The xEV Industry Insider Report - Assessing the Future of Hybrid and Electric Vehicles
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Assessing the Future of Hybrid and Electric Vehicles: The xEV Industry Insider Report Based on private onsite interviews with leading technologists and executives advanced automotive batteries
ACKNOWLEDGEMENTS This study was conducted by Advanced Automotive Batteries. Dr. Menahem Anderman, President of Advanced Automotive Batteries and principal author of the study wishes to acknowledge the valuable contributions of the following individuals: • Dr. James George, former President, George Consulting International, Inc. • Mr. Kevin Konecky, Associate Consultant, Total Battery Consulting, Inc. • Dr. Robert Spotnitz, President, Battery Design Company • Prof. Martin Winter, Chair, Applied Material Science for Energy Conversion and Storage, Institute of Physical Chemistry, University of Muenster The author also wishes to acknowledge the cooperation of forty-three organiza- tions—listed below—who shared their professional know-how and views in sup- port of this study during and following one or more on-site interviews throughout the last ten months. Automakers/Automotive Systems Battery Producers Other Participants • Audi • A123 Systems • California Air Resources Board • AVL • AESC • Hitachi Chemical • BMW • Deutsche Accumotive • Mitsubishi Chemical • Chrysler • Dow Kokam • NEC Devices • Continental AG • Exide • Showa Denko • Daimler • GS Yuasa • Umicore • Ford • Hitachi • General Motors • Johnson Controls • Honda • LG Chem • Hyundai • Li Energy Japan • Magna E-Car • Primearth EV Energy • Mitsubishi Motors • Panasonic-Sanyo • Opel AG • Robert Bosch • Porsche • Samsung • PSA Peugeot Citroën • SK Innovation • Renault • Toshiba • Robert Bosch • Toyota • Valeo • Volkswagen • ZF Sachs Finally, our thanks to Catherine Searle for her dedicated work in the preparation of this report and to Jennifer for her support.
TABLE OF CONTENTS Executive Summary.............................................. 1 Chapter I: 1. xEV Vehicle Technology...................................................... 2 Introduction and Hybrid-Vehicle Technologies....................................................... 21 a. Market Drivers..................................................................... 2 b. Hybrid-Vehicle Architecture................................................ 2 1. Introduction......................................................................... 22 2. HEV Battery Technology..................................................... 2 2. Powertrain Technology ..................................................... 24 a. Cell Module and Pack Technology..................................... 2 3. Electrical Power on Board Vehicles................................. 25 b. Key Energy-Storage Technologies for HEVs...................... 4 a. Power Generation and Demand....................................... 25 i) Lead-Acid Batteries........................................................... 4 b. Electrically Powered Ancillaries and Accessories............ 25 ii) Nickel-Metal Hydride Batteries.......................................... 5 4. The Stop/Start Function.................................................... 26 iii) Lithium-Ion Batteries......................................................... 6 iv) Ultracapacitors................................................................... 6 5. Hybrid-Vehicle Powertrain Architectures........................ 27 a. Overview........................................................................... 27 3. Battery Requirements and Battery Selection for Each Hybrid-Vehicle Category...................................... 6 b. Series-Hybrid Architectures.............................................. 27 a. Overview............................................................................. 6 c. Classical Parallel Architectures........................................ 27 b. Micro 2................................................................................ 6 d. The Integrated Starter Generator (ISG), or Integrated Motor Assist (IMA)....................................... 28 c. Mild-1 – 48V Systems......................................................... 7 e. Series/Parallel Single-Mode d. Energy Storage for hybrid Cars - Summary....................... 8 Transmission Power-Split Architectures........................... 28 4. Batteries for EVs & PHEVs.................................................. 8 6. Levels of Powertrain Hybridization.................................. 29 a. EV & PHEV Battery Cost.................................................... 8 a. Micro Hybrids.................................................................... 29 b. EV Cell and Pack Key Characteristics...............................11 b. Mild Hybrids...................................................................... 30 c. PHEV Pack Key Characteristics........................................12 c. Moderate Hybrids.............................................................. 30 d. Life, Reliability, and Safety.................................................12 d. Strong Hybrids...................................................................31 e. Technology Enhancement Roadmap.................................13 e. Plug-in Hybrids...................................................................31 5. xEV Vehicle Market.............................................................13 7. Hybridization of Specialty Vehicles..................................31 a. Market Drivers and Challenges for xEVs...........................13 8. Hybridization Summary......................................................31 b. Market Forecast for xEVs..................................................14 c. xEV Market Conclusions....................................................16 Chapter II: Energy Storage Technologies for HEVs........... 33 6. Battery Market for xEVs.....................................................17 1. High-Power Battery Technology Key Attributes............ 34 a. Battery Markets for xEVs through 2016.............................17 a. Introduction....................................................................... 34 i) Micro Hybrids................................................................... 17 ii) Strong/Mild HEVs............................................................ 17 b. Battery Impedance and Power Rating.............................. 34 iii) PHEVs.............................................................................. 18 c. Battery Life, Reliability, and Safety / Abuse Tolerance.... 36 iv) EVs................................................................................... 18 2. Energy-Storage Systems v) Combined Li-Ion Cell Markets......................................... 18 and Module/Pack Technology........................................... 37 vi) Combined xEV Pack Markets.......................................... 18 a. Introduction....................................................................... 37 b. xEV Battery Market to 2020...............................................19 b. Battery Module.................................................................. 38 c. Industry Overcapacity........................................................19 c. Thermal Subsystems........................................................ 38
