatic Elliptic Spirally
Figure E.6.6: xEV Key Cell Material Business ($ Million).......... 20                                       Wound Cell from Panasonic................................. 54
                                                                                         Figure II.5.3:     Pouch HEV Cell from AESC 55
Chapter I:
Introduction and Hybrid-Vehicle Technologies.............21                              Figure II.5.4:     Comparison of Packaging Hardware
                                                                                                            for a Spirally Wound Hard-Can
Figure I.3.1:     Dual-Voltage Dual-Battery Architecture............... 26                                  Cell (A) and a Soft-Pouch Cell (B)....................... 55
Figure I.5.1:     Series-Hybrid Architecture................................... 27       Figure II.5.5:     Surface-modified Graphite Electrode
Figure I.5.2:     Classical Parallel Architecture.............................. 28                          (Hitachi Chemicals).............................................. 57
Figure I.5.3:     Architecture with ISG............................................ 28   Figure II.5.6:     Samsung 5-Ah NMC-Cathode
Figure I.5.4:     Picture of Honda 2006 Accord IMA System........ 29                                        Prismatic Cell: Specific Power Charge
Figure I.5.5:     Series/Parallel Single-Mode                                                               and Discharge Performance................................ 60
                  Transmission Power-Split Architecture................. 29              Figure II.5.7:     Discharge Power Capabilities (10 Seconds)
                                                                                                            of Hitachi 4.4-Ah, 260-gram HEV Cell..................61
Chapter II:
                                                                                         Figure II.5.8:     Charge Power Capabilities (10 Seconds)
Energy Storage Technologies for HEVs.........................33
                                                                                                            of Hitachi 4.4-Ah, 260-gram HEV Cell..................61
Figure II.1.1: Li-Ion Discharge Processes................................. 34            Figure II.5.9:     Power Retention over Cycle Life
Figure II.2.1: Liquid-cooled Li-Ion Mild HEV (Cylindrical Cells)                                            of Samsung HEV Cells..........................................61
               Battery Pack for Mercedes S Class Vehicle........ 37                      Figure II.5.10:    Calendar Life for Hitachi 4.4-Ah HEV Cells..........61
Figure II.3.1: Enhancements to Flooded                                                   Figure II.6.1:     Idealized Voltage Profiles
               Lead-Acid Battery (After Exide)........................... 43                                of a Battery and a Capacitor................................ 65
Figure II.3.2: Improved EFLA Cycle Life with Carbon
                                                                                         Figure II.6.2:     Ultracapacitors Operating Voltages..................... 66
               Added to Negative Electrode (After Exide).......... 43
                                                                                         Figure II.6.3:     Operating Mechanism of the Graphite Activated
Figure II.2.2: Hitachi’s Air-Cooled Li-Ion Mild HEV
                                                                                                            Carbon (AC) Cell (after Nippon Chemi-Con)........ 67
               (Cylindrical Cells) Battery Pack............................ 37
                                                                                         Figure II.6.4:     Two EDLC Cells (Maxwell) and a Module
Figure II.2.3: Chevy Volt Direct Liquid Cooled
                                                                                                            (Continental) for PSA C-3 Micro-1 Vehicle........... 68
               (Pouch Cells) PHEV Battery Pack....................... 38
Figure II.2.4: NiMH 12-Cell Module Used                                                  Chapter III:
               in the 2006 Honda Civic Hybrid........................... 38              Battery Requirements and the Choice
Figure II.2.5: Schematic of a Direct Liquid-cooled                                       of Battery for Each Hybrid Vehicle Category................71
               ESS by MagnaSteyr............................................. 39
                                                                                         Figure III.4.1: Driving Mode Profile for Proposed Worldwide
Figure II.2.6: Direct Air Cooling Scheme                                                                 Light-Duty Vehicle Test Procedure (WLTP)
               for the Audi Q-5 HEV Li-Ion Battery.................... 39
                                                                                                         Versus Existing European Drive Cycle (NEDC).......74
Figure II.3.3: Rapid Fading of Charge Acceptance (in Amp/Ah)
                                                                                         Figure III.4.2: Denso Micro-Hybrid Pack
               of Lead-Acid Batteries Over Time........................ 44
                                                                                                         with Toshiba LTO Cells......................................... 77
Figure II.3.4: Rapid Fading of Charge Acceptance
               with Time for VRLA Batteries............................... 45            Chapter IV:
Figure II.3.5: Cycle-life Data for the Exide Orbital                                     Lithium-Ion EV and PHEV Battery Technology.............89
               Battery at 2.5% DOD............................................ 45
                                                                                         Figure IV.1.1: Major Cost Stages in the Production
Figure II.3.6: Schematic of the Ultrabattery                                                            of EV Battery Packs............................................. 90
               with a Carbon-Lead Negative Electrode.............. 46
                                                                                         Figure IV.1.2: Electrode Fabrication Process Flow......................91
Figure II.3.7: Cycle Life of the Ultrabattery Against
                                                                                         Figure IV.1.3: Knife-over-Roll Coating Head.............................. 92
               Conventional and Enhanced SLI
               Designs - SAE J240 (17% DOD) Test Protocol.....47                         Figure IV.1.4: Production Calender............................................. 92
Figure II.4.1: Schematic of the Spirally Wound                                           Figure IV.1.5: Production Slitter.................................................. 92
               HEV Cell (After Sanyo Electric)............................ 49            Figure IV.2.1: AESC Pouch Cell............................................... 104
Figure II.4.2: Current Collection Arrangement                                            Figure IV.2.2: Lithium Energy Japan Prismatic Cell Structure.... 104
               of a Recent Cylindrical HEV Cell from Sanyo...... 49                      Figure IV.2.3: LG Chem’s Safety Reinforcing Separator.......... 105
Figure II.4.3: NiMH Cylindrical Cells and String (Module)......... 50                    Figure IV.2.4: The First Mass-Produced
Figure II.4.4: Prius Battery - 6-Cell Prismatic Module Block..... 50                                    Li-Ion EV Cell by Li Energy Japan..................... 105
Figure II.4.5: Power Characteristics of PEVE                                             Figure IV.2.5: AESC Cell Module and Pack..............................107
               NiMH Modules at 60% SOC..................................51               Figure IV.2.6: The Nissan Leaf Battery Installed in the Car......107
Figure II.4.6: Charge Efficiency for Sanyo NiMH HEV                                      Figure IV.2.7: Battery Pack Integration for the BMW Active E.... 109
               Cells as a Function of Temperature......................51                Figure IV.2.8: GM Chevy Spark Battery Pack.......................... 109
Figure IV.2.9: Discharge Curves for Samsung                                           Figure V.3.8: PHEV Unit Production by Automaker..................142
                63-Ah EV Cell at 25°C........................................ 111     Figure V.3.9: World EV Market Growth by Region...................142
Figure IV.2.10: Power Capability of                                                   Figure V.3.10: Historical and Forecast EV
                Li Energy Japan 50-Ah EV Cell.......................... 111                          Sales by Automaker............................................143
Figure IV.2.11: Power versus Temperature and SOC
                for Samsung 63-Ah EV Cell................................ 111         Chapter VI:
Figure IV.2.12: PHEV Charge and Discharge Power                                       Battery Market for xEVs................................................. 151
                Profile in Relative Power Versus SOC................112               Figure VI.1.1: Estimated Unit Sales of EFLA
Figure IV.3.1: Cycle Life for Samsung 63Ah EV Cells..............113                                 and VRLA Designs (in Million Units)...................152
Figure IV.3.2: Cycle Life for LFP-Based Cathode EV Cells                              Figure VI.2.1: NiMH vs. Li-Ion HEV Battery-Pack
                from ATL Battery (a Chinese Manufacturer).......113                                  Business ($ Million).............................................153
Figure IV.3.3: Cycle Life of Toshiba LTO-Based EV Cells.........113                   Figure VI.2.2: Li-Ion HEV Battery-Cell Business
Figure IV.3.4: Calendar-Life Data for Samsung                                                        by Cell Producer................................................. 154
                EV Cells as a Function of Temperature..............114                Figure VI.3.1: PHEV Battery-Cell Market..................................156
Figure IV.3.5: Li Energy Japan Cells Calendar                                         Figure VI.4.1: EV battery-Cell Market
                Life Performance at 25°C and 45°C...................114                              by Cell Producer ($ Million).................................157
Figure IV.3.6: State of Charge in an Ageing PHEV Battery......115                     Figure VI.5.1: Combined Li-Ion Automotive Cell Market
Figure IV.3.7: Calendar-Life Test Results                                                            for HEV, PHEVs, and EVs by Producer..............158
                for Automotive Cells Tested at BMW at 60°C.....116                    Figure VI.5.2: Advanced Automotive Battery Pack Business......158
Figure IV.3.8: Cycle Life Data of Lishen EV Cells                                     Figure VI.6.1: xEV Key Cell-Material Business ($ Million)........ 160
                as % of Initial Capacity........................................116
Figure IV.3.9: Cell Self-Heating Rate During Forced
                Thermal Ramp Test of a Li-Ion Cell....................118
Figure IV.4.1: Challenges Inherent to Battery EVs....................121
Figure IV.4.2: Discharge Voltage of Future
                and Current Li-Ion Cathodes...............................122
Figure IV.4.3: Li-Air Cell Processes...........................................124
Figure IV.4.4: Discharge/Charge Profile of Li-Sulfur
                Chemistry and Associated Species....................124