d. Mechanical and Structural Subsystems........................... 40 Chapter III: e. Battery Management Systems (BMS) Battery Requirements and the Choice of and Electronics Hardware................................................. 40 Battery for Each Hybrid Vehicle Category....... 71 f. Battery Management System Software.............................41 1. Overview.............................................................................. 72 g. ESS Safety Considerations...............................................41 2. Basic Requirements and Conventional 3. Lead-Acid Batteries........................................................... 42 SLI Applications................................................................. 72 a. Introduction........................................................................42 a. Requirements.................................................................... 72 b. Enhanced Flooded Lead-Acid Batteries (EFLAs)............. 43 b. Energy-Storage Solutions................................................. 73 c. AGM VRLA Designs......................................................... 44 3. Micro-1 – Stop/Start Vehicles d. VRLA Performance........................................................... 44 with No Regenerative Braking.......................................... 73 e. VRLA Life.......................................................................... 45 a. Load Profile and Energy-Storage Requirements.............. 73 f. Manufacturing and Cost Considerations b. Energy-Storage Solutions..................................................74 for Enhanced-flooded and VRLAs.................................... 46 4. Micro-2 – Stop/Start Vehicles g. New Lead-Acid Designs................................................... 46 with Regenerative Braking.................................................74 i) Batteries incorporating a. Load Profile and Energy-Storage Requirements...............74 a high-surface area capacitive carbon............................46 b. Energy-Storage Solutions..................................................75 ii) Bipolar Designs................................................................ 47 i) VRLA battery................................................................... 76 h. Lead-Acid Outlook.............................................................47 ii)Single Graphite-LFP Li-Ion Battery................................. 76 iii) EFLA + UCap..................................................................77 4. Nickel-Metal Hydride Batteries......................................... 48 iv)EFLA + Graphite-LFP Li-Ion Battery..............................77 a. Overview........................................................................... 48 v) EFLA + LTO-NMC Battery..............................................77 b. High-Power Cell Design.................................................... 48 vi)VRLA + NiMH String.......................................................77 c. Cell-Manufacturing Tolerance Issues............................... 49 c. Discussion..........................................................................77 d. Module Design.................................................................. 50 d. Outlook.............................................................................. 79 e. Thermal and Electrical Management................................ 50 5. Mild-1 – 48V Systems......................................................... 79 f. HEV Cell and Pack Performance..................................... 50 a. Load Profile and Energy-Storage Requirements.............. 79 g. Operating Temperature......................................................51 b. Energy-Storage Solutions................................................. 80 h. Life.................................................................................... 52 i. Cost Estimates for NiMH Cells, 6. Mild-2 Hybrid Vehicles........................................................81 Modules, and Battery Packs............................................. 52 a. Energy-Storage Requirements..........................................81 j. Outlook ............................................................................. 53 b. Energy-Storage Solutions..................................................81 c. Discussion of Micro-2 and Mild Hybrid Architectures....... 82 5. Lithium-Ion Batteries......................................................... 53 a. Overview........................................................................... 53 7. Moderate Power-Assist Hybrids....................................... 82 b. HEV-Cell Configurations................................................... 54 a. Energy-Storage Requirements......................................... 82 c. Choice of Cathode Material.............................................. 56 b. Energy-Storage Solutions................................................. 83 d. Choice of Anode Materials................................................ 57 8. Strong-Hybrid Vehicles..................................................... 83 e. Electrolyte Considerations................................................ 58 a. Energy-Storage Requirements......................................... 83 f. Separators......................................................................... 59 b. Energy-Storage Solutions................................................. 84 g. HEV Module Design......................................................... 59 9. Summary............................................................................. 84 h. HEV Cell and Module Performance................................. 59 i. Operating Life .................................................................. 60 10. Power-assist Fuel-Cell Hybrid Vehicles.......................... 85 j. Cost....................................................................................61 11. Hybridization of Specialized Heavy Vehicles................. 86 k. Safety / Abuse Resistance................................................ 63 a. Introduction....................................................................... 86 l. Summary and Outlook...................................................... 64 b. Buses................................................................................ 87 6. Ultracapacitors................................................................... 64 c. Delivery Vehicles.............................................................. 87 a. Overview........................................................................... 64 d. Military Vehicles................................................................ 87 b. Symmetric Ultracapacitors (EDLCs)................................. 65 e. Heavy-Duty Vehicles........................................................ 87 c. Hybrid (Asymmetric) Ultracapacitors................................ 66 f. Outlook.............................................................................. 88 d. Hybrid Ultracapacitors in Non-aqueous Electrolytes........ 66 Chapter IV: e. Performance of Symmetric EDLCs................................... 67 Lithium-Ion EV f. Cost................................................................................... 68 and PHEV Battery Technology.......................... 89 g. Applications and Outlook.................................................. 69 1. Battery Manufacturing and Cost...................................... 90 7. Summary and Comparison............................................... 69 a. Introduction....................................................................... 90