Chapter V:
xEV Vehicle Market.........................................................127
Figure V.1.1: Comparison of Well-to-Wheel
              Greenhouse Gas (GHG) Emissions....................129
Figure V.2.1: CARB Projections of Likely Sales
              of PHEVs (TZEVs), Battery EVs (BEVs),
              and Fuel Cell EVs (FCVs) in California
              to Meet the 2018-2025 Regulations....................133
Figure V.2.2: US GHG C02 and CAFE Targets
              for 2012 to 2025................................................. 134
Figure V.2.3: Comparison of Global CO2 Emission
              Regulations in g CO2/km for Passenger
              Cars (Test Conditions Normalized
              to the New European Drive Cycle (NEDC))........137
Figure V.3.1: Micro-Hybrid Market by World Region................138
Figure V.3.2: Micro-Hybrid Unit Market by World Region........138
Figure V.3.3: Hybrid Market Growth: Strong
              Versus Mild and Moderate..................................139
Figure V.3.4: Strong, Mild and Moderate
              Hybrid-Vehicle Market by Carmaker...................140
Figure V.3.5: Strong, Mild and Moderate Hybrid
              Vehicle Market Excluding Toyota and Honda......140
Figure V.3.6: Strong, Mild and Moderate
              Hybrid-Market Growth by World Region.............140
Figure V.3.7: PHEV Market Growth by World Region..............141
Executive Summary
1. xEV Vehicle Technology                                     port of traction, but features a “beefed-up” starter or a
                                                              2- to 4-kW belt-driven integrated-starter-alternator, in
a. Market Drivers                                             which fuel is saved during vehicle idle stop, and some
                                                              mechanical energy is captured during braking. At the
The drive to reduce fuel consumption in the transporta-       other end of the range is the “plug-in hybrid” (PHEV),
tion sector has reached unprecedented levels in the           in which a 30- to 100-kW electric motor is capable of
last 3-4 years. Hybrid and electric vehicles are sought       propelling the car on its own for, say, 10 to 40 miles,
after as critical technologies that can reduce fuel con-      and supplements the power of the internal combustion
sumption and emission of CO2, the increased levels of         engine in most acceleration events.
which in the atmosphere are considered a major con-
tributor to global warming. Various governmental poli-        Beyond the hybrids are full electric vehicles (EVs), which
cies around the world are providing financial incentives      use a single electric motor with an all-electric powertrain
for vehicle electrification, setting standards for lower      powered by a battery or a fuel cell (FC). While FC-powered
fleet-average fuel consumption and even mandating             vehicles have been in development since the mid-1990s
the introduction of electrified vehicles.                     and are still of interest, infrastructure issues appear to
                                                              limit their commercial viability for the foreseeable future.
The automotive industry is being forced to develop mul-
tiple technologies to address these governmental initia-      The debate over the “right” level of electrification or
tives, but faces significant challenges. The latter include   hybridization has recently intensified. On the one hand
technological readiness and cost1, product reliability        a low level of hybridization provides only a small fuel-
and durability, and above all customer interest and will-     efficiency benefit but its relatively low cost facilitates
ingness to actually pay for the technology. In addition       high-volume introduction and can thus rapidly produce
to electrification, other technologies with some environ-     a notable impact on fleet-average fuel consumption. At
mental benefits, such as ultra-efficient IC engines, clean    the other extreme, full EVs and PHEVs offer significantly
turbo-diesel engines, and bio-fueled IC engines, are also     lower fuel consumption per vehicle, but their much
evolving. In many cases, these alternative technologies       higher cost, in addition to the limited range of the EV,
are less expensive and less risky to the automakers,          reduce the market appeal and thus the environmental
thus explaining their interest in pursuing them in parallel   impact on the fleet.
to, or instead of, the electrification approach. However,
automotive engineers are discovering that many of the         Several levels of hybridization are possible as is dis-
alternative solutions will also require increased electri-    cussed in detail in Chapter I. They are generally classified
cal power, which reinforces the desirability of at least      according to i) the functions they provide, or ii) the ratio
some level of vehicular hybridization.                        of the power of the electric-drive motor to total power (the
                                                              rated maximum power of the electric motor added to that
b. Hybrid-Vehicle Architecture                                of the IC engine.) Table E.1.1 describes the various hybrid-
                                                              vehicle categories and the main functions they enable.
Hybrid cars today cover a range of technologies charac-
terized broadly by the extent to which electrical power
is used for propulsion in an ICE vehicle. At one end of       2. HEV Battery Technology
the spectrum is the ‘micro-hybrid’—a car that is not
truly a hybrid as it supplies no electrical energy in sup-    a. Cell Module and Pack Technology