b. Li-Ion Cell Manufacturing Technology.............................. 90 4. Technology Enhancement Roadmap..............................120 i) Overview..........................................................................90 a. Introduction......................................................................120 ii) Electrode Fabrication....................................................... 91 b. Key Short-Term Li-Ion Cell and Pack iii) Cell Assembly.................................................................. 92 Performance Enhancement Opportunities .....................121 iv) Formation and Final Quality Assurance.......................... 92 v) Process Control and Yields............................................. 93 c. Cell Design Enhancements.............................................121 vi) Challenges Relative to Large i) Cathodes........................................................................ 121 Automotive-Cell Manufacturing....................................... 93 ii) Anodes........................................................................... 122 iii) Electrolytes.................................................................... 123 c. Li-Ion Cell Cost Estimates................................................ 94 iv) Separators..................................................................... 123 i) General Considerations...................................................94 v) Cell Packaging............................................................... 123 ii) Cost Estimates for 2.4-Ah 18650 Consumer Cells.........95 d. Enhanced Li-Ion Pack Technology..................................123 iii) Manufacturing Investment in a 1000-MWh Plant Producing 25-Ah e. Beyond Li Ion...................................................................123 i) Introduction.................................................................... 123 Prismatic Metal-Can Flat Wound PHEV Cells................96 ii) Lithium-Air (Oxygen) Chemistry.................................... 124 iv) Cost and Price Estimate for a 25-Ah iii) Lithium- Sulfur Chemistry.............................................. 124 NMC-Graphite Metal-Can Cell at a Production iv) Zn-Air (Oxygen) Chemistry............................................ 125 Volume of 10 Million Cells (1000 MWh) per Year........... 97 v) Hybrid Energy-Storage Systems................................... 125 v) Cost Analysis of a 36-Ah EV vi) Conclusions................................................................... 125 Pouch Cell with an NMC/LMO Blend Cathode...............98 d. Battery Pack Development and Cost............................... 99 Chapter V: i) Introduction......................................................................99 xEV Vehicle Market........................................... 127 ii) System Development and Integration.............................99 1. Market Drivers and Challenges for xEVs........................128 iii) Development Timeline and Manpower Investment.........99 iv) Test and Validation........................................................ 100 a. Introduction......................................................................128 v) Subsystem Design Cost Consideration......................... 101 b. Environmental and Energy-Security Drivers...................128 vi) Cell-Size Selection........................................................ 101 i) Influence of Governments on the Industry.................... 128 vii) Cost Summary............................................................... 101 ii) The Environmental Driver.............................................. 128 iii) Energy Security............................................................. 129 2. Battery Design and Key Attributes.................................103 c. Benefits to Customers.....................................................130 a. Cell Design......................................................................103 i) Fuel Savings for Customers.......................................... 130 i) Introduction.................................................................... 103 ii) Electrically Powered Ancillaries..................................... 130 ii) Mechanical Cell Construction........................................ 103 d. Industrial Competitiveness and Corporate Image...........131 iii) Cathodes........................................................................ 104 i) Industrial Competitiveness............................................ 131 iv) Anodes........................................................................... 104 ii) Corporate Image............................................................ 131 v) Electrolytes.................................................................... 104 e. Market Risks....................................................................131 vi) Separators..................................................................... 105 i) Success of Advanced Diesel in North America............ 131 b. Cell and Battery Key Characteristics.............................. 105 ii) Stabilization or Reversal in Oil Pricing and i) EV Cell Key Attributes................................................... 105 Concern about Energy Security.................................... 132 ii) Key Attributes of PHEV Cells........................................ 106 iii) Relaxation of Government Regulations......................... 132 iii) Key Attributes of EV Packs............................................ 106 iv) Life, Reliability, or Safety of xEV Batteries................... 132 iv) Key Attributes of PHEV Battery Packs.......................... 109 2. Market Conditions in Key Regions..................................132 c. Battery Power and Temperature Performance................110 a. The U.S. Market...............................................................132 3. Battery Durability and Safety..........................................112 i) California and its Air Resources Board (CARB)........... 132 a. Battery Durability.............................................................112 ii) CAFE Standards and the U.S. Federal Scene.............. 134 i) Durability and Reliability................................................ 112 iii) Consumers..................................................................... 135 ii) EV-Battery Cycle Life.................................................... 113 b. Europe..............................................................................135 iii) EV Battery Calendar Life............................................... 114 i) Regulations.................................................................... 135 iv) Battery Life in PHEV Applications................................. 115 ii) Consumers and Carmakers........................................... 135 v) Life Modeling and Predictions....................................... 115 c. Japan...............................................................................136 vi) Summary: EV and PHEV Life and Reliability............... 117 d. China................................................................................136 b. Safety / Abuse Resistance..............................................117 i) Governmental Activities................................................. 136 i) Overview of Safety Challenges..................................... 117 ii) Vehicle and Battery Producers...................................... 136 ii) Safety Characteristics.................................................... 117 iii) Chinese Customers....................................................... 137 iii) Abuse Testing versus Field Failure............................... 118 e. Summary..........................................................................137 iv) Soft Short Developing into a Hard Short...................... 118 3. Market Forecast for xEVs.................................................137 v) Standardized Tests........................................................ 119 vi) Cell-Level Safety Enhancements.................................. 119 a. Micro-Hybrids...................................................................137 vii) Pack-Level Safety Enhancements................................. 120 b. Mild, Moderate, and Strong Hybrids................................138 viii) Outlook: Safety Aspects of Utilizing Li-Ion c. Plug-In Electric Vehicles..................................................140 Batteries in PHEV and EV Applications........................ 120 d. Electric Vehicles...............................................................142
e. PHEV and EV Market Conclusions.................................143 b. Korea............................................................................... 164 i) LG Chem........................................................................ 164 4. Activities of Key Automakers......................................... 144 ii) Samsung Display Devices (SDI)................................... 164 a. Japanese Automakers.................................................... 144 iii) SK Innovation (SKI)....................................................... 164 i) Toyota/Lexus.................................................................. 144 iv) EIG................................................................................. 165 ii) Honda............................................................................ 145 c. China and Taiwan........................................................... 165 iii) Nissan............................................................................ 145 i) BYD................................................................................ 165 iv) Mitsubishi Motors........................................................... 145 ii) Tianjin Lishen Battery Co.............................................. 165 v) Other Japanese Automakers......................................... 146 iii) ATL Battery.................................................................... 165 b. US Automakers................................................................146 iv) Other Chinese Suppliers............................................... 165 i) General Motors.............................................................. 146 d. U.S. and Europe.............................................................. 166 ii) Ford................................................................................ 146 i) Johnson Controls (JCI).................................................. 166 iii) Chrysler-Fiat.................................................................. 147 ii) Exide.............................................................................. 166 iv) Tesla............................................................................... 147 iii) A123 Systems................................................................ 166 c. European Automakers.....................................................147 iv) Bosch Automotive.......................................................... 166 i) Renault........................................................................... 147 v) Li-Tec Corporation......................................................... 167 ii) BMW.............................................................................. 148 vi) Magna International....................................................... 167 iii) Volkswagen/Audi/Porsche............................................. 148 vii) Continental AG............................................................... 167 iv) Daimler........................................................................... 149 viii) Saft................................................................................. 167 v) PSA................................................................................ 149 ix) EnerDel.......................................................................... 167 d. Korean and Chinese Producers.......................................149 x) Others............................................................................ 168 i) Hyundai.......................................................................... 149 ii) Fully-Chinese-Owned Companies................................ 150 Glossary............................................................. 169 iii) Joint Ventures with Western Companies...................... 150 e. Premium Brands: Jaguar, Land Rover, and Others..........150 f. Heavy-Duty Vehicles.......................................................150 i) HEV Buses, Delivery Vehicles, and Work Vehicles...... 150 ii) EV Buses in Chinese Market with Fast Charge and/or Fast Mechanical Battery Replacement.............. 150 Chapter VI: Battery Market for xEVs....................................151 1. Batteries for Micro-Hybrids.............................................152 a. Lead-Acid Batteries.........................................................152 b. Other Energy-Storage Technologies...............................152 2. Mild, Moderate, and Strong HEV Battery Market..........153 3. PHEV Battery Market........................................................... 155 4. EV Battery Market............................................................ 