1   All cost estimates in this report are based on an 		      The important parameters for hybrid-vehicle batteries
    exchange-rate of 90 Yen per U.S. dollar.                  are i) the cost of usable energy under conditions of high-

Executive Summary                                                                                                       2
1                   2                3               4                  5                6                   7                8
                                                                                                                                                          Extended-
                                                                                                                                          Parallel
 HYBRID CATEGORY:            Micro-1           Micro-2              Mild-1         Mild-2           Moderate           Strong                             Range EV
                                                                                                                                          Plug-in
                                                                                                                                                           (EREV)
                                                                                Mild power         Moderate power   Limited electric   Extended          Largely Electric
 Main attribute            Stop/Start        Regen brake       Launch assist
                                                                                assist             assist           drive              electric drive    Drive

                           Regular starter   Regular starter
                                                               Belt-driven or
 Electric machine          or belt-driven    or Belt-driven                     Crank shaft        Crank shaft      Two crank shaft    Two crank shaft   Drive Motor
                                                               crank shaft
                           alternator        alternator

 Electrical power level,
                           2-4 kW            2-4 kW            5-12 kW          10-15kW            12-20 kW         25-60 kW           40-100 kW         70-130 kW
 small to mid-size car
 Operating voltage         14                14-24             48               100-140            100-150          150-350            150-600           200
                           Most new          Mazda ,           In               GM Malibu                           Prius/Ford
 Example                                                                                           Honda Civic                         C-max PHEV        Chevy Volt
                           German cars       Suzuki            development      Eco                                 Fusion
 Cold engine cranking                                                                         Desired
 Stop/start cranking
 Crank to idle speed
 Regen braking
 Alternator assist
 Torque smoothing
 Launch assist
 Power assist
 Electric drive

 
                                                                      viii) logistic issues relative to shipping, storage, and
 
                                                                   recycling. In addition, a fundamental requirement for all
                                                                  hybrid-vehicle energy-storage systems is that they must
 
                                                                                   be essentially maintenance-free.
Table E.1.1: Hybrid Vehicle Configurations
                                                                                   Battery packs for xEV applications are complex sys-
power discharge, ii) their life in the application, and iii) the                   tems composed of multiple modules usually arranged
volume and weight of the energy-storage device capable                             in series electrical configurations, together with sup-
of delivering the required power for the required length of                        porting subsystems to maintain the battery cells and
time, derived from the energy density (Wh/liter and Wh/                            communicate key parameters to a higher-level vehicle
kg) and power density (W/liter and W/kg). The first two                            controller. The modules are in turn composed of sev-
parameters (cost and life), in combination, represent the                          eral individual cells (typically four or more) arranged in
economic cost of an energy-storage system capable of                               parallel, series, or a parallel/series combination with
providing the hybridization function over the vehicle’s life.                      the related electronics. Modules include a thermal
                                                                                   management system, some voltage and temperature
Other energy-storage system parameters include: i)                                 sensors, and could also include local electronic control
operating temperature range, ii) thermal manage-                                   functions such as a cell-balancing system.
ment requirements, which relate to the weight and
cost of the device and the complexity of keeping it at                             The battery pack is comprised of the modules, cooling
temperatures that do not shorten the desired life, iii)                            system, mechanical enclosures and fasteners, battery
charge acceptance, for effective regenerative braking,                             controller and electrical components, including contac-
iv) electrical management requirements, v) robustness                              tors, connectors, bus-bars, sensors, and fuses. Figure
under abuse, vi) charge retention on storage, vii) avail-                          E.2.1 shows a general view of a liquid-cooled HEV Li-Ion
ability, reliability, and long-term security of supply, and                        battery pack.

Executive Summary                                                                                                                                                       3
You can also read