156 5. The xEV Battery Market Summary..................................157 6. Advanced Automotive Li-Ion Cell Materials Market............................................ 159 7. Cell and Pack Business Structure and Key Criteria for Success.......................................... 160 a. Emerging Industry Structures......................................... 160 b. Manufacturing Experience...............................................161 c. Overcapacity....................................................................161 8. Notes on Key xEV Battery Producers.............................162 a. Japan...............................................................................162 i) PrimeEarth EV Energy (PEVE)..................................... 162 ii) Panasonic Including Sanyo Electric Division................ 162 iii) Automotive Energy Supply Corporation (AESC)........... 162 iv) GS Yuasa Corporation (GSYC)..................................... 163 v) Hitachi Vehicle Energy (HVE)....................................... 163 vi) Toshiba........................................................................... 163 vii) Shin Kobe Electric Machinery....................................... 163 viii) Furukawa....................................................................... 164 ix) Sony............................................................................... 164
LIST OF TABLES AND FIGURES Tables Table II.1.2: Key Processes that Contribute to Ionic (Including Kinetic) Impedance................. 35 Table II.1.3: Typical Abuse Tests Executive Summary............................................................1 or EV / HEV Cells and Modules........................... 36 Table E.1.1: Hybrid Vehicle Configurations................................ 3 Table II.2.1: Types of Thermal Control System........................ 39 Table E.2.1: Characteristics of Candidate Table II.2.2: Summary of xEV Electrical High-Power Energy-Storage Subsystem Components.......................................41 Technologies for HEV Applications........................ 4 Table II.4.1: Cost Estimate for a High-Power NiMH Table E.2.2: Cost, Manufacturing, and Logistic Issues 6-Ah Nominal Cell, and a Module and of Candidate Energy-Storage a Battery-Pack Assembly of 6-Ah Cells............... 53 Technologies for HEV Applications........................ 5 Table II.5.1: HEV Li-Ion Cell-Design Table E.3.1: Energy-Storage Solutions for Micro-2 Matrix Current/Future........................................... 58 Profile with Existing Production Cells (Case 2); (HP = High Power, UHP = Ultra High Power)........ 7 Table II.5.2: Comparison of Module Design with Pouch and Metal-can Cells........................... 59 Table E.3.2: Energy-Storage Solutions for Mild Hybrids............ 7 Table E.3.3: Energy-Storage Technology Solutions for Table II.5.4: USABC HPPC Test Profile Data Advanced Vehicles by Vehicle Category................ 8 for a 5-Ah Samsung HEV Cell............................. 60 Table E.3.4: Load Profiles for the Various Hybrid Table II.5.3: USABC HPPC Test Conditions............................ 60 Architectures and Li-Ion Solutions......................... 8 Table II.5.5: Material Cost Estimates for a Li-Ion 5-Ah, Table E.3.5: Energy-Storage Solutions for 18-Wh, 500-Watt HEV Cell (250-MWh Plant)...... 62 Hybrid Vehicles: Key Characteristics..................... 9 Table II.5.6: Price Estimate for a 5-Ah, Table E.4.1: Cost Estimate for a 25-Ah PHEV Cell................... 9 18-Wh High-power Li-Ion Cell.............................. 62 Table E.4.2: Cost Estimate for a 36-Ah EV Pouch Cell............10 Table II.5.7: Cost Estimate for a 1.3-kWh Table E.4.3: PHEV and EV-Pack Pricing..................................10 Nominal 35-kW Air-Cooled Pack......................... 63 Table E.4.4: Li-Ion Cells Employed in Current EVs...................11 Table II.6.1: Electrode Configurations Table E.4.5: EV Packs Key Energy Characteristics..................11 for Ultracapacitors and Li-Ion Cells...................... 67 Table E.4.6: Key Characteristics of PHEV Packs......................12 Table II.6.2: Performance Targets for Cylindrical Hybrid Table E.6.1: 2020 Automotive Li-Ion Battery Market.................19 Capacitor Device (Nippon Chemi-Con)................ 68 Table E.6.2: Estimated Globally Installed and Table II.7.1: Characteristics of Candidate Utilized xEV Li-Ion Cell Manufacturing................ 20 High-Power Energy-Storage Technologies for HEV Applications...................... 69 Chapter I: Table II.7.2: Cost, Manufacturing, and Logistics Introduction and Hybrid-Vehicle Technologies.............21 Issues of Candidate Energy-Storage Table I.6.1: Hybrid Vehicle Configurations.............................. 30 Technologies for HEV Applications...................... 70 Table I.8.1: Levels of Hybridization/Electrification...................31 Chapter III: Chapter II: Battery Requirements and the Choice Energy Storage Technologies for HEVs.........................33 of Battery for Each Hybrid Vehicle Category................71 Table II.1.1: Key Processes that Contribute Table III.3.1: Duty Cycle Estimates for Micro-1......................... 73 to Electronic Impedance....................................... 35 Table III.4.1: Micro-2 Duty Profile...............................................75
Table III.4.2: Micro-2 Energy-Storage Solutions (Case 1).........75 Table IV.2.7: Key Characteristics of PHEV Packs....................110 Table III.4.3: Key Characteristics of Energy-Storage Table IV.2.8: Chevy Volt Battery Key Characteristics..............110 Components for Micro-2 Applications.................. 76 Table IV.3.1: Hazard Level Categories for Abuse Tests..........119 Table III.4.4: Lower Performance, Lower Cost Energy-Storage Components Chapter V: for Micro-2 (Case 2)............................................. 78 xEV Vehicle Market.........................................................127 Table III.4.5: Energy-Storage Solutions for Micro-2 Profile Table V.3.1: Strong, Mild and Moderate Hybrid-Vehicle with Existing Production Cells (Case 2)............... 78 Market (Historical and Forecast) by Producer....139 Table III.5.1: Mild-1 Duty Cycle................................................. 80 Table V.3.2: PHEV Unit Production by Automaker..................141 Table III.5.2: Energy-Storage Solutions for Mild Hybrids.......... 80 Table V.3.3: Historical and Forecast EV Sales Table III.6.1: Duty Profile for Mild-2 Hybrids..............................81 by Automaker (in ‘000 Units)...............................143 Table III.6.2: Energy-Storage Solutions for Mild-2 Hybrids....... 82 Chapter VI: Table III.7.1: Duty Profiles for Moderate and Strong Hybrids... 82 Battery Market for xEVs................................................. 151 Table III.8.1: USABC Battery Specifications Table VI.2.1: Dollar Volume of HEV Cell for a Strong Hybrid............................................... 83 and Battery Production........................................155 Table III.7.2: Energy Storage Solutions Table VI.3.1: PHEV Battery-Cell Market for Moderate Hybrids............................................ 83 by Producer ($ Million).........................................155 Table III.8.2: Energy-Storage Solutions for Strong Hybrids...... 84 Table VI.4.1: EV Battery-Cell Market Table III.9.1: Energy-Storage Technology Solutions for by Cell Producer ($ Million).................................156 Advanced Vehicles by Vehicle Category.............. 84 Table VI.5.1: xEV Li-Ion Battery-Cell Marke Table III.9.2: Load Profiles for the Various Hybrid by Producer ($ Million).........................................157 Architectures and Li-Ion Solutions....................... 85 Table VI.5.2: Advanced Automotive Battery Pack Table III.9.3: Regenerative Charge Loads for the Various Business ($ Million).............................................158 Hybrid Architectures and Li-Ion Solutions............ 85 Table VI.5.3: 2020 Automotive Li-Ion Battery Market...............159 Table III.9.4: Energy Storage Solutions Table VI.6.1: Li-Ion HEV Battery Cell-Material for Hybrid Vehicles: Key Characteristics.............. 86 Consumption........................................................159 Chapter IV: Table VI.6.2: Li-Ion PHEV and EV Battery Lithium-Ion EV and PHEV Battery Technology.............89 Cell-Material Consumption..................................159 Table VI.7.1: Estimated Globally Installed and Utilized Table IV.1.1: Cell Assembly Techniques................................... 93 xEV Li-Ion Cell Manufacturing Capacity.............161 Table IV.1.2: Typical Manufacturing Yields in Li-Ion Cell Manufacturing................................. 93 Table IV.1.3: 18650 Cell Materials Cost.................................... 95 Table IV.1.4: 18650 Cell Cost and Price................................... 95 Figures Table IV.1.5: Equipment and Plant Cost Estimates................... 96 Executive Summary............................................................1 Table IV.1.6: Materials’ Cost Estimate Figure E.2.1: Liquid-cooled Li-Ion Mild HEV (Cylindrical Cells) for a 25-Ah PHEV Cell......................................... 97 Battery Pack for Mercedes S Class Vehicle.......... 4 Table IV.1.7: Cost Estimate for a 25-Ah PHEV Cell................. 98 Figure E.5.1: Comparison of Global CO2 Emission Table IV.1.8: Materials Cost for a 36-Ah EV Pouch Cell.......... 98 Regulations in g CO2/km for Passenger Table IV.1.9: Cost Estimate for a 36-Ah EV Pouch Cell........... 99 Cars (Test Conditions Normalized to Table IV.1.10: Four-Step ESS Development Process............... 100 the New European Drive Cycle (NEDC)...............14 Table IV.1.11: 36-Month Project Timeline................................. 100 Figure E.5.2: Micro-Hybrid Market by World Region..................14 Table IV.1.12: Thermal Subsystem Design Comparison............101 Figure E.5.3: Strong, Mild/Moderate Hybrid-Market Table IV.1.13: System-Configuration Analysis Growth by World Region.......................................15 for a 60-Ah, Nominal 22kWh EV System............102 Figure E.5.4: PHEV Market Growth by World Region................15 Table IV.1.14: Amortization of NRE and Tooling Investment.....102 Figure E.5.5: World EV Market Growth by Region.....................16 Table IV.1.15: PHEV and EV-Pack Pricing................................103 Figure E.5.6: Historical and Forecast EV Table IV.2.1: Li Ion Cells Employed in Current EVs................ 106 Sales by Automaker..............................................16 Table IV.2.2: Key Characteristics of Current PHEV Cells....... 106 Figure E.6.1: Estimated Unit Sales of EFLA Table IV.2.3: Specifications of the Battery Pack and VRLA Designs (in Million Units).....................17 for Mitsubishi Motors’ i-MiEV..............................107 Figure E.6.2: NiMH vs. Li-Ion HEV Table IV.2.4: Tesla Roadster Battery Pack...............................107 Battery-Pack Business ($ Million).........................17 Table IV.2.5: Key Attributes of EV Packs................................ 108 Figure E.6.3: Li-Ion HEV Battery-Cell Table IV.2.6: EV Packs Key Energy Characteristics............... 108 Business by Cell Producer....................................18
Figure E.6.4: Combined Li-Ion Automotive Cell Market Figure II.4.7: In-Vehicle Cycle Life of Prius NiMH (2009).......... 52 for HEV, PHEVs, and EVs by Producer................18 Figure II.4.8: Nickel-Metal Pricing from 2003 to 2013............... 52 Figure E.6.5: Advanced Automotive Battery-Pack Figure II.5.1: Li-Ion Shuttle in a Li-Ion Cell............................... 54 Business ($ Million)...............................................19 Figure II.5.2: A Prismatic Elliptic Spirally Figure E.6.6: xEV Key Cell Material Business ($ Million).......... 20 Wound Cell from Panasonic................................. 54 Figure II.5.3: Pouch HEV Cell from AESC 55 Chapter I: Introduction and Hybrid-Vehicle Technologies.............21 Figure II.5.4: Comparison of Packaging Hardware for a Spirally Wound Hard-Can Figure I.3.1: Dual-Voltage Dual-Battery Architecture............... 26 Cell (A) and a Soft-Pouch Cell (B)....................... 55 Figure I.5.1: Series-Hybrid Architecture................................... 27 Figure II.5.5: Surface-modified Graphite Electrode Figure I.5.2: Classical Parallel Architecture.............................. 28 (Hitachi Chemicals).............................................. 57 Figure I.5.3: Architecture with ISG............................................ 28 Figure II.5.6: Samsung 5-Ah NMC-Cathode Figure I.5.4: Picture of Honda 2006 Accord IMA System........ 29 Prismatic Cell: Specific Power Charge Figure I.5.5: Series/Parallel Single-Mode and Discharge Performance................................ 60 Transmission Power-Split Architecture................. 29 Figure II.5.7: Discharge Power Capabilities (10 Seconds) of Hitachi 4.4-Ah, 260-gram HEV Cell..................61 Chapter II: Figure II.5.8: Charge Power Capabilities (10 Seconds) Energy Storage Technologies for HEVs.........................33 of Hitachi 4.4-Ah, 260-gram HEV Cell..................61 Figure II.1.1: Li-Ion Discharge Processes................................. 34 Figure II.5.9: Power Retention over Cycle Life Figure II.2.1: Liquid-cooled Li-Ion Mild HEV (Cylindrical Cells) of Samsung HEV Cells..........................................61 Battery Pack for Mercedes S Class Vehicle........ 37 Figure II.5.10: Calendar Life for Hitachi 4.4-Ah HEV Cells..........61 Figure II.3.1: Enhancements to Flooded Figure II.6.1: Idealized Voltage Profiles Lead-Acid Battery (After Exide)........................... 43 of a Battery and a Capacitor................................ 65 Figure II.3.2: Improved EFLA Cycle Life with Carbon Figure II.6.2: Ultracapacitors Operating Voltages..................... 66 Added to Negative Electrode (After Exide).......... 43 Figure II.6.3: Operating Mechanism of the Graphite Activated Figure II.2.2: Hitachi’s Air-Cooled Li-Ion Mild HEV Carbon (AC) Cell (after Nippon Chemi-Con)........ 67 (Cylindrical Cells) Battery Pack............................ 37 Figure II.6.4: Two EDLC Cells (Maxwell) and a Module Figure II.2.3: Chevy Volt Direct Liquid Cooled (Continental) for PSA C-3 Micro-1 Vehicle........... 68 (Pouch Cells) PHEV Battery Pack....................... 38 Figure II.2.4: NiMH 12-Cell Module Used Chapter III: in the 2006 Honda Civic Hybrid........................... 38 Battery Requirements and the Choice Figure II.2.5: Schematic of a Direct Liquid-cooled of Battery for Each Hybrid Vehicle Category................71 ESS by MagnaSteyr............................................. 39 Figure III.4.1: Driving Mode Profile for Proposed Worldwide Figure II.2.6: Direct Air Cooling Scheme Light-Duty Vehicle Test Procedure (WLTP) for the Audi Q-5 HEV Li-Ion Battery.................... 39 Versus Existing European Drive Cycle (NEDC).......74 Figure II.3.3: Rapid Fading of Charge Acceptance (in Amp/Ah) Figure III.4.2: Denso Micro-Hybrid Pack of Lead-Acid Batteries Over Time........................ 44 with Toshiba LTO Cells......................................... 77 Figure II.3.4: Rapid Fading of Charge Acceptance with Time for VRLA Batteries............................... 45 Chapter IV: Figure II.3.5: Cycle-life Data for the Exide Orbital Lithium-Ion EV and PHEV Battery Technology.............89 Battery at 2.5% DOD............................................ 45 Figure IV.1.1: Major Cost Stages in the Production Figure II.3.6: Schematic of the Ultrabattery of EV Battery Packs............................................. 90 with a Carbon-Lead Negative Electrode.............. 46 Figure IV.1.2: Electrode Fabrication Process Flow......................91 Figure II.3.7: Cycle Life of the Ultrabattery Against Figure IV.1.3: Knife-over-Roll Coating Head.............................. 92 Conventional and Enhanced SLI Designs - SAE J240 (17% DOD) Test Protocol.....47 Figure IV.1.4: Production Calender............................................. 92 Figure II.4.1: Schematic of the Spirally Wound Figure IV.1.5: Production Slitter.................................................. 92 HEV Cell (After Sanyo Electric)............................ 49 Figure IV.2.1: AESC Pouch Cell............................................... 104 Figure II.4.2: Current Collection Arrangement Figure IV.2.2: Lithium Energy Japan Prismatic Cell Structure.... 104 of a Recent Cylindrical HEV Cell from Sanyo...... 49 Figure IV.2.3: LG Chem’s Safety Reinforcing Separator.......... 105 Figure II.4.3: NiMH Cylindrical Cells and String (Module)......... 50 Figure IV.2.4: The First Mass-Produced Figure II.4.4: Prius Battery - 6-Cell Prismatic Module Block..... 50 Li-Ion EV Cell by Li Energy Japan..................... 105 Figure II.4.5: Power Characteristics of PEVE Figure IV.2.5: AESC Cell Module and Pack..............................107 NiMH Modules at 60% SOC..................................51 Figure IV.2.6: The Nissan Leaf Battery Installed in the Car......107 Figure II.4.6: Charge Efficiency for Sanyo NiMH HEV Figure IV.2.7: Battery Pack Integration for the BMW Active E.... 109 Cells as a Function of Temperature......................51 Figure IV.2.8: GM Chevy Spark Battery Pack.......................... 109
Figure IV.2.9: Discharge Curves for Samsung Figure V.3.8: PHEV Unit Production by Automaker..................142 63-Ah EV Cell at 25°C........................................ 111 Figure V.3.9: World EV Market Growth by Region...................142 Figure IV.2.10: Power Capability of Figure V.3.10: Historical and Forecast EV Li Energy Japan 50-Ah EV Cell.......................... 111 Sales by Automaker............................................143 Figure IV.2.11: Power versus Temperature and SOC for Samsung 63-Ah EV Cell................................ 111 Chapter VI: Figure IV.2.12: PHEV Charge and Discharge Power Battery Market for xEVs................................................. 151 Profile in Relative Power Versus SOC................112 Figure VI.1.1: Estimated Unit Sales of EFLA Figure IV.3.1: Cycle Life for Samsung 63Ah EV Cells..............113 and VRLA Designs (in Million Units)...................152 Figure IV.3.2: Cycle Life for LFP-Based Cathode EV Cells Figure VI.2.1: NiMH vs. Li-Ion HEV Battery-Pack from ATL Battery (a Chinese Manufacturer).......113 Business ($ Million).............................................153 Figure IV.3.3: Cycle Life of Toshiba LTO-Based EV Cells.........113 Figure VI.2.2: Li-Ion HEV Battery-Cell Business Figure IV.3.4: Calendar-Life Data for Samsung by Cell Producer................................................. 154 EV Cells as a Function of Temperature..............114 Figure VI.3.1: PHEV Battery-Cell Market..................................156 Figure IV.3.5: Li Energy Japan Cells Calendar Figure VI.4.1: EV battery-Cell Market Life Performance at 25°C and 45°C...................114 by Cell Producer ($ Million).................................157 Figure IV.3.6: State of Charge in an Ageing PHEV Battery......115 Figure VI.5.1: Combined Li-Ion Automotive Cell Market Figure IV.3.7: Calendar-Life Test Results for HEV, PHEVs, and EVs by Producer..............158 for Automotive Cells Tested at BMW at 60°C.....116 Figure VI.5.2: Advanced Automotive Battery Pack Business......158 Figure IV.3.8: Cycle Life Data of Lishen EV Cells Figure VI.6.1: xEV Key Cell-Material Business ($ Million)........ 160 as % of Initial Capacity........................................116 Figure IV.3.9: Cell Self-Heating Rate During Forced Thermal Ramp Test of a Li-Ion Cell....................118 Figure IV.4.1: Challenges Inherent to Battery EVs....................121 Figure IV.4.2: Discharge Voltage of Future and Current Li-Ion Cathodes...............................122 Figure IV.4.3: Li-Air Cell Processes...........................................124 Figure IV.4.4: Discharge/Charge Profile of Li-Sulfur Chemistry and Associated Species....................124 Chapter V: xEV Vehicle Market.........................................................127 Figure V.1.1: Comparison of Well-to-Wheel Greenhouse Gas (GHG) Emissions....................129 Figure V.2.1: CARB Projections of Likely Sales of PHEVs (TZEVs), Battery EVs (BEVs), and Fuel Cell EVs (FCVs) in California to Meet the 2018-2025 Regulations....................133 Figure V.2.2: US GHG C02 and CAFE Targets for 2012 to 2025................................................. 134 Figure V.2.3: Comparison of Global CO2 Emission Regulations in g CO2/km for Passenger Cars (Test Conditions Normalized to the New European Drive Cycle (NEDC))........137 Figure V.3.1: Micro-Hybrid Market by World Region................138 Figure V.3.2: Micro-Hybrid Unit Market by World Region........138 Figure V.3.3: Hybrid Market Growth: Strong Versus Mild and Moderate..................................139 Figure V.3.4: Strong, Mild and Moderate Hybrid-Vehicle Market by Carmaker...................140 Figure V.3.5: Strong, Mild and Moderate Hybrid Vehicle Market Excluding Toyota and Honda......140 Figure V.3.6: Strong, Mild and Moderate Hybrid-Market Growth by World Region.............140 Figure V.3.7: PHEV Market Growth by World Region..............141
Executive Summary
1. xEV Vehicle Technology port of traction, but features a “beefed-up” starter or a 2- to 4-kW belt-driven integrated-starter-alternator, in a. Market Drivers which fuel is saved during vehicle idle stop, and some mechanical energy is captured during braking. At the The drive to reduce fuel consumption in the transporta- other end of the range is the “plug-in hybrid” (PHEV), tion sector has reached unprecedented levels in the in which a 30- to 100-kW electric motor is capable of last 3-4 years. Hybrid and electric vehicles are sought propelling the car on its own for, say, 10 to 40 miles, after as critical technologies that can reduce fuel con- and supplements the power of the internal combustion sumption and emission of CO2, the increased levels of engine in most acceleration events. which in the atmosphere are considered a major con- tributor to global warming. Various governmental poli- Beyond the hybrids are full electric vehicles (EVs), which cies around the world are providing financial incentives use a single electric motor with an all-electric powertrain for vehicle electrification, setting standards for lower powered by a battery or a fuel cell (FC). While FC-powered fleet-average fuel consumption and even mandating vehicles have been in development since the mid-1990s the introduction of electrified vehicles. and are still of interest, infrastructure issues appear to limit their commercial viability for the foreseeable future. The automotive industry is being forced to develop mul- tiple technologies to address these governmental initia- The debate over the “right” level of electrification or tives, but faces significant challenges. The latter include hybridization has recently intensified. On the one hand technological readiness and cost1, product reliability a low level of hybridization provides only a small fuel- and durability, and above all customer interest and will- efficiency benefit but its relatively low cost facilitates ingness to actually pay for the technology. In addition high-volume introduction and can thus rapidly produce to electrification, other technologies with some environ- a notable impact on fleet-average fuel consumption. At mental benefits, such as ultra-efficient IC engines, clean the other extreme, full EVs and PHEVs offer significantly turbo-diesel engines, and bio-fueled IC engines, are also lower fuel consumption per vehicle, but their much evolving. In many cases, these alternative technologies higher cost, in addition to the limited range of the EV, are less expensive and less risky to the automakers, reduce the market appeal and thus the environmental thus explaining their interest in pursuing them in parallel impact on the fleet. to, or instead of, the electrification approach. However, automotive engineers are discovering that many of the Several levels of hybridization are possible as is dis- alternative solutions will also require increased electri- cussed in detail in Chapter I. They are generally classified cal power, which reinforces the desirability of at least according to i) the functions they provide, or ii) the ratio some level of vehicular hybridization. of the power of the electric-drive motor to total power (the rated maximum power of the electric motor added to that b. Hybrid-Vehicle Architecture of the IC engine.) Table E.1.1 describes the various hybrid- vehicle categories and the main functions they enable. Hybrid cars today cover a range of technologies charac- terized broadly by the extent to which electrical power is used for propulsion in an ICE vehicle. At one end of 2. HEV Battery Technology the spectrum is the ‘micro-hybrid’—a car that is not truly a hybrid as it supplies no electrical energy in sup- a. Cell Module and Pack Technology 1 All cost estimates in this report are based on an The important parameters for hybrid-vehicle batteries exchange-rate of 90 Yen per U.S. dollar. are i) the cost of usable energy under conditions of high- Executive Summary 2
1 2 3 4 5 6 7 8 Extended- Parallel HYBRID CATEGORY: Micro-1 Micro-2 Mild-1 Mild-2 Moderate Strong Range EV Plug-in (EREV) Mild power Moderate power Limited electric Extended Largely Electric Main attribute Stop/Start Regen brake Launch assist assist assist drive electric drive Drive Regular starter Regular starter Belt-driven or Electric machine or belt-driven or Belt-driven Crank shaft Crank shaft Two crank shaft Two crank shaft Drive Motor crank shaft alternator alternator Electrical power level, 2-4 kW 2-4 kW 5-12 kW 10-15kW 12-20 kW 25-60 kW 40-100 kW 70-130 kW small to mid-size car Operating voltage 14 14-24 48 100-140 100-150 150-350 150-600 200 Most new Mazda , In GM Malibu Prius/Ford Example Honda Civic C-max PHEV Chevy Volt German cars Suzuki development Eco Fusion Cold engine cranking Desired Stop/start cranking Crank to idle speed Regen braking Alternator assist Torque smoothing Launch assist Power assist Electric drive viii) logistic issues relative to shipping, storage, and recycling. In addition, a fundamental requirement for all hybrid-vehicle energy-storage systems is that they must be essentially maintenance-free. Table E.1.1: Hybrid Vehicle Configurations Battery packs for xEV applications are complex sys- power discharge, ii) their life in the application, and iii) the tems composed of multiple modules usually arranged volume and weight of the energy-storage device capable in series electrical configurations, together with sup- of delivering the required power for the required length of porting subsystems to maintain the battery cells and time, derived from the energy density (Wh/liter and Wh/ communicate key parameters to a higher-level vehicle kg) and power density (W/liter and W/kg). The first two controller. The modules are in turn composed of sev- parameters (cost and life), in combination, represent the eral individual cells (typically four or more) arranged in economic cost of an energy-storage system capable of parallel, series, or a parallel/series combination with providing the hybridization function over the vehicle’s life. the related electronics. Modules include a thermal management system, some voltage and temperature Other energy-storage system parameters include: i) sensors, and could also include local electronic control operating temperature range, ii) thermal manage- functions such as a cell-balancing system. ment requirements, which relate to the weight and cost of the device and the complexity of keeping it at The battery pack is comprised of the modules, cooling temperatures that do not shorten the desired life, iii) system, mechanical enclosures and fasteners, battery charge acceptance, for effective regenerative braking, controller and electrical components, including contac- iv) electrical management requirements, v) robustness tors, connectors, bus-bars, sensors, and fuses. Figure under abuse, vi) charge retention on storage, vii) avail- E.2.1 shows a general view of a liquid-cooled HEV Li-Ion ability, reliability, and long-term security of supply, and battery pack. Executive Summary 3
You can also read